
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

98

Manuscript received July 5, 2011

Manuscript revised July 20, 2011

Knowledge Based Information Retrieval for Syntactic analysis

of Kannada Script

Keshava Prasanna
1

Dr Ramakhanth Kumar P
2

Thungamani.M
3
ShravaniKrishna Rau

4

1,3
ResearchAssistant, Tumkur University, Tumkur

2
Professor and HOD, R.V. College of Engineering, Bangalore

4
Student, R.V. College of Engineering, Bangalore

Abstract
The output of even the most effectively designed OCR (Optical

Character Recognition) module is not 100% accurate and hence

errors occur in the identification of letters in turn leading to

erroneous words. This motivates the use of spell checkers for

syntactic analysis of the words which are output by the OCR

and the need to verify the grammatical correctness of the

sentences formed using the optional words. The use of spell

checkers can be used to eliminate typographic errors and spell

checkers form the heart of modern day Natural language

Processing. An input word is taken from the user and it is

searched for in a static data dictionary. The data dictionary is

implemented using ternary search (TST) tree as the primary

data structure.

Keywords
syntactical analyzer, ternary search tree, Levenstein distance,

OCR, word recognition.

I. INTRODUCTION

The typical destination for documents is no longer

assumed to be a hard copy. Increasingly, an electronic

version is required for storage of a document. In order to

achieve this, there arises a need for Optical Character

Recognition (OCR) which can recognize the handwritten

document and store it in an electronic form. However the

output of the OCR module is not completely accurate.

There will be some erroneous data which can be

corrected using word recognition. The word recognition

module consists of a standard dictionary of a given script.

Appropriate data structures are used to store the standard

set of words in the dictionary. The erroneous words are

searched one by one in the dictionary; if there is an

inexact match the closest matches to that word are shown.

This technique helps in increasing the efficiency with

which the words are recognized in the OCR module.

Word recognition can also be used to make the editors

more intelligent by including features like auto

completion and spell checking.

1.1 Methodology for word recognition
There are various techniques which are used in order to

perform word recognition and spellchecking. Some of

the techniques are as listed below

 Insertion

 Deletion

 Substitution

 Transposition

Insertion

Insertion is the technique wherein missing letter(s) are

inserted into the input word at appropriate locations in

such a way that the word matches a word in the

dictionary.

Deletion

Deletion is the technique wherein letter(s) in the input

word at appropriate locations is/are deleted in such a way

that the word matches a word in the dictionary.

Substitution

Substitution is a technique wherein letter(s) in the input

word is/are substituted with some other letter(s) in order

to get a word that matches a word in the dictionary.

Transposition

As the name suggests transposition is the technique

wherein the position of letter(s) in the input word is/are

changed in such a way that the changed word conforms

to a word in the provided dictionary.

II. WORD RECOGNITION

An input word is taken from the user interface module

and it is searched for in a static data dictionary. The data

dictionary is implemented using ternary tree as the

primary data structure.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

99

2.1 The Kannada script

The Kannada alphabet is classified into two main

categories [4]: vowels and consonants. There are 16

vowels and 35 consonants. Words in Kannada are

composed of aksharas which are analogous to characters

in an English word. While vowels and consonants are

aksharas, the vast majority of aksharas are composed of

combinations of these in a manner similar to most other

Indian scripts.

An akshara can be one of the following,

 A stand alone vowel or a consonant

 A consonant modified by one or more consonants

and a vowel.

2.2 Ternary search trees:

 Ternary search tree [3] is a data structure where in

each node can have a maximum of 3 sons. it is similar

to binary search tree except for the fact that if the letter

being searched is equal to the letter in the current node

then the search proceeds along the middle son

 Ternary trees provides a very space efficient solution

but the time efficiency if O(log m + n) where m is the

number of strings in the dictionary.

 The syntactical analyzer traverses the tree to find if

the input is an exact match. If it does not find an exact

match then it searches for closest possible words and

provide all the possible alternatives in the order of non-

increasing probabilities thus providing for spell

checking.

2.3 Word Correction Strategies

 We use isolated word correction techniques

i.e.unlike n-grams it is not context based

 We use the Levenshtein edit distance technique to

define the distance between the given input word and

the words which are displayed as options in order of

non-increasing probabilities.

Levenshtein distance

 This is defined as the number of edit operations

(insertion, deletion, substitution, transposition) required

to convert from one string to the other

 For the case of checking OCR outputs the

transposition technique is ignored since it is due to

typographic error

 We display options which are at a Levenshtein edit

distance of 2 or lesser and which have the same prefix

as the input word.

Examples

III. ALGORITHM DESCRIPTION

This part of the document is intended to provide an in

depth working of the algorithms used in order to perform

the required tasks. It provides an understanding of the

data structures implemented.

3.1 Word processing

This is that module which does the initial word

processing and error checking for words miss-spelt and

providing the appropriate suggestions in order to correct

the errors.

Data Structures Used

The main data structure used in this module is the ternary

search tree which is used in order to implement the

dictionary. The TST (Ternary Search Tree) is

implemented as a linked list of nodes where in each node

has the following structure:

Node This is the structure of each node of the ternary

search tree. Each node has five fields.

Type:
char
Info

Type:
Node

*

1son

Type:
Node

*

rson

Type:
Node*
mson

Type: bool
IsCompleteString

Figure 3.1: Structure of node

This data structure is a linked list which is used as a part

of the MList data structure. It is used in order to

implement one of the inexact matching techniques

namely space match. It has two fields: the index field and

the pointer to the next node.

Type : int

index

 Type: Listnode*

Nxt

Figure 3.2 : Structure of listnode

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

100

MList

This data structure is used in order to implement space

match. It has only two fields the head and the tail field

which are both of type Listnode pointer. It is used to

keep track of the index in the input string where a valid

word ends.

Type : Listnode*

Head

Type : Listnode*

tail

Figure 3.3: Structure of Mlist

TSTree

This is the primary data structure used. It is used in order

to implement the dictionary. It has only one field the root.

Type: Node *Root

Figure 3.4: Structure of TST tree

Insertion into the Data Structure

The ternary search tree is implemented as a static data

structure. All the nodes are inserted initially during the

execution phase. The tree is created using the strings

provided in the dictionary. The strings are sorted in an

order in order to maximize efficiency (both space and

time). The sorted string leads to the creation of the tree in

an almost balanced fashion as a result of which the

height of the tree is minimized thereby leading to

minimal worst case search time. The average search time

in the case of TST is O (log (m) + n) where m is the

number of strings in the dictionary and n is the length of

the pattern.

Algorithms Used

ReplaceMatch(in, lmatch, i, len)

This function replaces the characters in the input string in

order to find a match in the dictionary. The inputs to this

function are, input word(in), the node at which the match

with the string is broken(lmatch), the number of

characters matched exactly(i) and the length of the input

string(len). The output is an array of possible strings

{

if((lmatch≠NULL) do

{

j←i;

strcpy(temp,in+i);

temp [0]←lmatch->info;

if(ExactMatch(temp,lmatch,i) do)

{

char temp1[30];

strcpy(temp1,i+1);

strcat(temp1,temp);

//push temp1 onto the array of output strings

array(outp,o++) ←temp1;

}

//recursively check the tree

replacematch(in,lmatch→rson,j,len);

replacematch(in,lmatch→lson,j,len);

}

} //end of algorithm

This is the function that is used in order to replace a

mismatching character at a time in order to find a

corresponding match in the dictionary. The function

works recursively in order to find a match in the

dictionary. Taking the following example the

replacement match strategy can be explained

As can be seen in the example above, the word “ede” is

not a part of the dictionary thereby causing the exact

match process to fail. Thus an attempt is made to find a

approximate match to the word in the dictionary. The

strategy used is replacement match (Substitution). The

match is broken off at the character “d” of the word

“ede”. Thus a temporary array is initialized to “le” and

this string is searched for in the dictionary “e”

downwards. This happens as shown below:

As can be seen from the figure, a temporary array is

initialized to “le” and it is searched in the tree “e”

downwardIf an exact match occurs now, the two parts of

the string are concatenated (namely “e” and “le”) and

added to the output. The replacement match then

recursively continues along the left and right sons (if

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

101

present) in order to find matches. In this case the second

node along the middle thread does not have any left and

right sons so it stops here.

InsertMatch(in, lmatch, i, cnt, words)

This function inserts characters in the input string in

order to find a match in the dictionary. The inputs to this

function are, input word (in), the node at which the

match with the string is broken(lmatch), the number of

characters matched exactly(i) and the Levinshtein

distance(cnt).The output is an array of possible

strings(words)

{

If ((Imatch≠NULL)) do

{

j←i, k←0;

array(temp,0)←lmatch→info;

array(temp,1)←0;

strcpy(temp+1,in+i);

strcpy(temp1,in);

array(temp1, j)←0;

if(cnt≠0)do

{

res ←Match(temp,cnt-1,tempoutp,lmatch);

//res indicates if the remaining string has been

//exactlymatched. 0 indicates exact match

if (res=0)dowords.concat(temp1,tempoutp);

//those with a distance of 1

else do words.concat (temp1,tempoutp,1);

//those with a distance of 2

}

else do

//edit distance of 2(both in the first part)

if(ExactMatch(temp,lmatch,i)) do

{

strcat(temp1,temp);

words.insert(temp1,1);

}

//recursively check the

treeinsertmatch(in,lmatch→rson,j,cnt,wordinsertmatch(i

n,lmatch→lson,j,cnt,words);

}

//end of algorithm

}

Now considering insertion match, the following

example can be used in order to explain it:

Now in this example, the match is broken off at the

second “e”. At this point a temporary array is initialized

to “le” and the search for “le” continues “e” downward.

Note that replacement match would initialize a temporary

array with “l” (replacing the second “e”) and this would

fail.

The insertion match thread would then resemble the

figure below

After completing the match for “le”, the two parts (“e”

and “le”) are concatenated and then added to the output.

The insertion match then recursively continues along the

left and right sons (if present) in order to find matches. In

this case the second node along the middle thread does

not have any left and right sons so it stops here.

DeleteMatch(in, lmatch, i, cnt, words)

This function this deletes characters in the input string in

order to find a match in the dictionary. The input to this

function are, input word(in), the node at which the match

with the string is //broken(lmatch), the number of

characters matched exactly(i) and the Levinshtein

distance(cnt).The output is an array of possible

strings(words)

{

if(lmatch≠NULL)do

{

j←i;

strcpy(temp,in+i+1);

strcpy(temp1,in);

array(temp1, j)←0;

if(cnt≠0)do

{ res←Match(temp,0,tempoutp,lmatch);

//res indicates if the remaining string has been

//exactly matched. 0 indicates exact match

if(res≠0) words.concat(temp1,tempoutp);

//those with a distance of 1

else do

words.concat(temp1,tempoutp,1)

//those with a distance of 2

}

else if(Exact Match(temp,lmatch,i)) do

//those with a distance of 2, both in the first //part

{

strcat(temp1,temp);

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

102

words.insert(temp1,1);

}

}

}//end of algorithm}

Now considering deletion match, which can be

explained with the following example?

As can be seen from the figure above the attempt to

exactly match the input string “elde” with a string in the

dictionary would fail. The two techniques described so

far: Insertion matching and theSubstitution matching

would fail. Delete match at tempts to find a match by

deleting a character in the input string in order to find a

match. A temporary array is initialized as shown below

The match initially breaks off at “d”. This uses 2

temporary arrays: One with the prefix that has been

matched exactly (“el” in our example) and another with

the in format ion of the node where the match broke off

(“e” in our example) as shown in the figure. Now when a

match is found the two arrays are concatenated and the

string is then added to the output. The deletion match

then recursively continues along the left and right sons

(if present) in order to find matches. In this case the

second node along the middle thread does not have any

left and right sons so it stops here.

spacematch(in, cnt, Nodes, words)

This function inserts space character in the input string in

order to find a match in the dictionary.

The inputs to this function are, input word(in), nodes is

the linked list containing index positions,

where in each index represents the end of a valid string

and the Levinshtein distance(cnt).

The output is an array of possible strings (words)

{

Iter←Nodes.head;

while(iter≠NULL) do

{

i←0;

strcpy(temp,in+iter→index);

strcpy(temp1,in);

array (temp1, iter→index) ←' ';

array(temp1, iter→index+1)←0;

if(cnt=0) do

{

if(Exact Match(temp,root,i))do{

strcat(temp1,temp);

words.insert(temp1,1);

}

}

else do

{ res←Match(temp,0,tempoutp,root);

if(res≠0) do words.concat(temp1,tempoutp);

//edit distance of 1

else words.concat(temp1,tempoutp,1);

//edit distance of 2

}

iter←iter→nxt;//advance along the linked list

}

//end of algorithm

Transposition match (in, lmatch, i, cnt, words)

This function swaps two characters in the input string in

order to find a match in the dictionary.

The inputs to this function are, input word(in), the node

at which the match with the string is broken(lmatch), the

number of characters matched exactly(i) and the

Levinshtein distance(cnt).The output is an array of

possible strings(words)

{

k←-1;

if(lmatch&& i<strlen(in)-1)do

{

j᷾ ←i;

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

103

strcpy(temp,in+i);

temp[0] ^=temp[1]^=temp[0]^=temp[1];

strcpy(temp1,in);

temp1[j] ←0;

if(cnt) do

{

isExact←Match(temp,cnt-1,tempoutp,lmatch);

//isExact indicates if the remaining string has been

//exactlymatched. 0 indicates exact match

if(isExact=1) do

{

wordsconcat(temp1,tempoutp,2);

//those with edit distance 2

}

else if (isExact =0) do

{

words.concat(temp1,tempoutp,1);

//those with edit distance 1

}

}

else if(ExactMatch(temp,lmatch,i))do

{

strcat(temp1,temp);

words.insert(temp1,1);

k ←1;

}

}//end of algorithm

Now considering transposition match which can be

explained with the following example:

Now in this example, the match is broken off at the

second “e”. At this point a temporary array is

Initialized to “le” and the search for “le” continues “e”

downward. Note that replacement match would

initialize a temporary array with “l” (replacing the

second “e”) and this would fail .The transposition

match thread would then resemble the figure below

IV. EXPERIMENTALRESULTS

Figure 4.1 Main Window

Figure 4.2 Window for single

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

104

Figure 4.3 window for reading from a text file

Figure 4.4 Output in Baraha for Exact Match

CONCLUSION

In the published form each TST node requires three

pointers, a split character and the associated value. It has

been [2] shown that the cost of the algorithm is

proportional to lgNbyte comparisons where N is the

number of keys in the dictionary. In practice a TST

seems to perform better than this would suggest the

cached memory hierarchy of modern computers and the

skew in the distribution tree branches give enhanced

performance. For a moderate size dictionary [3], up to

50000 keys, the performance of a TST is excellent and

almost independent of the number of keys. However, for

very large dictionaries or where main memory

performance approaches the cache speed or where the

dictionary is only infrequently referenced from a larger

application then the lgNperformance becomes apparent.

The performance of a TST, as with simple binary trees,

can be degraded by the same degenerate case of inserting

keys in order, instead of the benefits of a lgNsearch at

each trie branch it can degenerate to an N=2 search,

where N in this case has a maximum of the alphabet

cardinality. For the performance comparisons, tree

balancing was added to the TST insert function.

REFERENCES
[1] Bentley, J. and Sedgewick, R. 1997. Fast algorithms for

sorting and searching strings.In Eighth Annual ACM-

SIAM Symposium on Discrete Algorithms (1997), SIAM

Press (1997).

[2] Clement, J., Flajolet, P., and Vallee, B. 1998. The analysis

of hybrid trie structures. In Proceedings of Western Joint

Computer Conference, Volume Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms (1998),

pp.531–539. SIAM Press.

[3] Bagwell, Phill “Fast and Space efficient trie

searches”,2003

[4] T V Ashwin and P S Sastry, “A font and size-independent

OCR system for printed Kannada documents using support

vector machines”, Sadhana Vol. 27, Part 1, February 2002,

pp. 35–58. © Printed in India

[5] Beaza Yates, Ricardo, Gonzalo Navarro “Fast

approximate string matching in dictionary”, 2004

[6] Dan Gusfield, ”Algorithms on Strings, Trees, and

Sequences”, First South Asia Edition 2005.

KeshavaPrasanna received B.E from

Bangalore University and M.Tech in

Information and Technology in the year

2005.He has experience of around 13 years

in academics. Currently pursuing Ph.D. and

working as Research Assistant in Tumkur

University, Tumkur. Life membership in

Indian Society for Technical Education

(ISTE).

Dr.Ramakanth Kumar P completed his

Ph.D. from Mangalore University in the area

of Pattern Recognition. He has experience of

around 16 years in Academics and Industry.

His areas of interest are Image Processing,

Pattern Recognition and Natural Language

Processing. He has to his credits 03 National

Journals, 15 International Journals, 20

Conferences. He is a member of the

Computer Society of India (CSI) and a life member of Indian

Society for Technical Education (ISTE). He has completed

number of research and consultancy projects for DRDO.

Thungamani.M received B.E from

Visvesvaraya Technological University and

M.Tech in Computer Science and Engineering

in the year 2007.She has experience of around

08 years in academics. Currently pursuing

Ph.D. and working as Research Assistant in

Tumkur University, Tumkur. Life

membership in Indian Society for Technical

Education (MISTE) The Institution of

Electronics and Telecommunication Engineers (IETE).

Shravani Krishna Rau pursuing B.E degree

in Computer Science & Engineering from

Visvesvaraya Technological University.

Student ofR.V.College of Engineering,

Bangalore.

