
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

62

Manuscript received July 5, 2011
Manuscript revised July 20, 2011

A Comparative Study on the Performance of National Address
Database (NAD) on the Grid

Mahmud Hasan† Md. Sadim Mahmud†† and Yamin Mola†††,

Dept of Computer Science & IT, Islamic University of Technology (IUT), Gazipur-1704, Bangladesh

Summary
The need for every citizen to have a valid and verifiable address
and allowing diversified services to be provided to them has led
to the creation of National Address Database (NAD).
Traditionally, national address databases have been built and
maintained at a single central location. To overcome the flaws
(single point of failure, congestion and low scalability) inherent
in such a centralized system our research focus is to develop a
system with NAD in a grid environment. We have implemented
NAD in both centralized and grid environment and done a
comparative study between them. In our research we have built a
test bed that describes the computational environment in which
the comparison is performed. This paper includes proposed grid
system architecture for NAD, tables and a graph to show the
comparison. Furthermore we want to determine the database
which will provide faster and more efficient response in the grid
environment. For that purpose this paper also includes tables and
a graph to show the comparative performance of NAD
implemented in a grid environment using Intiendo Server [7] and
SQL Server.
Key words:
Grid Server, Manager, Executor, Address Verification (Match
Address), Web Client.

1. Introduction

As address data are produced on a local level by different
private vendors, to gain access to an integrated national
address database one has to buy the datasets or a subset of
the datasets from the vendors. This approach can be very
expensive. That is why research is being conducted to find
out ways to provide address related services instead of
providing the address data itself [9]. The idea of providing
address related services is one of the reasons for the
creation of the National Address Database (NAD). A
NAD refers to a countrywide database of street addresses.
Using NAD various services can be provided. Such as-
Routing and vehicle navigation, spatial demographic
analysis and geo-marketing, service placement and
delivery, address verification and so on. Previously NAD
has been built and maintained in a single central location.
There are several problems associated with it such as
delayed response as a result of multiple simultaneous
requests, single point of failure etc.

To solve this problem NAD can be implemented on a grid
environment [5] where the database can reside at any one
or all of the local authorities and will still be accessible as
a national whole through the grid. This address grid will
enable the creation of a virtual National Address Database.
To make a valid comparison we have implemented the
Address verification service (Match Address) on NAD.
Besides providing the means to perform a comparative
study between centralized and Grid system, the Match
Address service will also serve as a proof of concept to
show how various services can be provided based on
NAD. The Match Address service is implemented on both
centralized and Grid environment. From the response
times of using this service in both centralized and our
proposed system in the grid environment, we have
compared the performance between them.
There is a distinct lack of service-oriented architecture-
based grid computing software in this space. To overcome
this limitation, we used a Windows-based grid computing
framework called “Alchemi” [2][4], implemented on the
Microsoft .NET [8] Platform. While the notion of grid
computing is simple enough, the practical realization of
grids poses a number of challenges. Key issues that need
to be dealt with are heterogeneity, reliability, application
composition, scheduling, resource management and
security [2]. The Microsoft .NET Framework [8] provides
a powerful toolset that can be leveraged for all of these, in
particular support for remote execution, multithreading,
security, asynchronous programming, disconnected data
access, managed execution and cross-language
development, making it an ideal platform for grid
computing middleware. “Alchemi” was conceived with
the aim of making grid construction and development of
grid software as easy as possible without sacrificing
flexibility, scalability, reliability and extensibility [2].

2. Proposed System Architecture in Grid
Environment

We have built the system using a 3-tier architecture [1][6].
Here the tiers are defined as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

63

Tier-1: Consists of two portions. One is Grid Server or
entry portal another is manager node, though it is possible
to place them on different workstations.
Tier-2: Consists of several executor nodes. These PCs can
be located any part of the world even users connected to
the Internet. Thus we can use the unused processing time
of world wide internet users. For better performance we
have defined the executor architecture using Cluster Grid.
Section 4 contains more discussion about this clustering
technique.
Tier -3: Contains data server or database node. Here the
Database is Intiendo server, developed by AfriGIS
(www.afrigis.co.za). This Server reads Data from Generic
Hierarchy database of National Address. We have used
NAD of South Africa.

The fig.1 shows the pictorial description of this 3-tier
architecture:

Fig.1 Proposed System Architecture

3. Components of System Architecture

Different types of nodes (or hosts) take part in desktop
grid construction and application execution. Deploying a
Manager node and deploying one or more Executor nodes
configured to connect to the Manager construct an
Alchemi desktop grid.

3.1. Manager

This node provides services associated with managing
execution of grid applications and their constituent threads.
The Client sends request to the Manager through a
middleware (Grid Server) using a web based user interface
(Web Client). This node then distributes the jobs among
the working executors. Threads are scheduled on a Priority
and First Come First Served (FCFS) basis [2] [3].

3.2. Executor

The Executors/Working Nodes accept threads and execute
them [2]. They are actually responsible for requesting the
data to the DataServer nodes and processing the data after
getting them from the specified database.

3.3. Data Server Node

The DataServer node actually accesses the database. In the
system we have used Intiendo server as a DataServer node
which access a generic hierarchy database to retrieve data.

3.4. Web Client

Web client is a web page which provides the user interface
from where the client can send the address verification
request (Match Address). In Match Address service
request the web page contains five fields (province, Town,
Suburb, Street name, Street no.). By filling any of these
fields the client can send his/her request for address
verification. Upon receiving the request the system
searches through the database to find a match with the
field specified in the request. The system displays all the
possible matched addresses with their matching
percentage as a response. Web client is shown in fig-1

3.5. Grid Server

The request from the client will be directed to the grid
server. We have developed this grid server as a user
defined middleware that is responsible for creating threads
for each of the requests sent by the client. Depending on
the type of the request grid server will select the manager
from a particular cluster. Then the threads created by the
grid server will be sent to that manager to make

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

64

scheduling, so that each thread (user request) will be
assigned to a specific executor.

4. Cluster Specification

We have introduced several clusters on this Grid. These
clusters are differentiated by the request type from the end
users.

4.1. Cluster 1

If a user send a request, by specifying the province name
then the grid server will select manger of this cluster
which in turn schedule the threads for each request to a
specific executor to retrieve data from the data server node.
We have assumed that there are two provinces P1 and P2
and P1 is most searched database. So we have created a
replica of P1 to reduce the load. This is shown in Fig-1.

4.2. Cluster 2

If province and town name is not specified in the request
then this cluster will be selected which has a central
(whole database) NAD and also a replica of the database
to reduce the load. This is also shown in Fig-1.

4.3. Cluster 3

If town name is specified in the request then this cluster
will be selected. We have assumed that T1 and T2 are the
town database which are most searched. If town name in
the request matches with T1 or T2, data will be retrieved
from the matched database. Otherwise the data will be
retrieved from T3 which is a database for rest of the towns.
Cluster 3 is shown in Fig-1.

5. System Operation

• Clients will send requests through the Web Client to
the Grid Server. Grid Server will create threads for
each of the request, select manager of a particular
cluster depending on the request and instruct manager
to generate the response. The manager will handle
these requests by scheduling the threads. Each of
these threads will be assigned to an executor.
Executor will retrieve data from Intiendo server.

• Parameters for the request will be converted into CSV
(comma separated value) format.

• Manager will send this request format to the executor.

• Grid Server will provide Manager Node with a table
for the location of the DataServer node and their
database content.

• The table along with the request will be provided to
the executor by manger node.

• Now executor will decide which database will be
required for this request and request will be sent to
that data server.

• The Data server will retrieve the response from the
database.

• The path through which the response will be sent to
the client is as same as the request.

6. Functional Specification of the Test Bed

For the clear understanding, we are introducing the
functional specification of the test bed. This specification
explains the physical distribution and configuration of
each node. The following nodes will form part of our
NAD on the Grid. We have defined three levels for the
nodes.
Level 1 Node: These types of nodes are up and available
100% of the time.
Level 2 Node: These types of nodes are and available
most of the time, say 85% up-time.
Level 3 Node: These types of nodes only have dial-up
access to the grid.

Node 1

Level: 1
Type: Web client
Operating System: Windows
Grid software: N/A
Street Address Data: None
Data Format: CSV (Comma Separated Value) format
 for Intiendo Server.
IP Address: 203.208.189.69 (Internet)

Node 2
Level: 1
Type: Grid Server (User defined middleware)
Operating System: Windows
Grid software: Alchemi
Street Address Data: None
Data Format: CSV (Comma Separated Value) format
 for Intiendo Server
IP Address: 172.16.24.3 (LAN)

Node 3, 4, 5
Level: 1

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

65

Type: Manager Node of cluster 1, 2 and 3
Operating System: Windows
Grid software: Alchemi
Street Address Data: None
Data Format: N/A
IP Address: 172.16.24.5 (LAN), 172.16.24.122
 (LAN), 172.16.24.129 (LAN)

Node 6,7,8,9,10,11,12
Level: 1 or 2 or 3
Type: Executor Nodes of cluster 1, 2 and 3 connected
 to corresponding managers.
Operating System: Windows
Grid software: Alchemi
Street Address Data: None
Data Format: N/A
IP Address: 172.16.24.5 (LAN), 172.16.24.122
 (LAN), 172.16.24.129 (LAN),
 172.16.24.3 (LAN),
 172.16.24.161 (LAN), 172.16.24.162
 (LAN), 172.16.24.149 (LAN)

Node 13, 14, 15, 16, 17, 18, 19, 20
Level: 1
Type: DataServer Nodes of cluster 1, 2 and 3
Operating System: Windows
Grid software: Alchemi
Street Address Data: Street Address database of
 South Africa is used (Demo)
P1= Gauteng (province), P2=Western Cape
 (province)
C1= Demo version of the whole South Africa Street
 Address Data Base.
T1= Pretoria (Town), T2=Lawley (Town), T3=Rest
 of the town Data Base.
Data Format: Intiendo Hierarchy
IP Address: 172.16.24.5 (LAN),172.16.24.122
 (LAN),172.16.24.129 (LAN),
 172.16.24.3 (LAN),172.16.24.161
 (LAN),172.16.24.162
 (LAN),172.16.24.149 (LAN),
 172.16.24.150 (LAN)

7. Results and Performance Evaluation

The test bed for grid environment is prepared and to
measure the performance for Match Address service we
have created specific set of requests and sent those
requests simultaneously to both centralized system and our
proposed system in grid environment.

Fig.2 Snapshot of Grid Server during execution on Cluster Grid with 40
requests.

For our experiment we have sent 20 different requests to
both centralized and grid system and documented the
response time. This procedure has done three times and
from these data average response time is calculated.
Analogously for 30 and 40 requests the same procedure is
followed. The snapshot of output is given in fig.2 and
fig.3. Table-1 and Table-2 contains the response times for
different requests in grid and centralized system
respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

66

Fig.3 Snapshot of Grid Server during execution on Centralized System
with 40 requests.

Table 1. Response Time Vs Number of Requests (Grid)

No of
Request
(REQ)

Response Time in Cluster Grid Environment
Test1 Test2 Test3 Avg

20 5.6093 5.3437 5.3593 5.4375
30 5.8281 5.9001 5.7561 5.8281
40 9.1562 9.1562 9.1561 9.1562

Table 2. Response Time Vs Number of Requests (Centralized)

No of
Request
(REQ)

Response Time in centralized Environment
Test1 Test2 Test3 Avg

20 5.6562 6.6718 5.6406 5.9895
30 6.75 6.59 6.43 6.59
40 10.071 10.062 10.053 10.062

By plotting average response time and no of requests from
Table-1 and Table-2, a graph (fig.4) is constructed to
visualize the performance.

Performance Evaluation Between NAD on Centralized vs Grid
Environment

0

2

4

6

8

10

12

Number of Query Request

R
es

po
ns

e
Ti

m
e(

Se
co

nd
)

Centralized
Grid

Centralized 5.98958333 6.59 10.0625
Grid 5.4375 5.828125 9.15625

20 30 40

 Fig.4 Performance Graph (Centralized vs. Grid)

From Table.1, Table.2 and Fig.4, it is clearly
understandable that our NAD on the Grid can provide
much better performance than any available NAD systems
in any country. The curve for Cluster Grid is always better
than the curve for centralized NAD implementation. Now
for the next phase of our research similar operation has
been performed to determine the faster and more efficient
response providing database in grid environment. For
simplicity the comparison is made between Intiendo
Server and SQL Server. It can be easily concluded from
Table.3, Table.4 and Fig.5 that implementation of NAD in
a grid environment using Intiendo Server has considerably
faster response time than the implementation of NAD in a
grid environment using SQL Server.

Table 3. Response Time Vs Number of Requests (Intiendo)

No of
Request
(REQ)

Response Time in Grid Environment For
Intiendo Server

Test 1 Test2 Test3 Avg
1 1.008 1.200 1.119 1.109
2 1.448 1.421 1.442 1.437
3 2.499 2.481 2.52 2.50

Table 4. Response Time Vs Number of Requests (SQL)

No of
Request
(REQ)

Response Time in Grid Environment For SQL
Server

Test 1 Test2 Test3 Avg
1 2.210 2.531 2.522 2.421
2 2.980 2.864 2.991 2.945
3 4.515 4.622 4.573 4.57

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

67

Performance Evaluation between SQL Server and Intiendo
Server in Grid Environment

0

1

2

3

4

5

No of Query Request

Re
sp

on
se

 T
im

e
(S

ec
on

d)

SQL Server 2.421 2.945 4.57
Intiendo Server 1.109 1.437 2.5

1 2 3

 Fig.5 Performance Graph (SQL Server vs. Intiendo Server)

8. Conclusion

While this paper focuses on the performance study
between NAD on a Grid and centralized environment, it
also provides a service oriented cluster based architecture
where various services can be implemented and integrated
in order to satisfy various client requests in a Grid
environment. We can conclude from our experimentation
result that the performance of the grid system is better than
the centralized system and grid system that uses Intiendo
server as data node is more efficient than grid system that
uses SQL server as data node. Though many countries are
currently using NAD in various ways, they can ensure
better performance if they use this architecture with
Intiendo server. Although we have performed the
experiments with a small number of requests, from these
experiments we can infer that for a larger number of
requests the reduction of the response time in our
proposed grid system architecture will be significantly
faster.

Acknowledgements

We used Intiendo Server, developed by AfriGIS
(www.afrigis.co.za) on the database node.

References
[1] Mahmud Hasan, Yamin Mowla, Md. Sadim Mahmud and Md.

Ahsan Arefin (2007) “National Address Database on the Grid”, 10th
International Conference on Computer and Information Technology
(ICCIT) 2007, Bangladesh.

[2] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar
Venugopal (2004) Alchemi: A .NET-based Grid Computing
Framework and its Integration into Global Grids.

[3] Ian Foster, Carl Kesselman, and S. Tuecke, (2001)The Anatomy of
the Grid: Enabling Scalable Virtual Organizations, International
Journal of Supercomputer Applications, 15(3), Sage Publications,
2001, USA.

[4] Ahsan Arefin, Shiblee Sadik, Judith Bishop, Serena Coetzee, (2006)
“Alchemi Vs Globus: The Performance Comparison”, 4th
International Conference of Electrical and Computer Engineers
(ICECE) 2006, Bangladesh.

[5] Md. Ahsan Arefin, Md. Shiblee Sadik (2006), “Implementation of
Server on GRID: A Supercomputer Approach”, 15th International
Conference of Information Systems and Developmet (ISD) 2006,
Budapest, Hungary.

[6] Md. Ahsan Arefin, Md. Shiblee Sadik, Md. Forhad Rabbi, M. A.
Mottalib (2007), “3-Tier Architecture of Data Server on Grid:
Implemented Using Globus Toolkit”, International WORLDCOMP
Conference of Grid Computing Application (GCA, 07), Las Vegas,
USA.

[7] AfriGIS - Home, www.afrigis.co.za. Accessed: 10 April, 2011.
[8] Microsoft dot NET framework, www.microsoft.com, Accessed: 15

March, 2011.
[9] Serena Coetzee, Judith Bishop (2009), “Address databases for

national SDI: Comparing the novel data grid approach to data
harvesting and federated databases”, International Journal of
Geographical Information Science 23(9): 1179-1209 (2009).

Mahmud Hasan received BSc in
Computer Science and Information
Technology degree from Islamic
University of Technology (IUT) in 2007.
He has completed his MSc degree in an
Erasmundus Mundus program titled
“Network and E-Business Centred
Comuting (NeBcc)” in 2011. Currently
he is a Lecturer of the Department of

Computer Science and IT (CIT) at Islamic University of
Technology (IUT).

Md. Sadim Mahmud received BSc in
Computer Science and Information
Technology degree from Islamic
University of Technology (IUT) in 2007.
Currently he is pursuing his MSc degree
in the department of Computer Science at
the University of Western Ontario.

Yamin Mowla received BSc in
Computer Science and Information
Technology degree from Islamic
University of Technology (IUT) in 2007.
Currently he is working as an associate
engineer in NSS Operation and
Maintenance department of a cellular
service provider in Bangladesh known as
Banglalink.

