
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

106

Manuscript received July 5, 2011
Manuscript revised July 20, 2011

Adaptive Systems

Astha Lagoo1 Rohan Kumar2, Shivam Sharma3, Tanmay Govil4, A.A. Deshmukh5, Ms Priti Ranadive6,
Mr.Chaitanya Rajguru7

University of Maryland, College Park, MD, USA
1, 2,3,4students Smt. Kashibai Navale Collge of Engg. Department of Computer Engg, Pune University

5Faculty Smt. Kashibai Navale Collge of Engg. Department of Computer Engg, Pune University
6, 7Ph.d. Fellow,Department of Electronics Systems , Aalborg University, Denmark 9220

4KPIT Cummins India

Abstract
Proposed project will implement an algorithm both on hardware
as well as software. It will then determine the performance
of both the hardware platform as well as the software one.
The results will then be compared to determine which
implementation was more efficient. It will then divide the
algorithm into parts and execute them separately on h/w and s/w
and will try finding the optimum ratio. The proposed project
will also determine which hardware device is to be used for the
hardware implementation.

1. Introduction

As the demands are growing computer systems are
becoming increasingly complex. For example, a good
mobile phone today is expected to take high-resolution
pictures, video and audio, play back music files in various
formats, manage user files such as presentations, run
internet browsing software, connect using multiple
wireless protocols such as GSM, GPRS, CDMA, Wi-Fi,
WiMax and Bluetooth, and of course make phone calls. In
the coming time many more applications will be
developed with advanced features to run in this size- and
power-constrained computing system. Multiple
simultaneous applications are already the norm. This can
be achieved with the use of more hardware and software
but that will increase the cost, size and power. Alternate
approaches will thus be important in meeting the growing
user needs.
The presented scheme includes:
 A flexible system that can implement different

hardware and software configurations, and
 A supervisor tool that can take input from the user

regarding their preferences, and that can also monitor.
the system usage. This tool will then adapt the system
configuration dynamically in response to dynamic
compute demands.

Other collateral developed will include new tools,
methods and capabilities needed to enable system

adaptation, including modified versions of application
software & hardware.
This project will represent a leading-edge exploration of
the latest trends in computing. The innovative content of
this project is a dynamically self-modifying system that
adapts itself to the changing usage demands, which
will enable lower-cost platforms that satisfy a wide range
of needs.
It is hoped that this project will advance the knowledge
and capabilities for hardware and software development
on computing systems. We expect that this created
knowledge will lead to the development of novel
computers. It will be disseminated in the form of papers.
The proposed project will examine the use of FPGA
systems in a continuously adaptive manner. By adaptation,
we mean that the system hardware & software adapts itself
to the changing workload demands. An example of
hardware adaptation is enabling or disabling certain
portions of the hardware, or modifying the hardware logic
using FPGA or other reprogrammable logic. This project
will develop new techniques to extend the benefits of
reconfigurable systems in real-life systems with varying
usage demands.

The configurable logic place and route step is the
most computationally intensive part of such
hardware/software partitioning, normally running for
many minutes or hours on powerful desktop processors.
In contrast, dynamic partitioning requires place and route
to execute in just seconds and on a lean embedded
processor. We have therefore
designed a configurable logic architecture specifically for
dynamic hardware/software partitioning. By specifically
focusing on the goal of software kernel speedup when
designing the FPGA architecture, rather than on the more
general goal of ASIC prototyping, we can perform
place and route for our architecture 50 times faster,
using 10,000 times less data memory, and 1,000 times
less code memory, than popular commercial tools
mapping to commercial configurable logic. Yet, we show
that we obtain speedups (2x on average, and as much as

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

107

4x) and energy savings (33% on average, and up to 74%)
when partitioning even just one loop, which are
comparable to commercial tools and fabrics. Thus, our
configurable logic architecture represents a good
candidate for platforms that will support dynamic
hardware/software partitioning, and enables ultra-fast
desktop tools for hardware/software partitioning, and
even for fast configurable logic design in general.

2. LITERATURE SURVEY

A. Background Details
1) Adaptive Systems:
A part of the application can be run either on hardware or
software. Adaptive System are system’s that are sensitive
to the present conditions prevailing and can decide
according to the conditions, which part to run on
hardware and which to run on software. Hardware part of
the application is implemented using FPGA (FPGAs).

2) H/W S/W Partitioning:
Embedded systems are designed to implement specific
applications as efficiently and effectively as possible.
Once a system is designed and implemented modification
of the system can only be achieved in the reconfiguration
of the system’s software as the hardware is fixed.
Hardware flexibility is now obtainable through the use of
FPGAs

3) FPGA
An FPGA (FPGA) is a type of programmable chip that
can be made to behave in just about any way you wish.
The FPGA must be configured before it can be used; The
configuration process is very similar to programming a
computer, except that instead of making a software
program behave a certain way on a computer, you're
making a chip behave a certain way.

4) CRC
A CRC is an error-detecting code. Its computation
resembles a long division operation in which the quotient
is discarded and the remainder becomes the result. The
definition of a particular CRC specifies the divisor to be
used. The simplest error-detection system, the parity bit,
is in fact a trivial CRC: it uses the two-bit-long divisor 11.
It is discussed in detail in the next section.

B. Conclusion
Most of the paper’s on adaptive systems focus on
dynamic reconfiguration of h/w and s/w in order to
achieve an optimise performance. In the paper the case
for reconfigurable hardware in wearable computing
advantages of reconfigurable architecture in wearable
computing are being emphasized. But in our paper we

mainly focus on executing an algorithm on h/w and then
on s/w and then comparing the results obtained. After
which we try to determine an optimum combination
running algorithm both on s/w as well as h/w. [7]

3 SYSTEM STUDY

Fig. 1 Block diagram of the system

A field-programmable gate array (FPGA) is a
configurable integrated circuit. It can be configured using
a hardware descriptive language (HDL) either by the
customer or the developer after manufacturing. FPGAs
offer much lower non- recurring engineering costs
compared to application-specific integrated circuit
(ASIC) and can be used to implement any logical
function that an ASIC could perform.
FPGAs contain programmable logic components called
logic blocks, which can be connected using a hierarchy of
reconfigurable interconnects. Logic blocks can be
configured to perform complex combinational functions,
or merely simple logic gates like AND and XOR. Our
underlying model of architecture is a single processor
host connected to a reconfigurable FPGA board system
through a bus. The program initially is in software and
contains a set of functions which can either be mapped
onto the FPGAs or executed in the processor itself. To
configure the FPGA we use the standard Xilinx software
and load the program onto the FPGA. We then run the
CRC code and note down the power and performance.
For the software execution of the code we use a P4
processor and the Turbo compiler. We are using
Windows XP operating system and boot the system in
Safe Mode with command prompt only in order to curb
the effect of background processes on the profiling
results. The code is
then run and the power and performance is noted. This
process of noting down the power and performance is
then repeated for different percentages (eg. 30% in h/w
and 70% in s/w) of the code run in h/w and s/w. The
results are then compared to find out the most optimised
ratio in which code should be divided in between the h/w

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

108

and s/w implementation. This result gives us the
minimum power and maximum performance.

4. CRC

Cyclic redundancy check (CRC) is used to detect
accidental changes in data. CRC is commonly used while
transferring data through networks and also while
transferring data from secondary memory (hard disks) to
primary memory. A CRC code can only be used to detect
errors and not correct them. A CRC-enabled device
calculates a short, fixed-length binary sequence, known
as the CRC code or just CRC, for each block of data and
sends or stores them both together. When a block is read
or received the device repeats the calculation; if the new
CRC does not match the one calculated earlier then the
block contains a data error and the device may request the
sender to send the block again.

C. Hardware Implementation
5) Hardware required for implementation:
A field-programmable gate array (FPGA) is an integrated
circuit designed to be configured by the customer or
designer after manufacturing—hence "field-
programmable". The FPGA configuration is generally
specified using a hardware description language (HDL).
FPGAs can be used to implement any logical function
that an ASIC could perform. The ability to update the
functionality after shipping, and the low non-recurring
engineering costs relative to an ASIC design (not
withstanding the generally higher unit cost), offer
advantages for many applications.

6) Ways to configure FPGA:
With a cable attached to a computer Hooking up a cable
to a PC's serial or parallel port and having it configure the
FPGA through specially-made software is probably one
of the simplest solutions. You design your FPGA on the
computer screen and generate the code there, then when
you're done you just attach the cable and the computer
configures the FPGA for you
Assuming that you are doing things the "normal" way and
connecting your FPGA to a computer, the following is a
list of the basic steps needed to program your FPGA:

1. Write the HDL (Hardware Description Language)
code HDLs are high-level languages, and they will
actually be compiled into binary data before they are
loaded into the FPGA. HDLs are usually either Verilog or
VHDL. Verilog files have a .v extension, while VHDL
files have a .vhd or .vhdl extension. [6]

2. Assign pin names. When you program in an HDL, you
use names to refer to the pins of the FPGA. The compiler

just needs to know what name corresponds to what pin.
For example, suppose you want pin 10 on the FPGA to
be called "input3" in your HDL code. The compiler needs
to know that "input3" refers to that pin. [6]

3. Compile the FPGA's binary file using the FPGA
manufacturer's proprietary software. Xilinx' software
for FPGA development is called ISE. [6]

4. Transfer the bit stream into the FPGA. How you do
this will depend on what method you're using to connect
to the FPGA, but assuming that you've got it connected to
your computer, you'll need some interface utility to
upload the binary file to the FPGA. [6]
We port the code in VHDL to FPGA through a wired
connection

7) Implementation:
Serial CRC Checksum generation circuit for FPGA
implementation

Fig. 1 Circuit for CRC checksum generation

Here we take a shift register, having the same size as that
of the key (actually 1 less, considering the top bit of the
key as implicit 1) that is being used for CRC calculation.
The shift register is initially initialised with all 0 bits. The
input (no of zeroes are added to the input depending on
the size of key) is moved bitwise into the shift register.
After moving a single bit of input into the register it is
checked whether the top bit of the shift register is 1 or 0.
If 0 then the shift register is left as it is and the next input
bit is moved in. If 1 then the contents of the shift registers
is xor’d with the key. The above procedure is repeated till
the input is finished. The final content’s of the shift
register is the CRC code. [2]

D. Software Implementation of CRC

1) Modulo 2 division:
The number to be divided is the message appended with
zeros at the end. The number of zero bits added to
the message is the same as the width of the checksum.
Here the check sum is being called as c. In this case four
bits are added (since the size of the key is four). The
divisor is a c+1-bit number known as the generator
polynomial (key). [9]
The modulo-2 division process is defined as follows [9]:
 Shift the uppermost c+1 bits of the remainder of the

message.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

109

 Starting with the top most bit in the original message
and for each bit position that follows, look at the c+1

bit remainder:
o If the most significant bit of the remainder is a one,
the divisor is said to divide into it. If it happens the
following will be done:

 Set the appropriate bit in the quotient to a one,
and

 XOR the remainder with the divisor and store
the result back into the remainder

o Otherwise when the first bit is not one:
 Set the appropriate bit in the quotient to a zero,

and
o XOR the remainder with zero
o Left-shift the remainder, shifting in the next bit of the
message. The bit that's shifted out
will always be a zero hence no information is lost.
The final value of the remainder is the CRC of the given
message.

2) Pseudo Code:
The pseudo code for the software implementation is
written below:
 Store the value of the generator polynomial (key) in

an integer variable. The integer variable can be
short or long depending upon the size of key.

 Similarly store the input after augmenting zero’s in
an integer variable and also declare one to represent
the shift register while also initialising it to zero.

 Send the input byte by byte to the put byte function.
 The put byte function will convert the input to bits

and send it bit by bit to the put bit function.
 The put bit stores the bits that it is receiving one by

one into the shift register while moving the top bit
out (shifting process). Then it checks whether the
top bit is 0 or 1. If it is 0 it leaves the shift register as
it is. But if it is 1 it xor’s the contents of the shift
register with the key.

 The above procedure is repeated till all the bits of the
input have been sent to the put bit function. The final
content’s of the shift register is our CRC checksum.

5. PROFILING RESULTS

The profiling results of hardware and software
implementation of CRC algorithm are written below.

A. Software Implementation
1) Performance: To measure the performance of the
algorithm time function of the C language was used.
The program was made to loop 10000 times. The time
taken for execution was calculated and then divided by
10000. On doing so it was observed that the time taken

for the execution of program was 1.483516E-3. The
clock ticks were 27. [8]

2) Power: To measure power time taken by the program
and the statistics available on the CPU datasheet of the
P4 processor obtained from the Intel website was used.
a 2.2 GHz P4 with a 400 MHz FSB has a typical Vcc of
1.3725 Volts and Icc of 47.9 Amps which is
(1.3725*47.9=) 65.74 watts. Since we know the loop
of 10,000 algorithm cycles took
1.483516s, we can assume a single loop will
take
1.483516/10000 = 0.0001483516s. The amount of
energy consumed by the algorithm would then be
65.74 watts *
0.0001483516s = 0.0098 watt seconds (or joules).[1]

B. Hardware Implementation
1) Performance:
In the CRC program every one bit input requires one
clock pulse. At the rising edge of the clock pulse the bit
enters the shift register. By this we will get to know the
number of clock pulses required to find the CRC
checksum for the particular input. The first clock pulse
is used for resetting and enabling

the CRC procedure, at the next clock pulse first bit of
input will be inserted and then the next bit and so on.
Now we know that the number of clock pulses required
will be
=N+1
Where N is number of input bits

Referring to the Xilinx Spartan 3 family Datasheet it
was known that time taken by one clock pulse is
9.104ns

Now time taken by the FPGA to execute and find the
CRC Checksum for an N bit input is
the expected current per voltage source required. This
view includes both off-chip and on-chip dissipated
power. [5]
• Power by User Logic Resources - For each type of
user logic in the design, XPE reports the expected
power. This allows you to experiment with
architecture, resources, and implementation trade-off
choices in order to remain within the allotted power
budget. [5]
• Thermal Power-XPE lets you enter device
environment settings and reports thermal properties of
the device for your
application, such as the expected junction temperature.
With this information you can evaluate the need for
passive or active cooling for your design. [5]

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

110

((N+1) * 9.104) ns.
If input is of 16 bits
=((16+1)*9.104)ns
=154.768 ns

1) Toggle Rates:
• For synchronous paths, toggle rate reflects how often
an output changes relative to a given clock input and
can be modelled as a percentage between 0–100%. The
max data toggle rate of 100% means that if the clock
frequency is 100
MHz, a data toggle rate of 100% equates to a data
frequency of 50 MHz. This convention stems from an
assumption that a

2) Power:
Xilinx Power Estimator is used for calculating the
power used by FPGA for the particular CRC program.
The Xilinx Power Estimator (XPE) spreadsheet is a
power estimation tool typically used in the pre-design
and pre- implementation phases of a project. XPE
assists with architecture evaluation and device selection
and helps in selecting the appropriate power supply and
thermal management components which may be
required for your application.XPE considers your
design’s resource usage, toggle rates, I/O loading, and
many other factors which it combines with the device
models to calculate the estimated power distribution.
The formulas used for calculations in the program are
based on intended behaviour of various digital circuits.
The device models are extracted from measurements,
simulation, and/or extrapolation.[5]

XPE presents multiple views of the power distribution.
• Static vs. Dynamic Power - Static or Quiescent power
represents the power drawn when the device is powered
and programmed and there is no switching activity. This
includes transistor leakage, power consumed internally,
and power dissipated in external termination resistors.
Dynamic power is the additional power consumed or
sourced by the FPGA when the user logic is active.
This description is typical for an FPGA technology
based on CMOS SRAM transistors. By choosing the
Maximum or Typical values for Process, worst- case or
nominal power can be estimated.[5]
Both the reported static and dynamic power estimates
are modelled to account for temperature and voltage
sensitivity. Ambient temperature and regulated voltage
on the system can be keyed into the appropriate cells
provided for the purpose. [5]
• Power by Voltage Supplies - This view is useful to
select the appropriate voltage supply sources since XPE
breaks out net with a 100% toggle rate toggles every
active edge of a clock whose frequency is specified.
This means that the LSB of a 16-bit counter toggles

every clock cycle and the MSB toggles every 32,768th
clock cycle. [5]
• For non-periodic or event-driven state machine
designs, toggle rates cannot be easily predicted. An
effective method of
estimating average toggle rates for a given design is to
segregate the different sections of the design based on
their functionality and estimate the toggle rates for each
of the sub-
blocks. An average toggle rate can then be arrived at by
calculating the average for the entire design. Most
logic-
intensive designs work at around 12.5% average toggle
rate,
which is the default toggle rate setting in XPE. For a
worst- case estimate, a toggle rate of 20% can be used.
Average toggle rates greater than 20% are not very
common. Arithmetic-intensive modules of a design
seem to take toggle rates of up to 50%, which is
representative of the absolute [5]

Power Supply Resources Powered [5]
VCCINT

• All CLB resources
• Most configuration SRAM cells
• All routing resources
• Entire clock tree, including all clock buffers
• Block RAM
• DSP blocks (DSP48, DSP48A, DSP48E)(1)
• All input buffers
• Logic elements in the IOB (ILOGIC/OLOGIC)(1)
• ISERDES/OSERDES(1)
• PowerPC™ processor
• Tri-Mode Ethernet MAC
• DCM (minor)

VCCAUX
• IODELAY/IDELAYCTRL
• Differential Input buffers
• VREF-based, single-ended I/O standards, e.g.,

HSTL18_I
• Clock Managers (DCM, PLL, PMCD)
• Some Configuration memory

VCCO
• All output buffers
• Some input buffers
• Digitally controlled impedance

on y-axis. Then we plot lines for software and hardware
implementation on the graph and also a line for the
combined value. At the point we get the lowest value on
this line we note the percentages.
This is the optimum value of hardware software

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

111

partitioning ratio at which the CRC code takes the
minimum time to run.

Using Xilinx Power Estimator we get: Hence, power
consumed is 67 mW.

6. Compare Results

After getting the number of clock cycles taken by the
software as well as the hardware implementation of the
CRC code we compare it with the help of a graph. To
compare we calculate the values for running different
percentages of the code in hardware and software. We
start with 100% implementation in software, then 90%
in software and 10% in hardware and so on till 100% in
hardware.

After getting these values we plot the graph with
hardware/software percentages on the x-axis and time
taken

Note: This is the total time taken to find the checksum
for the message, i.e. time take by software to find the
checksum for the particular portion of the message +
time taken by hardware to find the checksum.
Here, the message used is of 200bits.

7. Conclusion

After comparing the performance and power
consumption of the execution of an algorithm on
software and hardware we can say that high execution
weight algorithms should preferably be executed on
hardware. Though this approach
will not necessarily give an optimal solution but it will
be close to an optimal one.
Algorithm which is to be executed on an adaptive
system should be divided into tasks. Then the tasks can
be categorised as high and low execution weights
and the one’s categorised as high should preferably be
executed on hardware.

REFERENCES
[1] Eric Senn, Nathalie Julien, Johann Laurent, and Eric Martin,

Power Consumption estimation of a c program for Data
Intensive applications, Univ. of Massachusetts, Amherst,
MA, and CMPSCI Tech.

[2] (2002) The IEEE website. [Online]. Available:
http://www.ieee.org/

[3] Aviral Shrivastava, Mohit Kumar, Sanjiv Kapoor, Shashi
Kumar, M.Balakrishnan , Optimal Hardware/Software
Partitioning for Concurrent Specification using Dynamic
Programming, I.I.T. Delhi, New Delhi-110016, INDIA

Voltage
Source

Information

Source

Voltage
Power

(W)
ICC

(A)
ICCQ
(A)

VCCINT 1.2 0.021 0.002 0.015
VCCAUX 2.5 0.038 0.000 0.015

VCCO 3.3 3.3 0.000 0.000 0.000
VCCO 2.5 2.5 0.008 0.002 0.002
VCCO 1.8 1.8 0.000 0.000 0.000
VCCO 1.5 1.5 0.000 0.000 0.000
VCCO 1.2 1.2 0.000 0.000 0.000

Power Summary
Optimization None
Data Production
Quiescent(W) 0.060
Dynamic (W) 0.007
Total (W) 0.067

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

112

[4] Mustafa Imran Ali ,Hardware/Software Partitioning and
Scheduling Algorithms for Dynamically Reconfigurable
Architectures

[5] Xilinx, Inc. http://xilinx.com
[6] N. Aviral Shrivastava, Mohit Kumar, ”Hardware Software

Partitioning and Synthesis targeted towards FPGA based
Implementation”, B.Tech Thesis, CSE Dept, IIT Delhi,
May’99.

[7] Christian Plessl, Rolf Enzler, Herbert WalderJan Beutel,
“the case for reconfigurable hardware in wearable
computing”, 1 February 2003 / Accepted: 2 April 2003 /
Published online: 11 September 2003.

[8] Intel, org. http://intel.com.
[9] Relisoft http://www.relisoft.com

