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Summary 
This paper proposes a novel scheme to improve the fairness of 
active queue management congestion control. In order to reduce 
the increasing rates of packet loss caused by the exponential 
increase of network traffic, IETF (Internet Engineering Task 
Force) is considering the deployment of active queue 
management techniques such as RED (Random Early Detection). 
RED is a simple scheme, but it does not support the fairness of 
traffic protection from misbehaving flows, such as short RTT 
(Round-Trip Time) TCP flows and non-TCP flows, i.e., UDP 
flows. 
To solve this problem, we propose a simple fairness queue 
management scheme, called the RED with AFQM (Approximate 
Fair Queue Management) scheme, which discriminates against 
flows that submit more packets than their shares allocated via a 
router. By doing this, the scheme aims to ensure the fairest 
queueing policy. In addition, the RED with AFQM scheme can 
be easily implemented with small overhead.  
Key words: 
AFQM, active queue management, congestion control, fairness, 
RED 

1. Introduction 

Today, the Internet protocol architecture is based on 
connectionless end-to-end packet service using IP protocol 
that has demonstrated advantages such as connectionless 
design, flexibility and robustness; however, this design is 
difficult to control. Therefore, a carefully designed 
solution is required to provide efficient and effective 
services under heavy loads. In fact, a lack of attention to 
the dynamics of packet forwarding can result in service 
degradation. This phenomenon was first observed during 
the early growth phase of the Internet in the mid-1980s 
and is technically called “congestion collapse” [1]. 
 Especially, the current system depends on congestion 
avoidance mechanisms implemented in transport layer 
protocols, like TCP, to provide good services under heavy 
loads. However, a lot of TCP implementations do not 
include congestion avoidance mechanisms, either 
deliberately or by accident [2], [3]. 
 It has become clear that the TCP congestion avoidance 
mechanisms, while necessary and powerful, are not 
sufficient to provide good services in all circumstances. 

Basically, there is a limit to how much control can be 
achieved at the edges of the network. Some router 
mechanisms are needed to complement the endpoint 
congestion avoidance mechanisms [4]. 
 In order to perform congestion control based on IETF 
Standards, it is useful to distinguish between two classes 
of router algorithms related to congestion control: “queue 
management algorithms” versus “scheduling algorithms”. 
All router algorithms (scheduling or queue management) 
developed thus far have been able to either provide 
fairness or simple implementation, but they cannot provide 
both simultaneously. This has led to the belief that the 
latter two goals are somewhat incompatible [1]. 
 This paper takes a step in the direction of bridging the 
gap between fairness and simplicity. Specifically, we 
propose a novel scheme that improves the fairness of the 
existing active queue management algorithm, called RED 
with AFQM (Approximate Fair Queue Management), that 
discriminates against flows that submit more packets than 
their shares allocated by a router. By doing this, the 
scheme aims at making the approximate policy of fair 
queueing. The rest of the paper is organized as follows. 
Section 2 introduces existing congestion control 
approaches and describes RED. Section 3 presents the 
AFQM scheme. The simulation results are presented in 
Section 4. Section 5 concludes this paper. 

2. Related Work 

In order to solve the fairness and congestion problems of 
networks, it is necessary to have router mechanisms that 
shield responsive flows (TCP friendly flows) from 
non-TCP flows or misbehaving flows, and it is necessary 
to provide good quality of service (QoS) to all users. As 
discussed in IETF, there are two types of router algorithms 
for achieving congestion control. The generic scheduling 
algorithm, exemplified by the well-known Fair Queueing 
(FQ), requires the buffer at each output of a router to be 
partitioned into separate queues each of which will buffer 
the packets of one of the flows. Packets from the flow 
buffers are placed on the outgoing line by a scheduler 
according to an approximate bit-by-bit, round-robin 
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discipline. However, it is well known that this approach 
requires complicated per flow state information, making it 
too expensive to be widely deployed [5], [6]. 
 To reduce the cost of maintaining flow state 
information, Stoica et al. have recently proposed a 
scheduling algorithm called the Core Stateless Fair 
Queueing (CSFQ) [7]. The goal of CSFQ is to achieve fair 
queueing without using per-flow state in the core of the 
router island. On entering the network and the packets are 
marked with an estimate of their current sending rates. A 
core router estimates a flow’s fair share and preferentially 
drops a packet from the flow based on the fair share and 
the rate estimate carried by the packet. Thus, an edge 
router holds onto the per flow state information and 
estimates each flow’s arrival rate. These estimates are 
inserted into the packet headers and passed on to the core 
routers. This scheme reduces the core router design 
complexity and overhead. However, the edge router design 
is still complicated. Moreover, because of the rate 
information in the header, core routers have to extract 
packet information differently from traditional routers. 
Another notable scheme that aims to approximate FQ at a 
smaller implementation cost is Stochastic Fair Queueing 
(SFQ) proposed by McKenny. SFQ classifies packets into 
a smaller number of queues than FQ using a hash function 
[8]. Although this scheme reduces FQ design complexity 
and overhead, SFQ still requires around 1000 to 2000 
queues in a typical router to approach the FQ performance. 
 Thus, scheduling algorithms can provide fair 
bandwidth allocation, but they are often too complex for 
high-speed implementation and do not scale well to a large 
number of users. Also, the algorithmic complexity and 
state requirements of scheduling make the deployment of 
scheduling algorithms difficult. On the other hand, queue 
management algorithms have had a simple design from the 
outset. Given their simplicity, the goal is achieving 
approximate fairness. This approach, called Active Queue 
Management (AQM), uses advanced packet queuing 
disciplines outside of the traditional FIFO drop-tail 
queueing on an outbound queue of a router to actively 
handle (or avoid) congestion with the help of cooperative 
traffic sources [1], [9]. 
 In the Internet, TCP recognizes packet loss as an 
indicator of network congestion, and the back-off 
algorithm reduces the transmission load when network 
congestion is detected. One of the earliest and well-known 
AQM mechanisms is Random Early Detection (RED), 
which prevents congestion via monitoring the outbound 
buffers to detect impending congestion, and RED 
randomly chooses and notifies senders of network 
congestion so that they can reduce their transmission rates. 
The drop probability increases with the level of congestion. 
Since RED acts in anticipation of congestion, it does not 
suffer from the “lock out” and “full queue” problems 
inherent in the widely deployed Drop Tail mechanism. By 

keeping the average queue-size small, RED reduces the 
delays experienced by most flows [10].  
 However, like Drop Tail, RED is unable to penalize 
non-TCP flows. This is because the percentage of packets 
dropped from each flow over a period of time is almost the 
same. While fairly handling congestion for TCP friendly 
flows, RED has a potentially critical problem that 
non-TCP flows that are unresponsive or have greedier 
flow-control mechanisms than TCP can take a greater 
share of the output bandwidth than TCP flows. In the 
worst case, it is possible for non-TCP flows, especially the 
unresponsive ones, to monopolize the output bandwidth 
while TCP connections are forced to transmit at their 
minimum rates. This unfairness occurs because non-TCP 
flows reduce transmission loads to be relatively less than 
TCP friendly flows or do not reduce at all, and the same 
drop rate is applied to every flow. Consequently, non-TCP 
flows or misbehaving flows can take up a large percentage 
of link bandwidth and starve out TCP friendly flows.  
 RED also provides little protection from 
high-bandwidth flows, such as robust TCP flows, that 
consume excessive bandwidth at the expense of other 
flows at the router. These high-bandwidth flows can be 
particular TCP flows with short RTT (Round Trip Times) 
or more problematic flows using different end-to-end 
congestion controls. During congestion, it is important to 
control the high-bandwidth flows to ensure the 
performance of the rest of the traffic [11- 15]. 
 In addressing the fairness problem, there have been 
strong arguments that non-TCP flows or misbehaving 
flows should be penalized to protect well-behaved TCP 
flows. A few variants such as RED with a penalty box and 
Flow Random Early Drop (FRED) have been proposed to 
improve RED’s ability to distinguish unresponsive users. 
FRED is an active queue management approach that 
incorporates this argument. FRED adds per-active-flow 
accounting to RED by isolating each flow from the effects 
of other flows. FRED enforces fairness in terms of output 
buffer space by strictly penalizing non-TCP flows or 
misbehaving flows to ensure that all have an equally fair 
share while assuring packets from flows that do not 
consume their fair share are transmitted without loss. 
FRED not only achieves its purpose of protecting TCP 
flows from non-TCP flows or misbehaving flows, but it 
also protects fragile TCP connections from robust TCP 
connections [13]. However, per-active-flow accounting is 
expensive and might not scale well.  
 These variants incur extra implementation overhead 
since they need to collect certain types of state information. 
RED with a penalty box stores information about 
unfriendly flows while FRED needs information about 
active connections. Ott et al. propose an interesting 
algorithm called Stabilized RED (SRED) that stabilizes the 
occupancy of the FIFO buffer independently of the 
number of active flows [14]. More interestingly, SRED 
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estimates the number of active connections and finds 
candidates for misbehaving flows. SRED does this by 
maintaining a data structure, called the “Zombie list”, that 
serves as a proxy for information about recently seen 
flows. 
 Although SRED identifies misbehaving flows, it does 
not propose a simple router mechanism for penalizing 
misbehaving flows. Pan et al. proposed a notable scheme, 
CHOKe (CHOose and Keep for responsive flows, 
CHOose and Kill for unresponsive flows), that aims to 
approximate fair bandwidth allocation at a smaller 
implementation cost. An incoming packet is matched 
against a random packet in the queue. If these two matched 
packets belong to the same flow, then both packets are 
dropped. Otherwise, the incoming packet is admitted with 
a certain probability. The rationale behind this scheme is 
that non-TCP flows or misbehaving flows are likely to 
have more packets in the queue [15]. CHOKe is not likely 
to perform well when the number of flows is large 
(compared to the buffer space), and even non-TCP flows 
or misbehaving flows have only a few packets in the queue. 
The simulations show that CHOKe achieves limited 
performance; for example, in the simulations, the 
high-bandwidth UDP flows gets much more than their fair 
share. The recent paper by Yang et al. proposes an 
interesting algorithm called Enhanced-Fairness RED 
(EF-RED), which modifies the formulas of calculating the 
final packet-discard probability and packet count of the 
RED algorithm based on the sending rate formula of TCP 
flows [16]. EF-RED only considers the bandwidth fairness 
problem caused by the different packet sizes, and it does 
not improve other factors affecting the bandwidth 
allocation in congested networks.  
 In summary, all router algorithms (scheduling and 
queue management) developed thus far have been either 
able to provide fairness or simple implementation, but they 
do not provide both simultaneously. This has led to the 
belief that the two goals are somewhat incompatible. 
 This paper takes a step in the direction of bridging 
fairness and simplicity. Specifically, we propose an active 
queue management algorithm, called RED with AFQM 
(Approximate Fair Queue Management), which is simple 
to implement (since it requires little state information) and 
differentially penalizes misbehaving flows by dropping 
more of their packets. By doing this, AFQM aims to 
approximate max-min fairness for flows that pass through 
a congested router. 

3. RED with AFQM  

In this paper, the novel queue management scheme, called 
AFQM, is proposed to improve the fairness of existing 
AQM algorithms. This scheme discriminates against the 
flows that submit more packets than their allowed fare 

share. AFQM provides selective dropping using fairness 
adjustment parameters based on per-active-flow buffer 
counts during a certain period. Fig. 1 shows the structure 
of AFQM that inter-networks with existing AQM 
algorithms in a router. In order to improve the fairness of 
existing AQM, AFQM has the selective dropping scheme 
for non-fairness connections such as non-TCP flows or 
misbehaving flows at congested output links. 
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Fig. 1. The Approximate Fair Queue Management Structure 

 

3.1 Fairness Adjustment Parameter 

We define the fairness share rate ( fairrate ) that is satisfied 
in the fair queueing policy. We have the following 
expressions for fairrate  as shown in (1), as a function of 

the sending rate of connection i ( irate ) and fairness 

adjustment parameter ( faP ). If  irate  is not shared as 

the fairness share rate, then faP  controls irate  to make 
the approximate fair queueing policy. 

( )faifair Praterate −×= 1       (1) 

The fairrate  for congested links can also be expressed 

in terms of BW and n  as shown in (2), where BW  is 
the bandwidth of the output link and n   is the number of 
active flows during a certain period ( TΔ ) 

n
BWrate fair =              (2) 

The irate  can now be written as (3), where S  is the 

packet size and iN  is the number of packets buffered in 

a router queue during TΔ   for connection i. 

( )
T
NSrate i

i Δ
×

=             (3) 

The TΔ   in AFQM can now be written as (4), where 

TN is the total number of packets buffered in a router 
queue during TΔ . 
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( )
BW

NST T×
=Δ             (4) 

The faP has been derived as the (5) using (2), (3), (4). 

( )nN
NP
i

T
fa ×

−=1  (5) 

The AFQM can ensure fairness for each flow by using 
the fairness adjustment parameter. Therefore, the AQM 
algorithm with the fair adjustment parameter can control 
or penalize the flows that submit more packets than their 
fair share allowed. 

Existing schemes such as FRED, CHOKe and SFB 
require flow state maintenance and complex per-flow 
processing work. However, the AFQM has a simple 
management mechanism that is periodic event (update 
time TΔ ) based flow state maintenance with a reduction 
in the work complexity. The AFQM is easy to implement 
with smaller overhead than that of existing schemes. 
 

3.2 Fairness Control 

Our proposed AFQM scheme involves placing a pre-filter 
in front of the AQM such as RED. To manage fairness for 
each flow in a congested router, we propose RED with the 
AFQM algorithm; it is a modified version of RED or an 
additional function module to improve the fairness of RED. 
RED with the AFQM mechanism has an additional 
congestion level estimation mechanism instead of a simple 
congestion level estimation by queue size before the AQM 
process congestion control such as randomly chosen 
packet dropping. This mechanism includes a selective 
dropping method that uses fair adjustment parameters 
based on per-active-connections; it can indicate the 
congestion of filtered connections that have non-fairness 
sending rates. To indicate the unfairness of filtered 
connections, RED with the AFQM operates, as shown in 
Fig. 2, before the congestion control takes place by using 
AQM. 
 

 
Fig. 2. Active Queue Management (RED) with AFQM mechanism 

 
RED with the AFQM maintains a count of buffered 
packets iN  and TN  for connection i that currently has 

some packets buffered in a router queue during TΔ . The 
RED with AFQM calculates the fairness adjustment 
parameter, as in (5), using iN , TN  and n  values. If 

the receiving rate of connection i ( irate ) is less than the 

fairness share rate ( fairrate ) given in the fairness policy, 

then the fairness adjustment parameter ( faP ) has a 

negative value. If irate  is greater than fairrate , then 

faP  has a positive value. The RED with AFQM scheme 

uses faP  as the parameter to determine whether or not to 
accept a packet into the queue in a router from a 
non-fairness congestion situation, as shown in Fig. 2, 
before the congestion control is implemented by AQM. 
The incoming packet is always accepted (no drop) if faP  
has a negative value. In other words, without packet 
dropping, the RED with AFQM forwards packets 
belonging to the connection with faP  < 0. If the packets 

belong to the connection with faP  > 0, then the exceeded 
packets are subject to RED’s random drop probability in 
proportion to faP .  
If unfairness connections share a bottleneck link under the 
ideal FQ, then a connection that consumes less than the 
fair share rate should have no more than one packet 
queued. With a single FIFO or generic AQM such as RED, 
this condition does not hold, and the number of 
backlogged packets for low bandwidth connections should 
still be small. However, RED with AFQM manages the 
connections to ensure approximate fairness as part of the 
fair queueing policy. Fig. 3 shows the inter-operation 
pseudo code of the RED with AFQM algorithm. 
 

 
Fig. 3. The inter-operation pseudo code of the RED with AFQM 

 
To control congestion in a router, the RED with AFQM 

calculates the average occupancy of the FIFO buffer using 

Active Queue Management (RED) with faP  

     Calculate (EWMA) qavg  

     If ( thqavg min≤ ) 

  No Packet Drop 
     Else If ( thqth avg maxmin ≤≤ ) 

  Calculate P  
  RED with AFQM fanew PPP +=    

     Else If ( qth avg≤max ) 

  Drop the Arriving Packet 

In Congestion Situation (Calculation faP  for flow i) 

     If ( faP  ≤ 0 ) 

  No Packet Drop 
     Else 
 Active Queue Management (RED) with faP  
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EWMA (exponential weight moving average), which is 
generally similar to what RED does. The RED with 
AFQM also marks two thresholds on the buffer; a 
minimum threshold ( thmin ) and a maximum threshold 

( thmax ). If the average queue size ( qavg ) is less 

than thmin , then every arriving packet is queued into the 
FIFO buffer. If the aggregated arrival rate is smaller than 
the output link capacity, then the qavg  should not build 
up very often and packets are not dropped frequently. If 
the average queue size is greater than thmax , then every 
arriving packet is dropped. This moves the queue 
occupancy back to below thmax . The packet drop 

probability ( P ) that depends on the average queue size is 
computed in the exact same way as that of RED. An 
incoming packet is always accepted if the connection has  

faP < 0 packets buffered or the qavg is less than thmin . 

When  faP  > 0 and the qavg is bigger than thmin , 
each arriving packet is calculated as a new packet drop 
probability ( newP ) using  faP to perform congestion 
control. On the other hand, the packet drop probability has 
to be increased by  faP  when  faP is larger than zero 
(0).  

Fairness 
Adjustment 
Parameter Fairness 

Adjustment 
Parameter

Packet 
Dropped 
by Pfa

 
Fig. 4. Process of the fairness adjustment parameter operation 

 
We describe an algorithm, RED with AFQM, which can 

differentially penalize non-TCP flows and misbehaving 
flows to serve well-behaving TCP. In the simplest form, 
shown in Fig. 4, this process, which has a per-connection 
fairness indication, can control the unfair connection. For 
connections with  faP  > 0, the connections will control 
congestion in a router by both the packet drop probability 
and the fairness adjustment parameters. Otherwise, for  

faP < 0, the connections will not control congestion. These 

connections, which are  faP  < 0, can better grab the 
bandwidth than other connections. 

In the process, this increases the available bandwidth by 
penalizing unfair connections and decreases the packet 
drop rate for the connections with  faP  < 0. The 

connection that is  faP  < 0 can better grab the 
bandwidth than other connections. For example, when the 

high-bandwidth connection in Fig. 4 is penalizing to make 
the fair share rate by using  faP , this decreases each 
packet drop rate for the rest of the connections, and it 
allows low-bandwidth connections ( irate  is less than 

fairrate )to grab the available bandwidth at the congested 
link if those connections have sufficient demand to grab 
the available bandwidth. 

In summary, if incoming packets belong to a connection 
with  faP < 0, then the RED with AFQM forwards the 
packets to the output link without any dropping. If the 
packets belong to a connection with  faP > 0, then the 
exceeded packets are subject to congestion control. This 
congestion control is executed along the RED’s random 
drop probability in proportion to faP . 
 

3.3 ∆T of AFQM scheme 

The  faP  of RED with AFQM uses a proportion of 

buffered packets for each connection during TΔ . The 
TΔ  in the AFQM scheme is a very important parameter 

because the accuracy of  faP   depends on a period of 
collecting information, and the fairness of RED with 
AFQM is controlled by faP . In order to make accurate 
observations for an unfair situation at a congested router, 
the TΔ  can be larger than the maximum queueing delay 
of the buffered packets. Equation (6) satisfies this 
condition. 

BW
BT ≥Δ                 (6) 

In general, the buffer space of routers in real backbones 
is based on the bandwidth-delay product. The router buffer 
space with a bandwidth-delay product can now be written 
as (7), where Delay ( aRTT )  is a set up suitable network 
delay of the serving network by the administrator of the 
network service provider and B   is the router queue size 
[17]. 

)( aRTTDelayBWB ×=       (7) 

The TΔ  of RED with AFQM has been derived as (8) 
using (7). 

)( aRTTDelayT ≥Δ           (8) 

The bandwidth-delay product of the link is applied to 
protocol engines that implement flow/error control and 
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need to receive ACks (acknowledgements) before they can 
go over. 
 

3.3 The AFQM scheme overhead 

The well-known FQ algorithm not only has to manage 
active flows but also non-active flows during a specific 
time. Moreover, the FQ requires the buffer at each router 
output to be partitioned into separate queues each of which 
will buffer the packets of one of the flows. However, the 
RED with AFQM has simplicity that requires a single 
queue for the buffer at each router output while the RED 
with AFQM’s overhead depends on the number of active 
flows during TΔ . To calculate the fairness adjustment 
parameter ( faP ), the RED with AFQM has to know the 
number of active flows and the number of buffered packets 
for each active flow. Therefore, the overhead of RED with 
AFQM is in proportion to the number of active flows 
during TΔ . To know the overhead of RED with AFQM, 
we simulate a simple test. When the single queue in a 
router is shared by 180 TCP flows being sent step-wise 
during 1000 seconds, Fig. 5 shows the number of active 
flows in a router during TΔ .  
 

Active_flow

The Number 
of flow

3
time x 100.0000

50.0000

100.0000

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

150.0000

200.0000

Total_flow

 
Fig. 5. Comparing of the number of active flows with the total number of 

flows to calculate AFQM overhead 
 

From Fig. 5, the number of active flows in a router 
during TΔ  is not the number of total flows that pass 
through a router. Accordingly, as shown in Fig. 5, the 
overhead of RED with AFQM is not directly in proportion 
to the number of active flows. First of all, the RED with 
AFQM requires only a signal queue for the buffer at each 
router output; it does not require multiple queues to 
achieve fairness for each flow. It is easy to implement 
RED with AFQM with a small overhead. 

4. Simulations and Evaluation 

 
This section presents the performance simulation results of 
RED with AFQM in penalizing misbehaving flows, and 
thus approximating fair bandwidth allocation on congested 

routers. In order to evaluate the performance of RED with 
AFQM, a number of experiments have been performed on 
the basis of NS (Network Simulator) of LBNL (Lawrence 
Berkeley National Laboratory) [18]. The results are 
presented as follows:  

- First, compare responsive flows with unresponsive 
flows 

- Second, compare fragile flows with robust flows 
- Third, compare the transport layer protocols 

 

4.1 Responsive Flows vs. Unresponsive Flows 

In this section, we ran an NS simulation for the RED, 
FRED, the RED with AFQM and the FQ schemes to 
compare them in terms of the effects of queue 
management mechanisms on network bandwidth 
allocation fairness of the router. Every simulation had the 
exact same settings, except for the network routers, each of 
which was set to use one of the above two outbound queue 
management mechanisms. The network topology is shown 
in Fig. 6. 

The congested link in this network is between routers 
R1 and R2. The link, with a capacity of 15Mbps 
(propagation delay of 20ms), is shared by m   TCP 
(responsive) flows and n   UDP (unresponsive) flows. 
An end host is connected to the routers using a 10Mbps 
link, and the end host links have a small propagation delay 
of 10ms. 
 

R1 R2
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Sm+1

Sm+n
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Sources

TCP
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UDP
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Fig. 6. Network configuration to evaluate the performance of the RED 

with AFQM algorithm 
 

 In the first simulation scenario, the rate for the UDP 
source is 1Mbps. A simulation configuration with 10 TCP 
and 1 ~ 10 UDP sources is designed for the test. As known, 
if a mixture of responsive and unresponsive flows shares a 
bottleneck link, then severe unfairness is likely to occur as 
the unresponsive flows grab the bandwidth because 
unresponsive flows do not reduce their transmission load 
for congestion control. We measured the performance of 
RED, FRED, RED with AFQM and FQ in terms of 
fairness. We compare the average per-flow throughput of 
each responsive, i.e., unresponsive class, which is the 
average aggregated class throughput divided by the 
number of flows in the class, to visualize how fairly the 
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output bandwidth is assigned to each class considering the 
number of flows in the class. The simulation results are 
summarized in Table 1. 
 
Table 1. Aggregated Class Throughput at the Congested Link:  10 TCP 

flows with 1~10 UDP flows 

# UDP 
flow

TCP 
(FRED)

UDP 
(FRED)

Total 
(FRED)

TCP 
(RED)

UDP 
(RED)

Total 
(RED)

TCP 
(AFQM)

UDP 
(AFQM)

Total 
(AFQM)

1 12.32 1.00 13.31 12.54 0.99 13.53 12.74 0.72 13.46

2 10.66 1.99 12.65 10.93 1.96 12.89 11.48 1.41 12.89

3 9.27 2.93 12.20 9.31 2.92 12.23 10.43 2.00 12.43

4 8.12 3.79 11.92 8.03 3.85 11.88 9.42 2.59 12.01

5 7.21 4.53 11.74 6.81 4.76 11.57 8.79 3.10 11.89

6 6.24 5.32 11.56 5.69 5.67 11.36 8.04 3.65 11.69

7 5.45 5.95 11.40 4.68 6.54 11.22 7.24 4.29 11.53

8 4.84 6.49 11.33 3.76 7.41 11.17 6.55 4.82 11.37

9 4.28 6.99 11.27 2.97 8.18 11.15 5.87 5.46 11.33

10 3.84 7.41 11.25 2.30 8.85 11.15 5.20 6.04 11.24

Unit: [Mbps]

 
 
From Table 1, we can clearly see that the RED does not 

discriminate against unresponsive flows. The UDP flows 
(10 UDP sources) take more than 85% of the bottleneck 
link capacity, and the TCP connection (10 TCP sources) 
can only take the remaining 15% of the bottleneck link 
capacity. The RED with AFQM, on the other hand, 
improves the throughput of the TCP flows by limiting the 
UDP throughput to 50% of the bottleneck link capacity. To 
gauge the degree to which the RED with AFQM achieves 
fair bandwidth allocation, the average aggregated class 
throughput in the simulation above, along with their ideal 
fair shares, are plotted in Fig. 7. 
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Fig. 7. Fairness comparison between the RED with AFQM, FQ, RED and 

FRED (10 TCP, 1~10UDP) 
 

In the next simulation scenario, we vary the UDP arrival 
rate r  to study the AFQM performance under different 
traffic load conditions. A simulation configuration with 10 
TCP and 1 UDP sources is designed for the test. The UDP 
source sends packets at a rate r  Kbps, where r   is a 
variable. The simulation results are summarized in Table 2.  

Table 2 lists the throughput of the aggregated classes in 
the network. From the simulation results in Table 2, the 
conclusion is that the RED does not discriminate against 
unresponsive flows; it is obvious that the RED cannot 
regulate greedy connections. The unresponsive flows use 

up all network bandwidth and starve out well-behaving 
flows. AFQM, on the other hand, dramatically improves 
the TCP flows throughput by limiting the UDP throughput 
to 10% of the bottleneck link capacity. To gauge the 
degree to which AFQM achieves fair bandwidth allocation, 
the average aggregated class throughput in the simulations 
above, along with their ideal fair shares, are plotted in Fig. 
8 where the fraction of total bandwidth versus the UDP 
flow arrival rate is plotted. 
 

Table 2. Aggregated Class Throughput at the Congested Link: 10 TCP 
flows with Variable rate UDP flows 

UDP
(Mbps)

TCP 
(FRED)

UDP 
(FRED)

Total 
(FRED)

TCP 
(RED)

UDP 
(RED)

Total 
(RED)

TCP 
(AFQM)

UDP 
(AFQM)

Total 
(AFQM)

1 12.32 1.00 13.31 12.54 0.99 13.53 12.74 0.72 13.46
2 11.45 1.80 13.25 11.12 1.97 13.09 12.72 0.88 13.60
3 10.98 2.28 13.25 10.03 2.93 12.96 12.88 0.89 13.76
4 10.70 2.54 13.24 8.66 3.88 12.54 12.64 0.92 13.56
5 10.60 2.65 13.25 7.50 4.81 12.31 12.57 1.10 13.67
6 10.63 2.65 13.27 6.16 5.72 11.89 12.29 1.28 13.57
7 10.62 2.67 13.29 4.95 6.61 11.56 11.81 1.43 13.23
8 10.57 2.72 13.30 3.86 7.46 11.32 11.87 1.59 13.46
9 10.50 2.78 13.27 2.69 8.23 10.92 11.52 1.91 13.43
10 10.46 2.81 13.26 1.90 8.96 10.87 11.72 2.01 13.73

Unit: [Mbps]
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Fig. 8. Fairness comparison between the RED with AFQM, FQ, RED and 

FRED (10 TCP, 1UDP with variable rates) 
  
Moreover, from the simulation results in Table II, it 

shows that the packet loss rate in a network under RED 
with AFQM is small since the TCP flow is responsive to 
congestion indications and adjusts its packet injection rates 
accordingly. However, the packet loss rates in a network 
under RED are large because the RED scheme made 
unnecessary packet drops due to fault operation. Fault 
operation occurs when AQM, such as the RED, does not 
discriminate against unresponsive flows. 
 

4.2 Fragile Flows vs. Robust Flows 

As known, if a mixture of short and long RTT flows shares 
a bottleneck link, then severe unfairness is likely to occur 
as the short RTT flows grab the available bandwidth well 
before the long RTT flows have a chance. To evaluate the 
fairness performance of AFQM by comparing fragile (long 
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RTT) flows with robust (short RTT) flows, we simulated 
the configuration shown in Fig. 9. 
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Fig. 9. Network configuration to evaluate the fairness performance of 
AFQM with fragile connections 

 
A robust TCP connection (flow ID =1) with a RTT of 24 
ms and unlimited windows compete with 29 fragile TCP 
connections with RTT of 1024ms and unlimited windows. 
Each sender always has data to be sent. The simulation 
results are summarized in Table 3. Table 3 lists the 
throughput of each flow in the congested network.  
 
Table 3. Each Flow’s Throughput at the Congested Link: A lot of fragile 

flows and a robust flow 

Flow ID AFQM
(Mbps)

RED
(Mbps) Flow ID AFQM

(Mbps)
RED

(Mbps) Flow ID AFQM
(Mbps)

RED
(Mbps)

1 1.1092 2.3107 11 0.3290 0.2099 21 0.3206 0.2186

2 0.3283 0.2433 12 0.3285 0.2547 22 0.3147 0.2480

3 0.3222 0.2389 13 0.3244 0.2436 23 0.3106 0.2405

4 0.3253 0.2328 14 0.3198 0.2694 24 0.3307 0.2569

5 0.3274 0.2184 15 0.3299 0.2353 25 0.3280 0.2161

6 0.3232 0.2485 16 0.3207 0.2303 26 0.3292 0.2512

7 0.3261 0.2654 17 0.3068 0.2559 27 0.3315 0.2386

8 0.3171 0.2241 18 0.3172 0.2637 28 0.3328 0.2455

9 0.3330 0.2553 19 0.3287 0.2423 29 0.3327 0.2442

10 0.3152 0.2669 20 0.3328 0.2600 30 0.3163 0.2736
Total 10.5119 9.4026  
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Fig. 10. Fraction of the total Goodput per Flow ID: A lot of fragile flows 

and a robust flow 
 
From Table 3, the robust TCP (flow ID =1) connection is 
able to run at the maximum possible speed as if there were 
no competition. Table 3 shows the actual throughput of the 
fragile TCP connection and one of the robust TCP 
connections. The low throughput enables the fragile TCP 
connection to ramp up to its maximum possible rate. 

Consequently, the robust TCP flow traffic can take up a 
large percentage of the link bandwidth and starve out other 
TCP friendly flows. In order to explore the feasibility of 
the RED with AFQM, the throughput of each flow is 
illustrated in Fig. 10. When the achievement of fair 
bandwidth allocation under RED with AFQM is compared, 
it is slightly better than that under RED, as shown in Fig. 
10.  

4.3 Between the transport layer protocols 

The most important factor influencing the performance of 
router congestion control is the transport layer protocols 
such as TCP-Reno, TCP-Vegas and TFRC (TCP-Friendly 
Rate Control); the TCP-Reno is the most popular TCP, the 
TCP-Vegas is a new version of TCP to improve 
performance and the TFRC is an equation-based 
congestion control [19-22]. However, the transport layer 
protocol schemes have unfairness problems between them. 
To evaluate the fairness performance of the AFQM 
comparing with that of the transport layer protocols, we 
simulated the configuration shown in Fig. 11. 
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Fig. 11. Network configuration to evaluate the fairness performance of 

AFQM with the transport layer protocols 
 

The simulations are performed to compare the three 
transport layer protocols, which are TCP-Reno, 
TCP-Vegas and TFRC, with the RED with AFQM. 
Moreover, in order to set 100% of the bandwidth and delay 
product, one unresponsive flow, which has a high 
throughput, is sent to the bottleneck link. Table 4 presents 
the throughput of each transport layer protocol for the 
different RTTs.  

 
Table 4. Each Flow’s Average Throughput at Receiver (BW = 1Mbps): 

TCP-Reno, TCP-Vegas and TFRC, for short and long RTT 
TCP-Reno

Short
TCP-Vegas

Short
TFRC
Short

Utiliza-
tion (%)

TCP-Reno
Long

TCP-Vegas
Long

TFRC
Long

Utiliza-
tion (%)

Load
AFQM
(Kbps) 211 187 338 73.7% 54 44 185 28.3%

RED
(Kbps) 65 106 217 38.9% 16 8 25 4.9%

Drop-Tail
(Kbps) 114 62 244 42.0% 1 15 30 4.6%

Unresponsive flow: Target rate to 1.5 Mbps

 
 

As Table 4, with the unresponsive flow, the three 
transport layer protocols show comparably lower 
performance because the unresponsive flow does not 
reduce transmission load for congestion control. Table 4 
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shows the unfairness problems between them while the 
link utilization shows low usage with Drop Tail and RED. 
As shown in Table 4, Fault operation occurs when RED 
does not discriminate against unresponsive flows, but the 
RED with AFQM improves fairness and link utilization 
more than that by the simple RED.  

Fig. 12 shows the results of Drop Tail, RED and RED 
with AFQM. The x axis shows the simulation time, and the 
y axis shows the throughput of each flow that is buffered 
in a router queue. As shown in Figs. 12 (a) and (b), each 
flow’s throughput is not normalized by the flow fair share 
between them, and the unresponsive flow grabs the 
bandwidth. However, from Fig. 12 (c), it is observed that 
the flow with the RED with AFQM is more normalized by 
the fair share, overall. The unresponsive flow cannot grab 
the router bandwidth because it is penalized by the fairness 
adjustment parameters.  
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Fig. 12. Each flow’s throughput buffered in the router queue: (a) Drop tail, 

(b) RED, (c) AFQM 
 
In the next simulation scenario, the simulation is setup 

with different link delays to make short RTT and long RTT 
flows at the same time. Each of the transport layer 
protocols sends two flows that are the short RTT and long 
RTT flows. The simulation results are summarized in 
Table 5. 

It is observable from Table 5 that the usage utilization 
by the RED with AFQM is much higher than those by 
others. Also, the fairness of bandwidth sharing among 
flows using the RED with AFQM outperformed those of 
the others. The simulation result shows that the AFQM 
approximates fairness among non-TCP flows or 
misbehaving flows by increasing and decreasing the drop 

probabilities in the manner explained in Section 3. 
 

Table 5. Each Flow’s Average Throughput at Receiver (BW=2Mbps): 
TCP-Reno, TCP-Vegas and TFRC, with short and long RTT at Once 

AFQM
(Kbps)

RED
(Kbps)

Drop-Tail
(Kbps)

AFQM
(Kbps)

RED
(Kbps)

Drop-Tail
(Kbps)

Unresponsive flow

TCP-Reno Short 450 310 350 500 550 550

TCP-Reno Long 30 10 10 70 20 20

TCP-Vegas Short 400 410 400 400 750 310

TCP-Vegas Long 30 10 10 60 30 20

TFRC Short 610 310 500 750 680 1180

TFRC Long 30 20 10 260 40 50

Utilization (%) 77.50% 53.50% 63.50% 100% 100% 100%

Target rate to 1.5 Mbps Target rate to 0 Mbps

 

6. Conclusion 

In this paper, the new active queue management algorithm, 
called the AFQM algorithm, is proposed to improve the 
fairness of existing AQM algorithms. AFQM aims to 
approximate the fair queueing policy such as the FQ. In 
addition, the RED with AFQM scheme can be easily 
implemented with small overhead. The AFQM scheme 
provides selective dropping by the fairness adjustment 
parameters based on per-active-flow buffer counts. The 
simulations suggest that the RED with AFQM scheme 
works well in protecting TCP friendly flows from 
non-TCP flows or misbehaving flows. The simulation 
results show that RED with AFQM outperforms the RED 
in terms of fairly handling connections with different RTT 
and traffic classes. Further work involves studying the 
proposed algorithm performance under a wider range of 
parameters, network topologies and real traffic traces, and 
future work will consider methods for improving fairness 
in other QoS services. 
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