
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

13

Manuscript received August 5, 2011
Manuscript revised August 20, 2011

A Novel Scheme for Improving the Fairness of Queue

Management in Internet Congestion Control

Jungmin Lee, and Kwangsue Chung

Communications Engineering Department, Kwangwoon University, Seoul, Korea

Summary
This paper proposes a novel scheme to improve the fairness of
active queue management congestion control. In order to reduce
the increasing rates of packet loss caused by the exponential
increase of network traffic, IETF (Internet Engineering Task
Force) is considering the deployment of active queue
management techniques such as RED (Random Early Detection).
RED is a simple scheme, but it does not support the fairness of
traffic protection from misbehaving flows, such as short RTT
(Round-Trip Time) TCP flows and non-TCP flows, i.e., UDP
flows.
To solve this problem, we propose a simple fairness queue
management scheme, called the RED with AFQM (Approximate
Fair Queue Management) scheme, which discriminates against
flows that submit more packets than their shares allocated via a
router. By doing this, the scheme aims to ensure the fairest
queueing policy. In addition, the RED with AFQM scheme can
be easily implemented with small overhead.
Key words:
AFQM, active queue management, congestion control, fairness,
RED

1. Introduction

Today, the Internet protocol architecture is based on
connectionless end-to-end packet service using IP protocol
that has demonstrated advantages such as connectionless
design, flexibility and robustness; however, this design is
difficult to control. Therefore, a carefully designed
solution is required to provide efficient and effective
services under heavy loads. In fact, a lack of attention to
the dynamics of packet forwarding can result in service
degradation. This phenomenon was first observed during
the early growth phase of the Internet in the mid-1980s
and is technically called “congestion collapse” [1].
 Especially, the current system depends on congestion
avoidance mechanisms implemented in transport layer
protocols, like TCP, to provide good services under heavy
loads. However, a lot of TCP implementations do not
include congestion avoidance mechanisms, either
deliberately or by accident [2], [3].
 It has become clear that the TCP congestion avoidance
mechanisms, while necessary and powerful, are not
sufficient to provide good services in all circumstances.

Basically, there is a limit to how much control can be
achieved at the edges of the network. Some router
mechanisms are needed to complement the endpoint
congestion avoidance mechanisms [4].
 In order to perform congestion control based on IETF
Standards, it is useful to distinguish between two classes
of router algorithms related to congestion control: “queue
management algorithms” versus “scheduling algorithms”.
All router algorithms (scheduling or queue management)
developed thus far have been able to either provide
fairness or simple implementation, but they cannot provide
both simultaneously. This has led to the belief that the
latter two goals are somewhat incompatible [1].
 This paper takes a step in the direction of bridging the
gap between fairness and simplicity. Specifically, we
propose a novel scheme that improves the fairness of the
existing active queue management algorithm, called RED
with AFQM (Approximate Fair Queue Management), that
discriminates against flows that submit more packets than
their shares allocated by a router. By doing this, the
scheme aims at making the approximate policy of fair
queueing. The rest of the paper is organized as follows.
Section 2 introduces existing congestion control
approaches and describes RED. Section 3 presents the
AFQM scheme. The simulation results are presented in
Section 4. Section 5 concludes this paper.

2. Related Work

In order to solve the fairness and congestion problems of
networks, it is necessary to have router mechanisms that
shield responsive flows (TCP friendly flows) from
non-TCP flows or misbehaving flows, and it is necessary
to provide good quality of service (QoS) to all users. As
discussed in IETF, there are two types of router algorithms
for achieving congestion control. The generic scheduling
algorithm, exemplified by the well-known Fair Queueing
(FQ), requires the buffer at each output of a router to be
partitioned into separate queues each of which will buffer
the packets of one of the flows. Packets from the flow
buffers are placed on the outgoing line by a scheduler
according to an approximate bit-by-bit, round-robin

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

14

discipline. However, it is well known that this approach
requires complicated per flow state information, making it
too expensive to be widely deployed [5], [6].
 To reduce the cost of maintaining flow state
information, Stoica et al. have recently proposed a
scheduling algorithm called the Core Stateless Fair
Queueing (CSFQ) [7]. The goal of CSFQ is to achieve fair
queueing without using per-flow state in the core of the
router island. On entering the network and the packets are
marked with an estimate of their current sending rates. A
core router estimates a flow’s fair share and preferentially
drops a packet from the flow based on the fair share and
the rate estimate carried by the packet. Thus, an edge
router holds onto the per flow state information and
estimates each flow’s arrival rate. These estimates are
inserted into the packet headers and passed on to the core
routers. This scheme reduces the core router design
complexity and overhead. However, the edge router design
is still complicated. Moreover, because of the rate
information in the header, core routers have to extract
packet information differently from traditional routers.
Another notable scheme that aims to approximate FQ at a
smaller implementation cost is Stochastic Fair Queueing
(SFQ) proposed by McKenny. SFQ classifies packets into
a smaller number of queues than FQ using a hash function
[8]. Although this scheme reduces FQ design complexity
and overhead, SFQ still requires around 1000 to 2000
queues in a typical router to approach the FQ performance.
 Thus, scheduling algorithms can provide fair
bandwidth allocation, but they are often too complex for
high-speed implementation and do not scale well to a large
number of users. Also, the algorithmic complexity and
state requirements of scheduling make the deployment of
scheduling algorithms difficult. On the other hand, queue
management algorithms have had a simple design from the
outset. Given their simplicity, the goal is achieving
approximate fairness. This approach, called Active Queue
Management (AQM), uses advanced packet queuing
disciplines outside of the traditional FIFO drop-tail
queueing on an outbound queue of a router to actively
handle (or avoid) congestion with the help of cooperative
traffic sources [1], [9].
 In the Internet, TCP recognizes packet loss as an
indicator of network congestion, and the back-off
algorithm reduces the transmission load when network
congestion is detected. One of the earliest and well-known
AQM mechanisms is Random Early Detection (RED),
which prevents congestion via monitoring the outbound
buffers to detect impending congestion, and RED
randomly chooses and notifies senders of network
congestion so that they can reduce their transmission rates.
The drop probability increases with the level of congestion.
Since RED acts in anticipation of congestion, it does not
suffer from the “lock out” and “full queue” problems
inherent in the widely deployed Drop Tail mechanism. By

keeping the average queue-size small, RED reduces the
delays experienced by most flows [10].
 However, like Drop Tail, RED is unable to penalize
non-TCP flows. This is because the percentage of packets
dropped from each flow over a period of time is almost the
same. While fairly handling congestion for TCP friendly
flows, RED has a potentially critical problem that
non-TCP flows that are unresponsive or have greedier
flow-control mechanisms than TCP can take a greater
share of the output bandwidth than TCP flows. In the
worst case, it is possible for non-TCP flows, especially the
unresponsive ones, to monopolize the output bandwidth
while TCP connections are forced to transmit at their
minimum rates. This unfairness occurs because non-TCP
flows reduce transmission loads to be relatively less than
TCP friendly flows or do not reduce at all, and the same
drop rate is applied to every flow. Consequently, non-TCP
flows or misbehaving flows can take up a large percentage
of link bandwidth and starve out TCP friendly flows.
 RED also provides little protection from
high-bandwidth flows, such as robust TCP flows, that
consume excessive bandwidth at the expense of other
flows at the router. These high-bandwidth flows can be
particular TCP flows with short RTT (Round Trip Times)
or more problematic flows using different end-to-end
congestion controls. During congestion, it is important to
control the high-bandwidth flows to ensure the
performance of the rest of the traffic [11- 15].
 In addressing the fairness problem, there have been
strong arguments that non-TCP flows or misbehaving
flows should be penalized to protect well-behaved TCP
flows. A few variants such as RED with a penalty box and
Flow Random Early Drop (FRED) have been proposed to
improve RED’s ability to distinguish unresponsive users.
FRED is an active queue management approach that
incorporates this argument. FRED adds per-active-flow
accounting to RED by isolating each flow from the effects
of other flows. FRED enforces fairness in terms of output
buffer space by strictly penalizing non-TCP flows or
misbehaving flows to ensure that all have an equally fair
share while assuring packets from flows that do not
consume their fair share are transmitted without loss.
FRED not only achieves its purpose of protecting TCP
flows from non-TCP flows or misbehaving flows, but it
also protects fragile TCP connections from robust TCP
connections [13]. However, per-active-flow accounting is
expensive and might not scale well.
 These variants incur extra implementation overhead
since they need to collect certain types of state information.
RED with a penalty box stores information about
unfriendly flows while FRED needs information about
active connections. Ott et al. propose an interesting
algorithm called Stabilized RED (SRED) that stabilizes the
occupancy of the FIFO buffer independently of the
number of active flows [14]. More interestingly, SRED

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

15

estimates the number of active connections and finds
candidates for misbehaving flows. SRED does this by
maintaining a data structure, called the “Zombie list”, that
serves as a proxy for information about recently seen
flows.
 Although SRED identifies misbehaving flows, it does
not propose a simple router mechanism for penalizing
misbehaving flows. Pan et al. proposed a notable scheme,
CHOKe (CHOose and Keep for responsive flows,
CHOose and Kill for unresponsive flows), that aims to
approximate fair bandwidth allocation at a smaller
implementation cost. An incoming packet is matched
against a random packet in the queue. If these two matched
packets belong to the same flow, then both packets are
dropped. Otherwise, the incoming packet is admitted with
a certain probability. The rationale behind this scheme is
that non-TCP flows or misbehaving flows are likely to
have more packets in the queue [15]. CHOKe is not likely
to perform well when the number of flows is large
(compared to the buffer space), and even non-TCP flows
or misbehaving flows have only a few packets in the queue.
The simulations show that CHOKe achieves limited
performance; for example, in the simulations, the
high-bandwidth UDP flows gets much more than their fair
share. The recent paper by Yang et al. proposes an
interesting algorithm called Enhanced-Fairness RED
(EF-RED), which modifies the formulas of calculating the
final packet-discard probability and packet count of the
RED algorithm based on the sending rate formula of TCP
flows [16]. EF-RED only considers the bandwidth fairness
problem caused by the different packet sizes, and it does
not improve other factors affecting the bandwidth
allocation in congested networks.
 In summary, all router algorithms (scheduling and
queue management) developed thus far have been either
able to provide fairness or simple implementation, but they
do not provide both simultaneously. This has led to the
belief that the two goals are somewhat incompatible.
 This paper takes a step in the direction of bridging
fairness and simplicity. Specifically, we propose an active
queue management algorithm, called RED with AFQM
(Approximate Fair Queue Management), which is simple
to implement (since it requires little state information) and
differentially penalizes misbehaving flows by dropping
more of their packets. By doing this, AFQM aims to
approximate max-min fairness for flows that pass through
a congested router.

3. RED with AFQM

In this paper, the novel queue management scheme, called
AFQM, is proposed to improve the fairness of existing
AQM algorithms. This scheme discriminates against the
flows that submit more packets than their allowed fare

share. AFQM provides selective dropping using fairness
adjustment parameters based on per-active-flow buffer
counts during a certain period. Fig. 1 shows the structure
of AFQM that inter-networks with existing AQM
algorithms in a router. In order to improve the fairness of
existing AQM, AFQM has the selective dropping scheme
for non-fairness connections such as non-TCP flows or
misbehaving flows at congested output links.

C
on

ge
st

io
n

Le
ve

l E
st

im
at

io
n

C
on

ge
st

io
n

In
di

ca
tio

n
Fa

ct
or

C
on

ge
st

io
n

C
on

tro
l

Fairness
Control

(AFQM core)

Input
Traffic

Active Queue Management core

en_queue

Buffer
Management

de_queue

Queue
EWMA
Size

Fairness Adjustment Parameter

Fig. 1. The Approximate Fair Queue Management Structure

3.1 Fairness Adjustment Parameter

We define the fairness share rate (fairrate) that is satisfied
in the fair queueing policy. We have the following
expressions for fairrate as shown in (1), as a function of

the sending rate of connection i (irate) and fairness

adjustment parameter (faP). If irate is not shared as

the fairness share rate, then faP controls irate to make
the approximate fair queueing policy.

()faifair Praterate −×= 1 (1)

The fairrate for congested links can also be expressed

in terms of BW and n as shown in (2), where BW is
the bandwidth of the output link and n is the number of
active flows during a certain period (TΔ)

n
BWrate fair = (2)

The irate can now be written as (3), where S is the

packet size and iN is the number of packets buffered in

a router queue during TΔ for connection i.

()
T
NSrate i

i Δ
×

= (3)

The TΔ in AFQM can now be written as (4), where

TN is the total number of packets buffered in a router
queue during TΔ .

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

16

()
BW

NST T×
=Δ (4)

The faP has been derived as the (5) using (2), (3), (4).

()nN
NP
i

T
fa ×

−=1 (5)

The AFQM can ensure fairness for each flow by using
the fairness adjustment parameter. Therefore, the AQM
algorithm with the fair adjustment parameter can control
or penalize the flows that submit more packets than their
fair share allowed.

Existing schemes such as FRED, CHOKe and SFB
require flow state maintenance and complex per-flow
processing work. However, the AFQM has a simple
management mechanism that is periodic event (update
time TΔ) based flow state maintenance with a reduction
in the work complexity. The AFQM is easy to implement
with smaller overhead than that of existing schemes.

3.2 Fairness Control

Our proposed AFQM scheme involves placing a pre-filter
in front of the AQM such as RED. To manage fairness for
each flow in a congested router, we propose RED with the
AFQM algorithm; it is a modified version of RED or an
additional function module to improve the fairness of RED.
RED with the AFQM mechanism has an additional
congestion level estimation mechanism instead of a simple
congestion level estimation by queue size before the AQM
process congestion control such as randomly chosen
packet dropping. This mechanism includes a selective
dropping method that uses fair adjustment parameters
based on per-active-connections; it can indicate the
congestion of filtered connections that have non-fairness
sending rates. To indicate the unfairness of filtered
connections, RED with the AFQM operates, as shown in
Fig. 2, before the congestion control takes place by using
AQM.

Fig. 2. Active Queue Management (RED) with AFQM mechanism

RED with the AFQM maintains a count of buffered
packets iN and TN for connection i that currently has

some packets buffered in a router queue during TΔ . The
RED with AFQM calculates the fairness adjustment
parameter, as in (5), using iN , TN and n values. If

the receiving rate of connection i (irate) is less than the

fairness share rate (fairrate) given in the fairness policy,

then the fairness adjustment parameter (faP) has a

negative value. If irate is greater than fairrate , then

faP has a positive value. The RED with AFQM scheme

uses faP as the parameter to determine whether or not to
accept a packet into the queue in a router from a
non-fairness congestion situation, as shown in Fig. 2,
before the congestion control is implemented by AQM.
The incoming packet is always accepted (no drop) if faP
has a negative value. In other words, without packet
dropping, the RED with AFQM forwards packets
belonging to the connection with faP < 0. If the packets

belong to the connection with faP > 0, then the exceeded
packets are subject to RED’s random drop probability in
proportion to faP .
If unfairness connections share a bottleneck link under the
ideal FQ, then a connection that consumes less than the
fair share rate should have no more than one packet
queued. With a single FIFO or generic AQM such as RED,
this condition does not hold, and the number of
backlogged packets for low bandwidth connections should
still be small. However, RED with AFQM manages the
connections to ensure approximate fairness as part of the
fair queueing policy. Fig. 3 shows the inter-operation
pseudo code of the RED with AFQM algorithm.

Fig. 3. The inter-operation pseudo code of the RED with AFQM

To control congestion in a router, the RED with AFQM

calculates the average occupancy of the FIFO buffer using

Active Queue Management (RED) with faP

 Calculate (EWMA) qavg

 If (thqavg min≤)

 No Packet Drop
 Else If (thqth avg maxmin ≤≤)

 Calculate P
 RED with AFQM fanew PPP +=

 Else If (qth avg≤max)

 Drop the Arriving Packet

In Congestion Situation (Calculation faP for flow i)

 If (faP ≤ 0)

 No Packet Drop
 Else
 Active Queue Management (RED) with faP

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

17

EWMA (exponential weight moving average), which is
generally similar to what RED does. The RED with
AFQM also marks two thresholds on the buffer; a
minimum threshold (thmin) and a maximum threshold

(thmax). If the average queue size (qavg) is less

than thmin , then every arriving packet is queued into the
FIFO buffer. If the aggregated arrival rate is smaller than
the output link capacity, then the qavg should not build
up very often and packets are not dropped frequently. If
the average queue size is greater than thmax , then every
arriving packet is dropped. This moves the queue
occupancy back to below thmax . The packet drop

probability (P) that depends on the average queue size is
computed in the exact same way as that of RED. An
incoming packet is always accepted if the connection has

faP < 0 packets buffered or the qavg is less than thmin .

When faP > 0 and the qavg is bigger than thmin ,
each arriving packet is calculated as a new packet drop
probability (newP) using faP to perform congestion
control. On the other hand, the packet drop probability has
to be increased by faP when faP is larger than zero
(0).

Fairness
Adjustment
Parameter Fairness

Adjustment
Parameter

Packet
Dropped
by Pfa

Fig. 4. Process of the fairness adjustment parameter operation

We describe an algorithm, RED with AFQM, which can

differentially penalize non-TCP flows and misbehaving
flows to serve well-behaving TCP. In the simplest form,
shown in Fig. 4, this process, which has a per-connection
fairness indication, can control the unfair connection. For
connections with faP > 0, the connections will control
congestion in a router by both the packet drop probability
and the fairness adjustment parameters. Otherwise, for

faP < 0, the connections will not control congestion. These

connections, which are faP < 0, can better grab the
bandwidth than other connections.

In the process, this increases the available bandwidth by
penalizing unfair connections and decreases the packet
drop rate for the connections with faP < 0. The

connection that is faP < 0 can better grab the
bandwidth than other connections. For example, when the

high-bandwidth connection in Fig. 4 is penalizing to make
the fair share rate by using faP , this decreases each
packet drop rate for the rest of the connections, and it
allows low-bandwidth connections (irate is less than

fairrate)to grab the available bandwidth at the congested
link if those connections have sufficient demand to grab
the available bandwidth.

In summary, if incoming packets belong to a connection
with faP < 0, then the RED with AFQM forwards the
packets to the output link without any dropping. If the
packets belong to a connection with faP > 0, then the
exceeded packets are subject to congestion control. This
congestion control is executed along the RED’s random
drop probability in proportion to faP .

3.3 ∆T of AFQM scheme

The faP of RED with AFQM uses a proportion of

buffered packets for each connection during TΔ . The
TΔ in the AFQM scheme is a very important parameter

because the accuracy of faP depends on a period of
collecting information, and the fairness of RED with
AFQM is controlled by faP . In order to make accurate
observations for an unfair situation at a congested router,
the TΔ can be larger than the maximum queueing delay
of the buffered packets. Equation (6) satisfies this
condition.

BW
BT ≥Δ (6)

In general, the buffer space of routers in real backbones
is based on the bandwidth-delay product. The router buffer
space with a bandwidth-delay product can now be written
as (7), where Delay (aRTT) is a set up suitable network
delay of the serving network by the administrator of the
network service provider and B is the router queue size
[17].

)(aRTTDelayBWB ×= (7)

The TΔ of RED with AFQM has been derived as (8)
using (7).

)(aRTTDelayT ≥Δ (8)

The bandwidth-delay product of the link is applied to
protocol engines that implement flow/error control and

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

18

need to receive ACks (acknowledgements) before they can
go over.

3.3 The AFQM scheme overhead

The well-known FQ algorithm not only has to manage
active flows but also non-active flows during a specific
time. Moreover, the FQ requires the buffer at each router
output to be partitioned into separate queues each of which
will buffer the packets of one of the flows. However, the
RED with AFQM has simplicity that requires a single
queue for the buffer at each router output while the RED
with AFQM’s overhead depends on the number of active
flows during TΔ . To calculate the fairness adjustment
parameter (faP), the RED with AFQM has to know the
number of active flows and the number of buffered packets
for each active flow. Therefore, the overhead of RED with
AFQM is in proportion to the number of active flows
during TΔ . To know the overhead of RED with AFQM,
we simulate a simple test. When the single queue in a
router is shared by 180 TCP flows being sent step-wise
during 1000 seconds, Fig. 5 shows the number of active
flows in a router during TΔ .

Active_flow

The Number
of flow

3
time x 100.0000

50.0000

100.0000

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

150.0000

200.0000

Total_flow

Fig. 5. Comparing of the number of active flows with the total number of

flows to calculate AFQM overhead

From Fig. 5, the number of active flows in a router
during TΔ is not the number of total flows that pass
through a router. Accordingly, as shown in Fig. 5, the
overhead of RED with AFQM is not directly in proportion
to the number of active flows. First of all, the RED with
AFQM requires only a signal queue for the buffer at each
router output; it does not require multiple queues to
achieve fairness for each flow. It is easy to implement
RED with AFQM with a small overhead.

4. Simulations and Evaluation

This section presents the performance simulation results of
RED with AFQM in penalizing misbehaving flows, and
thus approximating fair bandwidth allocation on congested

routers. In order to evaluate the performance of RED with
AFQM, a number of experiments have been performed on
the basis of NS (Network Simulator) of LBNL (Lawrence
Berkeley National Laboratory) [18]. The results are
presented as follows:

- First, compare responsive flows with unresponsive
flows

- Second, compare fragile flows with robust flows
- Third, compare the transport layer protocols

4.1 Responsive Flows vs. Unresponsive Flows

In this section, we ran an NS simulation for the RED,
FRED, the RED with AFQM and the FQ schemes to
compare them in terms of the effects of queue
management mechanisms on network bandwidth
allocation fairness of the router. Every simulation had the
exact same settings, except for the network routers, each of
which was set to use one of the above two outbound queue
management mechanisms. The network topology is shown
in Fig. 6.

The congested link in this network is between routers
R1 and R2. The link, with a capacity of 15Mbps
(propagation delay of 20ms), is shared by m TCP
(responsive) flows and n UDP (unresponsive) flows.
An end host is connected to the routers using a 10Mbps
link, and the end host links have a small propagation delay
of 10ms.

R1 R2

S1

S2

Sm

Sm+1

Sm+n

D1

D2

Dm

Dm+1

Dm+n

10Mbps
10ms

10Mbps
10ms

15Mbps
20ms

minth=25, maxth=75, Qsize=150

TCP
Sources

UDP
Sources

TCP
Sinks

UDP
Sinks

Fig. 6. Network configuration to evaluate the performance of the RED

with AFQM algorithm

 In the first simulation scenario, the rate for the UDP
source is 1Mbps. A simulation configuration with 10 TCP
and 1 ~ 10 UDP sources is designed for the test. As known,
if a mixture of responsive and unresponsive flows shares a
bottleneck link, then severe unfairness is likely to occur as
the unresponsive flows grab the bandwidth because
unresponsive flows do not reduce their transmission load
for congestion control. We measured the performance of
RED, FRED, RED with AFQM and FQ in terms of
fairness. We compare the average per-flow throughput of
each responsive, i.e., unresponsive class, which is the
average aggregated class throughput divided by the
number of flows in the class, to visualize how fairly the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

19

output bandwidth is assigned to each class considering the
number of flows in the class. The simulation results are
summarized in Table 1.

Table 1. Aggregated Class Throughput at the Congested Link: 10 TCP

flows with 1~10 UDP flows

UDP
flow

TCP
(FRED)

UDP
(FRED)

Total
(FRED)

TCP
(RED)

UDP
(RED)

Total
(RED)

TCP
(AFQM)

UDP
(AFQM)

Total
(AFQM)

1 12.32 1.00 13.31 12.54 0.99 13.53 12.74 0.72 13.46

2 10.66 1.99 12.65 10.93 1.96 12.89 11.48 1.41 12.89

3 9.27 2.93 12.20 9.31 2.92 12.23 10.43 2.00 12.43

4 8.12 3.79 11.92 8.03 3.85 11.88 9.42 2.59 12.01

5 7.21 4.53 11.74 6.81 4.76 11.57 8.79 3.10 11.89

6 6.24 5.32 11.56 5.69 5.67 11.36 8.04 3.65 11.69

7 5.45 5.95 11.40 4.68 6.54 11.22 7.24 4.29 11.53

8 4.84 6.49 11.33 3.76 7.41 11.17 6.55 4.82 11.37

9 4.28 6.99 11.27 2.97 8.18 11.15 5.87 5.46 11.33

10 3.84 7.41 11.25 2.30 8.85 11.15 5.20 6.04 11.24

Unit: [Mbps]

From Table 1, we can clearly see that the RED does not

discriminate against unresponsive flows. The UDP flows
(10 UDP sources) take more than 85% of the bottleneck
link capacity, and the TCP connection (10 TCP sources)
can only take the remaining 15% of the bottleneck link
capacity. The RED with AFQM, on the other hand,
improves the throughput of the TCP flows by limiting the
UDP throughput to 50% of the bottleneck link capacity. To
gauge the degree to which the RED with AFQM achieves
fair bandwidth allocation, the average aggregated class
throughput in the simulation above, along with their ideal
fair shares, are plotted in Fig. 7.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6 7 8 9 10

Fr
ac
tio
n
of
 T
ot
al
 B
an
dw
id
th
 (%
)

Number of UDP flows (each UDP flow Throughput = 1 Mbps)

TCP(FRED)

UDP(FRED)

TCP(RED)

UDP(RED)

TCP(AFQM)

UDP(AFQM)

TCP(FQ)

UDP(FQ)

Fig. 7. Fairness comparison between the RED with AFQM, FQ, RED and

FRED (10 TCP, 1~10UDP)

In the next simulation scenario, we vary the UDP arrival
rate r to study the AFQM performance under different
traffic load conditions. A simulation configuration with 10
TCP and 1 UDP sources is designed for the test. The UDP
source sends packets at a rate r Kbps, where r is a
variable. The simulation results are summarized in Table 2.

Table 2 lists the throughput of the aggregated classes in
the network. From the simulation results in Table 2, the
conclusion is that the RED does not discriminate against
unresponsive flows; it is obvious that the RED cannot
regulate greedy connections. The unresponsive flows use

up all network bandwidth and starve out well-behaving
flows. AFQM, on the other hand, dramatically improves
the TCP flows throughput by limiting the UDP throughput
to 10% of the bottleneck link capacity. To gauge the
degree to which AFQM achieves fair bandwidth allocation,
the average aggregated class throughput in the simulations
above, along with their ideal fair shares, are plotted in Fig.
8 where the fraction of total bandwidth versus the UDP
flow arrival rate is plotted.

Table 2. Aggregated Class Throughput at the Congested Link: 10 TCP
flows with Variable rate UDP flows

UDP
(Mbps)

TCP
(FRED)

UDP
(FRED)

Total
(FRED)

TCP
(RED)

UDP
(RED)

Total
(RED)

TCP
(AFQM)

UDP
(AFQM)

Total
(AFQM)

1 12.32 1.00 13.31 12.54 0.99 13.53 12.74 0.72 13.46
2 11.45 1.80 13.25 11.12 1.97 13.09 12.72 0.88 13.60
3 10.98 2.28 13.25 10.03 2.93 12.96 12.88 0.89 13.76
4 10.70 2.54 13.24 8.66 3.88 12.54 12.64 0.92 13.56
5 10.60 2.65 13.25 7.50 4.81 12.31 12.57 1.10 13.67
6 10.63 2.65 13.27 6.16 5.72 11.89 12.29 1.28 13.57
7 10.62 2.67 13.29 4.95 6.61 11.56 11.81 1.43 13.23
8 10.57 2.72 13.30 3.86 7.46 11.32 11.87 1.59 13.46
9 10.50 2.78 13.27 2.69 8.23 10.92 11.52 1.91 13.43
10 10.46 2.81 13.26 1.90 8.96 10.87 11.72 2.01 13.73

Unit: [Mbps]

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6 7 8 9 10

Fr
ac

tio
n

of
 T

ot
al

 B
an

dw
id

th
 (%

)

UDP Data Arrival (Mbps)

TCP(FRED)

UDP(FRED)

TCP(RED)

UDP(RED)

TCP(AFQM)

UDP(AFQM)

TCP(FQ)

UDP(FQ)

Fig. 8. Fairness comparison between the RED with AFQM, FQ, RED and

FRED (10 TCP, 1UDP with variable rates)

Moreover, from the simulation results in Table II, it

shows that the packet loss rate in a network under RED
with AFQM is small since the TCP flow is responsive to
congestion indications and adjusts its packet injection rates
accordingly. However, the packet loss rates in a network
under RED are large because the RED scheme made
unnecessary packet drops due to fault operation. Fault
operation occurs when AQM, such as the RED, does not
discriminate against unresponsive flows.

4.2 Fragile Flows vs. Robust Flows

As known, if a mixture of short and long RTT flows shares
a bottleneck link, then severe unfairness is likely to occur
as the short RTT flows grab the available bandwidth well
before the long RTT flows have a chance. To evaluate the
fairness performance of AFQM by comparing fragile (long

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

20

RTT) flows with robust (short RTT) flows, we simulated
the configuration shown in Fig. 9.

R1 R2

S1

S2

Sm

Sm+1

D1

D2

Dm

Dm+1

10Mbps
5ms

10Mbps
500ms

15Mbps
20ms

minth=25, maxth=75, Qsize=150

TCP
Sources

TCP
Sinks

10Mbps
5ms

10Mbps
500ms

Fig. 9. Network configuration to evaluate the fairness performance of
AFQM with fragile connections

A robust TCP connection (flow ID =1) with a RTT of 24
ms and unlimited windows compete with 29 fragile TCP
connections with RTT of 1024ms and unlimited windows.
Each sender always has data to be sent. The simulation
results are summarized in Table 3. Table 3 lists the
throughput of each flow in the congested network.

Table 3. Each Flow’s Throughput at the Congested Link: A lot of fragile

flows and a robust flow

Flow ID AFQM
(Mbps)

RED
(Mbps) Flow ID AFQM

(Mbps)
RED

(Mbps) Flow ID AFQM
(Mbps)

RED
(Mbps)

1 1.1092 2.3107 11 0.3290 0.2099 21 0.3206 0.2186

2 0.3283 0.2433 12 0.3285 0.2547 22 0.3147 0.2480

3 0.3222 0.2389 13 0.3244 0.2436 23 0.3106 0.2405

4 0.3253 0.2328 14 0.3198 0.2694 24 0.3307 0.2569

5 0.3274 0.2184 15 0.3299 0.2353 25 0.3280 0.2161

6 0.3232 0.2485 16 0.3207 0.2303 26 0.3292 0.2512

7 0.3261 0.2654 17 0.3068 0.2559 27 0.3315 0.2386

8 0.3171 0.2241 18 0.3172 0.2637 28 0.3328 0.2455

9 0.3330 0.2553 19 0.3287 0.2423 29 0.3327 0.2442

10 0.3152 0.2669 20 0.3328 0.2600 30 0.3163 0.2736
Total 10.5119 9.4026

5 25 30
0
2
4
6
8

10
12
14
16
18
20
22
24
26

Fr
ac

tio
n

of
 th

e
To

ta
l G

oo
dp

ut
 (%

)

FlowID Number (from 1 to 30)

AFQM
RED

Fig. 10. Fraction of the total Goodput per Flow ID: A lot of fragile flows

and a robust flow

From Table 3, the robust TCP (flow ID =1) connection is
able to run at the maximum possible speed as if there were
no competition. Table 3 shows the actual throughput of the
fragile TCP connection and one of the robust TCP
connections. The low throughput enables the fragile TCP
connection to ramp up to its maximum possible rate.

Consequently, the robust TCP flow traffic can take up a
large percentage of the link bandwidth and starve out other
TCP friendly flows. In order to explore the feasibility of
the RED with AFQM, the throughput of each flow is
illustrated in Fig. 10. When the achievement of fair
bandwidth allocation under RED with AFQM is compared,
it is slightly better than that under RED, as shown in Fig.
10.

4.3 Between the transport layer protocols

The most important factor influencing the performance of
router congestion control is the transport layer protocols
such as TCP-Reno, TCP-Vegas and TFRC (TCP-Friendly
Rate Control); the TCP-Reno is the most popular TCP, the
TCP-Vegas is a new version of TCP to improve
performance and the TFRC is an equation-based
congestion control [19-22]. However, the transport layer
protocol schemes have unfairness problems between them.
To evaluate the fairness performance of the AFQM
comparing with that of the transport layer protocols, we
simulated the configuration shown in Fig. 11.

R1 R2

S1

S2

Sm

Sm+1

D1

D2

Dm

Dm+1

10Mbps
5ms

10Mbps
500ms

1Mbps
or 2Mbps

20ms

minth=25, maxth=75, Qsize=150

Transport
layer

protocols
Sources

10Mbps
5ms

10Mbps
500ms

Transport
layer

protocols
Sinks

Fig. 11. Network configuration to evaluate the fairness performance of

AFQM with the transport layer protocols

The simulations are performed to compare the three
transport layer protocols, which are TCP-Reno,
TCP-Vegas and TFRC, with the RED with AFQM.
Moreover, in order to set 100% of the bandwidth and delay
product, one unresponsive flow, which has a high
throughput, is sent to the bottleneck link. Table 4 presents
the throughput of each transport layer protocol for the
different RTTs.

Table 4. Each Flow’s Average Throughput at Receiver (BW = 1Mbps):

TCP-Reno, TCP-Vegas and TFRC, for short and long RTT
TCP-Reno

Short
TCP-Vegas

Short
TFRC
Short

Utiliza-
tion (%)

TCP-Reno
Long

TCP-Vegas
Long

TFRC
Long

Utiliza-
tion (%)

Load
AFQM
(Kbps) 211 187 338 73.7% 54 44 185 28.3%

RED
(Kbps) 65 106 217 38.9% 16 8 25 4.9%

Drop-Tail
(Kbps) 114 62 244 42.0% 1 15 30 4.6%

Unresponsive flow: Target rate to 1.5 Mbps

As Table 4, with the unresponsive flow, the three
transport layer protocols show comparably lower
performance because the unresponsive flow does not
reduce transmission load for congestion control. Table 4

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

21

shows the unfairness problems between them while the
link utilization shows low usage with Drop Tail and RED.
As shown in Table 4, Fault operation occurs when RED
does not discriminate against unresponsive flows, but the
RED with AFQM improves fairness and link utilization
more than that by the simple RED.

Fig. 12 shows the results of Drop Tail, RED and RED
with AFQM. The x axis shows the simulation time, and the
y axis shows the throughput of each flow that is buffered
in a router queue. As shown in Figs. 12 (a) and (b), each
flow’s throughput is not normalized by the flow fair share
between them, and the unresponsive flow grabs the
bandwidth. However, from Fig. 12 (c), it is observed that
the flow with the RED with AFQM is more normalized by
the fair share, overall. The unresponsive flow cannot grab
the router bandwidth because it is penalized by the fairness
adjustment parameters.

(c)AFQM

Reno_Short
Vegas_Short
TFRC_Short
UDP

Throughput(Mbps)

Time(sec)0.0000

0.5000

1.0000

1.5000

0.0000 50.0000 100.0000 150.0000

(a)Drop Tail

Reno_Short
Vegas_Short
TFRC_Short
UDP

Throughput(Mbps)

Time(sec)0.0000

0.5000

1.0000

1.5000

0.0000 50.0000 100.0000 150.0000

(b)RED

Reno_Short
Vegas_Short
TFRC_Short
UDP

Throughput(Mbps)

Time(sec)0.0000

0.5000

1.0000

1.5000

0.0000 50.0000 100.0000 150.0000

Fig. 12. Each flow’s throughput buffered in the router queue: (a) Drop tail,

(b) RED, (c) AFQM

In the next simulation scenario, the simulation is setup

with different link delays to make short RTT and long RTT
flows at the same time. Each of the transport layer
protocols sends two flows that are the short RTT and long
RTT flows. The simulation results are summarized in
Table 5.

It is observable from Table 5 that the usage utilization
by the RED with AFQM is much higher than those by
others. Also, the fairness of bandwidth sharing among
flows using the RED with AFQM outperformed those of
the others. The simulation result shows that the AFQM
approximates fairness among non-TCP flows or
misbehaving flows by increasing and decreasing the drop

probabilities in the manner explained in Section 3.

Table 5. Each Flow’s Average Throughput at Receiver (BW=2Mbps):
TCP-Reno, TCP-Vegas and TFRC, with short and long RTT at Once

AFQM
(Kbps)

RED
(Kbps)

Drop-Tail
(Kbps)

AFQM
(Kbps)

RED
(Kbps)

Drop-Tail
(Kbps)

Unresponsive flow

TCP-Reno Short 450 310 350 500 550 550

TCP-Reno Long 30 10 10 70 20 20

TCP-Vegas Short 400 410 400 400 750 310

TCP-Vegas Long 30 10 10 60 30 20

TFRC Short 610 310 500 750 680 1180

TFRC Long 30 20 10 260 40 50

Utilization (%) 77.50% 53.50% 63.50% 100% 100% 100%

Target rate to 1.5 Mbps Target rate to 0 Mbps

6. Conclusion

In this paper, the new active queue management algorithm,
called the AFQM algorithm, is proposed to improve the
fairness of existing AQM algorithms. AFQM aims to
approximate the fair queueing policy such as the FQ. In
addition, the RED with AFQM scheme can be easily
implemented with small overhead. The AFQM scheme
provides selective dropping by the fairness adjustment
parameters based on per-active-flow buffer counts. The
simulations suggest that the RED with AFQM scheme
works well in protecting TCP friendly flows from
non-TCP flows or misbehaving flows. The simulation
results show that RED with AFQM outperforms the RED
in terms of fairly handling connections with different RTT
and traffic classes. Further work involves studying the
proposed algorithm performance under a wider range of
parameters, network topologies and real traffic traces, and
future work will consider methods for improving fairness
in other QoS services.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science
and Technology(2011-0012561).

References
[1] Jahon Koo and Kwangsue Chung, "On Improving the

Fairness of Active Queue Management for Congestion
Control," ICOIN2010, Session 4B-3, January 2010.

[2] Shao Liu, Tamer Basar, and R. Srikant, “Exponential RED:
A Stabilizing AQM Scheme for Low- and High-speed TCP
Protocols,” IEEE/ACM ToN, October 2005.

[3] Stevens, W., “TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms,” IETF RFC
2001, January 1997.

[4] Floyd, S., and Fall, K., “Router Mechanisms to Support
End-to-End Congestion Control,” LBL Technical report,
February 1997.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

22

[5] Demers, A., Keshav, S. and Shenker, S., “Analysis and
Simulation of a Fair Queueing Algorithm,” Journal of
Internetworking Research and Experience, October 1990.
Also in Proceedings of ACM SIGCOMM 89.

[6] A. Legout, and E. W. Biersack, “Revisiting the Fair
Queueing Paradigm for End-to-End Congestion Control,”
IEEE Network Magazine, September 2002.

[7] Stoica, I., Shemker, S., and Zhang, H., “Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth
Allocations in High Speed Networks,” Proceedings of ACM
SIGCOMM 98, August 1998.

[8] McKenny, P., “Stochastic Fairness Queueing,” Proceedings
of INFOCOM 90, pp733-740, June, 1990.

[9] Floyd, S., and Jacobson, V., “Random Early Detection
Gateways for Congestion Avoidance,” IEEE/ACM
Transaction on Networking, August 1993.

[10] Shin, M., Chong, S., and Rhee, I., “Dual-Resource
TCP/AQM for Processing-Constrained Networks,”
IEEE/ACM Transaction on Networking, April 2008.

[11] Tinnakornsrisuphap, P. and J. La, R., “Asymptotic Behavior
of Heterogeneous TCP Flows and RED Gateway,”
IEEE/ACM Transactions on Networking, February 2006.

[12] Padhy, J., Firoiu, V., Towsley, D., and Kurose, J., “A
Stochastic Model of TCP Reno Congestion Avoidance and
Control,” Technical Report CMPSCI TR 99-02, Univ. of
Massachusetts, Amherst, 1999.

[13] Lin, D. and Morris, R., “Dynamics of random early
detection,” ACM SIGCOMM 97, pp 127-137, October
1997.

[14] Ott, T., Lakshman, T. and Wong, L., “SRED: Stabilized
RED,” INFOCOM 99, March 1999.

[15] Pan, R., Prabhakar, B., and Psounis, K., “CHOKe, A
Stateless Active Queue Management Scheme for
Approximating Fair Bandwidth Allocation,” INFOCOM
2000, February 2000.

[16] X. Yang, H. Chen, and P. Xiao, “An algorithm of enhancing
RED fairness,” in Proc. of WCICA 2008, June 2008.

[17] Mahajan, R. and Floyd, S. “Controlling High-Bandwidth
Flows at the Congested Router,” ACIRI, Berkeley,
California, November 2000.

[18] UCB/LBNL/VINT, “Network Simulator - ns (Version
2.31),” http://www.isi.edu/nsnam/ns/.

[19] Brakmo, L., and Peterson, L., “TCP Vegas: New Techniques
for Congestion Detection and Avoidance,” SIGCOMM94,
August 1994.

[20] Henderson, T., and Sahouria, E., “On Improving the
Fairness of TCP Congestion Avoidance,” Proceeding of
GLOBECOM1998, July 1998.

[21] Mo, J., Anantharam, R. and Walrand, J., “Analysis and
Comparison of TCP Reno and TCP Vegas,” GLOBECOM99,
December 1999.

[22] Floyd, S., Handley, M., Padhye, J., and Widmer, J.,
“Equation-based congestion control for unicast
applications,” SIGCOMM2000, August 2000.

Jungmin Lee received the B.S.
degree and M.S. degree from
Kwangwoon University, Seoul,
Korea, all from the Electronics &
Communications Department, in
2000 and 2002 respectively.
Currently he is pursuing Ph.D.
degree in Communications
Engineering Department at
Kwangwoon University. His
research interests include multimedia

streaming, congestion control, mobile IPTV, and Internet QoS.

Kwangsue Chung received the
B.S. degree from Hanyang University,
Seoul, Korea, M.S. degree from
KAIST (Korea Advanced Institute of
Science and Technology), Seoul,
Korea, Ph.D. degree from University
of Florida, Gainesville, Florida, USA,
all from Electrical Engineering
Department. Before joining the
Kwangwoon University in 1993, he

spent 10 years with ETRI (Electronics and Telecommunications
Research Institute) as a research staff. He was also an adjunct
professor of KAIST from 1991 to 1992 and a visiting scholar at
the University of California, Irvine from 2003 to 2004. His
research interests include communication protocols and networks,
QoS mechanism, and video streaming.

