
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

59

Manuscript received August 5, 2011
Manuscript revised August 20, 2011

A Reversible Sketch Based on Chinese Remainder Theorem:
Scheme and Performance Study

B.S. Adiga, Ravishankara Shastry, M. Girish Chandra and M.A. Rajan
Innovation Labs, Tata Consultancy Services, Bangalore, INDIA

Summary
In recent times, sketch based techniques are emerging as
useful data stream computation techniques towards
processing massive data. In many applications, finding
heavy hitters and heavy changers is essential and this task
demands reversibility property of sketches. Continuing
the trend of arriving at newer reversible sketch, this paper
presents a scheme based on Chinese Remainder Theorem.
The scheme also involves the usage of two sketches based
on two different prime-number sets for reducing the false
positives. An attempt is made to present the technique on
sound arguments by bringing in the relevant concepts from
the existing literature. Simulation results, including how
the data distribution affects the performance of the scheme,
are presented as well.
Key words:
Data streams; sketch; heavy hitters; reversible sketch;
Chinese remainder theorem; Zipfian data distribution

1. Introduction

Enormously large data sets are getting generated in our
activities of recent times, like medical imaging,
surveillance, network monitoring, etc. Coupled with the
gathering is an ever-increasing demand for finer data
analysis in scientific, engineering, and industrial
applications [1]. One description of modern massive data
sets is the data stream, which consists of data records or
items. Data streams possess three challenging properties
[1]: They represent (either explicitly or implicitly) huge
amounts of data, they are distributed either spatially or
temporally, and we receive or observe them at enormously
high rates. For example, network service providers collect
logs of network usage (telephone calls or IP flows) in
great detail from switches and routers and aggregate them
in data processing centers. They use this data for billing
customers, detecting anomalies or fraud, and managing the
network. In the stream data, each item of the form
()value,key arrives one after the other. Associated with
each key is a time-varying signal or time series (Section 2
brings out these concepts more formally). The key is the
identity of an item and the set of all keys of interest define
the key space or domain size of stream (say, of size N). In
the scenarios where data stream model is considered, the

domain is discrete and is of very large value. For example,
IP flows indexed by five-tuples [2]: source IP address (32
bits), source port (16 bits), destination IP address (32 bits),
destination port (16 bits), and protocol (8 bits) can result
in the domain size of 1002 . That is, for this example, a key
belongs to the set { }12,,1,0 100 −L .
In most cases, we cannot accumulate and store all of the
detailed data [1]. We can archive past data but it is
expensive to access these data. We would rather have an
approximate, but reasonably accurate, representation of
the data stream that can be stored in a small amount of
space. It is not realistic to make several passes over the
data in the streaming setting. It is crucial that we compute
the summary representation or synopsis on the stream
directly, in one pass. The emerging field of data stream
computation deals with various aspects of computation
that can be performed in a space- and time-efficient
fashion when each item in a data stream can be touched
only once (or a small number of times) [3]. In recent years
a number of synopsis structures have been developed,
which can be used in conjunction with a variety of mining
and query processing techniques in data stream processing.
Some of the examples of query include [4]: How many
distinct IP addresses use a given link currently or anytime
during the day? What are the top 5 voluminous flows
currently in progress in a link? Are traffic patterns in two
routers correlated? What are (un)usual trends?, etc. At
any moment a synopsis can be used to (approximately)
answer certain queries over the original data. Some key
synopsis methods include those of sampling, wavelets,
sketches and histograms [5].
Sketch based techniques are emerging as useful candidates
in situations where it is required to handle many time
series underlying the data stream (as in network
monitoring application) towards “near real time” or online
detection of appropriate events (by monitoring the whole
data). Additionally, where hardware and energy
constraints play a dominant role as in sensor networks,
sketch based techniques would be definitely of great utility
[5]. Sketches employ hashing techniques to approximate
the “count” associated with an arbitrary key in a data
stream using fixed memory resources. They are
extraordinarily space efficient, and require space which is
logarithmic in the number of distinct items in the stream
domain. Some of the popular sketches developed and well

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

60

studied in the literature include Count Min (CM) sketch
[6] and CR-PRECIS [7].
Sketch has been recognized as a powerful technique for
monitoring and analyzing of networks, as it facilitates
real-time analysis of the massive, high speed data (traffic)
generated by the networks. The two significant patterns
which have many applications in accounting and anomaly
detection in this context are (i) heavy hitters and (ii) heavy
changers [2]. A heavy hitter is a key whose traffic volume
(or any other quantity depending on the context, e.g.
number of connections) exceeds a predefined threshold.
Whereas a heavy changer is a key whose change in traffic
volume between two monitoring intervals exceeds a pre-
defined threshold. Needless to say, heavy-hitters need not
necessarily correspond to flows experiencing significant
changes. Further, in order to understand the impact of
different heavy hitters and heavy changers, it is also useful
to find the associated value (magnitude) of each of the
heavy hitters and changers. Sketches mentioned earlier,
the CM and CR PRECIS are irreversible, meaning that it
is computationally infeasible to recover all heavy keys
(heavy hitters or changers) using only the sketch-based
summaries. These sketches do not contain information
about what keys appeared in the stream. They can tell for
a given (input) key, whether that input key is heavy with
high accuracy. This irreversibility holds even if the non-
heavy keys have negligible values [2]. In order to
negotiate this problem, reversible sketch techniques, like,
(i) reversible sketch using “modular hashing” and “IP
mangling” [8] (ii) deltoids together with group testing [9],
(iii) SeqHash [2] and (iv) XOR-based hashing [10] are
proposed.
In this paper, we propose a novel reversible sketch based
the Chinese Remainder Theorem (CRT). Rather than
using the semi-ad hoc procedures of the existing reversible
sketches, the proposed scheme is based on sound and
elegant apparatus of number theory. In the direction of
reducing false positives for the case of more than two
heavy keys, two sketches based on two different sets of
prime numbers is suggested. It is well known in the
sketch-related literature that the performance of a sketch
technique is strongly related to and influenced by the data
distribution. It is interesting to study this dependency in
the context of the proposed sketch, which adds to the
novelty of the paper. The paper is organized as follows:
In Section II, just enough background information is
captured. The proposed CRT based reversible sketch is
systematically discussed in Section III. Section IV
touches upon few remarks on the dependency of
performance of sketches on data distribution. Some
simulation results and relevant discussion occupy Section
V. Section VI concludes the paper.

2. Data Stream Model and CRT Based Sketch

2.1 Data Stream Model

As mentioned earlier, the streaming is a sequence of items
of the form ()value,key , arriving one after the other.
Little more formally, a data stream S of running length n is
a sequence of tuples:

() () ()nn vkvkvkS ,,,,,, 2211 L= (1)

The above model is very general and one can instantiate it
in many ways with specific definitions of the key and
updates. For example, as mentioned in Section I, the key
can be defined using one or more fields in packet headers
such as source and destination IP addresses, source and
destination port numbers, protocol number etc. The
update can be the size of a packet, the total bytes or
packets in a flow etc. Associated with each key ik is a
time-varying signal ()iU . The arrival of each new data
item ()ii vk , causes the underlying signal to be updated by

iv : () iviU =+ . The model discussed so far is the most
general model referred to as the Turnstile Model. There
are other special cases of this model as well. When the
value iv is a positive number, which results in
monotonically increasing key counts, we end up with what
is called as Cash Register Model. In the time-series model
the stream S defines the signal directly, i.e. ith update
changes ()iU .

2.2 The Chinese Remainder Theorem (CRT)

The CRT is essentially an analytical process of calculating
dividend from remainders [11]. Assume that unknown
integer dividend is x. Let dividing it by pair-wise co-prime
numbers dppp L,, 21 (the pair-wise co prime is simply

() 1,gcd =ji pp for ji ≠) resulted in the remainders

dmmm L,, 21 , that is, we have simultaneous congruences
given by :

 ()ii pmx mod≡ for di ,,2,1 L= (2)

The CRT suggests that if ∏
=

=<
d

i
ipNx

1

, it can be

uniquely determined with the following:

 ()Nmx
d

i
ii mod

1
⎟
⎠

⎞
⎜
⎝

⎛
≡ ∑

=

δ (3)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

61

where iδ is obtained as follows: First, obtain
i

i p
NQ =

and then obtain the modular inverse iq of iQ , i.e.

()iii pqQ mod1≡ . Finally, arrive at iδ as iii qQ=δ .
Modular inverse can be calculated by extended Euclidean
algorithm or other improved algorithms developed over
the years.

2.3 CR PRECIS Sketch

The CR-PRECIS sketch is extensively studied by Ganguly
and Majumder in [7]. The CR-PRECIS data structure is
depicted in Fig.1 and this two-dimensional array C is
made of row of counters or “buckets” for each of the d
hash functions. Each row is sometimes referred to as the
hash table and hence we have d hash tables. The hash
functions are rather simple and take the form

() ii pxxh mod= for di ,,2,1 L= (4)

The number of buckets in each hash table is chosen from
the consecutive primes dppp L,, 21 ; hence we have
unequal number of buckets in each row (or table). It is
useful to note that compared to the randomness involved
in the hash function generation in other sketches like CM,
the CR-PRECIS has a deterministic flavor.

The update involved in the sketch is straightforward.
When a data stream item ()tt vk , arrives, the incoming
key tk is hashed to a bucket in each row based on the

remainders obtained by dividing tk by dppp L,, 21 :

 for di to1=

[][] tit vpkiC =+mod
 end

Essentially, in the CR-PRECIS, we are using the CRT to
represent Nkt mod by tdtt mmm L,, 21 where

itit pmk mod≡ . As mentioned earlier, with the arrival

of an item ()tt vk , the buckets represented by

tdtt mmm L,, 21 are chosen for update by obtaining the

remainders. Similarly, for the point query about tk at a
particular instant of time, we use the so far accumulated
values in the counters pointed by tdtt mmm L,, 21 . These
values are “aggregated” [12], for example, by evaluating
median, minimum, etc to arrive at the answer for the query.
This aggregation or any general estimation is essential for

arriving at an accurate result due to the problem of
“collision”. The latter refers to the fact that multiple keys
may hash to the same bucket, due to the many-to-one
mapping from { } { }1,,01,,0 −→− ipN LL . In other
words, in each of the relevant buckets for the key tk , there
is contamination by other keys. Thus, when the incoming
update values are non-negative, the hash table counts will
over-estimate the true count, whereas when the incoming
updates are either positive or negative (deletions), the hash
table count could be either an over-estimation or an under-
estimation [5]. In either case, the use of the median among
the counts provided by the different hash functions for the
given item provides an estimate in terms of well proven
theoretical guarantees [5]. However, when the stream
follows cash-register model with positive “counts” iv ,
minimum provides better estimate.

Fig.1 CRT Based Sketch Data Structure

3. CRT Based Reverse Sketching

As brought out in Section 1, sketches exhibiting reversible
property are of great utility in certain applications.
Essentially, here we are interested in identifying the heavy
keys: heavy hitters or heavy changers. In the rest of the
paper, we will be restricting the discussion to heavy hitters.
In the direction of identifying heavy hitters, an intermittent
notion of heavy buckets is generally used. A bucket is
called heavy if its counter value (i.e., sum of values of all
keys hashed to the bucket) crosses a predetermined
threshold. It is easy to see that for any heavy hitter, every
bucket that it falls into, in each of the d tables, is a heavy
bucket. A candidate set Ω of heavy hitters refers to the
set of keys whose buckets within the d hash tables are all
heavy buckets. It is to be noted that Ω is the superset of
the actual heavy hitters, and it may contain some non-
heavy hitters that happen to fall into heavy buckets in all d
hash tables (usual collision).

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

62

As mentioned in the previous section, in creating the CR-
PRECIS sketch we take the direction of going from tk to

tdtt mmm L,, 21 . This direction of going from tk to

dmmm L,, 21 is easy. For reverse sketching, we have

to move from tdtt mmm L,, 21 to tk . The mathematical
apparatus of CRT provides an elegant way to traverse in
this direction through Eqn.3. Thus, it is quite logical to
think of reverse sketch based on CRT. In the direction of
presenting the proposed reverse sketch we consider two
cases: one heavy hitter and multiple heavy hitters.

3.1 One Heavy Hitter Case

The case of one heavy hitter is rather trivial. In this case
each hash table has got one heavy bucket. Effectively, we
identify the heaviest bucket (highest-valued counter) in
each of the hash tables. Thus obtained counter
“addresses” or numbers hdhh mmm L,, 21 are then

utilized in Eqn.3 to arrive at the heavy hitter htk .

3.2 Multiple Heavy Hitters Case

In the case of two or more heavy hitters, we end up in
having more than one heavy bucket in each of the hash
tables. The heavy buckets might have been identified by
comparing the count values to a threshold. We propose to
use two sketches based on different sets of prime numbers
for this scenario. The idea is to obtain the set of “suspect”
heavy hitter keys 1Ω and 2Ω from each of the sketches
and then take the intersection of these two sets. Each of
the sets 1Ω and 2Ω contain many false positive keys, i.e.
keys which are detected as heavy, but actually are not.
One proven way to reduce false positives in reverse
sketches is to have more buckets and hence more memory
[2]. In our scheme, the false positive keys which result in
individual sketches are going to get dropped in the process
of intersection (21 Ω∩Ω). Effectively, we have a
systematic way of reducing/eliminating the false positives
at the cost of additional memory (required for the second
sketch). It is also worth noting that since each sketch
shuffles heavy hitters across different sketch entries,
approximate agreement among sketches can be used to
robustly detect the heavy hitters. An example can clarify
the false positives and the overall scheme itself in a better
way.
A data stream of size 1000 elements generated using
Zipfian distribution (see the next section) with the
parameter value of 1.3, is CR sketched with the following
two sets of prime numbers:
 { } 61 59, 53, 47, 43, 37,1 =P
and

 { } 43 41, 37, 31, 29, 23,2 =P

Considering the case of top two heavy hitters, the two
heavy buckets in each of the hash tables and each of the
sketches are identified. They are as follows:

 { }21 41, 48, 20, 29, 2,11 =H

 { }42 23, 43, 40, 15, 4,12 =H

 { }29 16, 2, 11, 22, 10,21 =H

 { }15 32, 4, 22, 15, 20,22 =H

where { }29 16, 2, 11, 22, 10,21 =H is the set of first
highest heavy buckets in CR sketch 2, etc. Now, similar
to the existing methods in the literature, we have to take
different possible combinations of the heavy buckets in the
respective sketches. This leads to 6426 = different sets
of heavy buckets for each sketch. Applying CRT in the
form Eqn.3, the following two sets of “suspect” keys can
be generated:

 =Ω1 {631.0, 5611864927.0, 11604194599.0,
2952570476.0, 11841387243.0, 3189763120.0, 9182092792.0,
530468669.0, 8497397987.0, 14109262283.0, 5838103536.0,
11449967832.0, 6075296180.0, 11687160476.0, 3416001729.0,
9027866025.0, 995127730.0, 6606992026.0, 12599321698.0,
3947697575.0, 12836514342.0, 4184890219.0, 10177219891.0,
1525595768.0, 9492525086.0, 840900963.0, 6833230635.0,
12445094931.0, 7070423279.0, 12682287575.0, 4411128828.0,
10022993124.0, 4240497188.0, 9852361484.0, 1581202737.0,
7193067033.0, 1818395381.0, 7430259677.0, 13422589349.0,
4770965226.0, 12737894544.0, 4086270421.0, 10078600093.0,
1426975970.0, 10315792737.0, 1664168614.0, 7656498286.0,
13268362582.0, 5235624287.0, 10847488583.0, 2576329836.0,
8188194132.0, 2813522480.0, 8425386776.0, 154228029.0,
5766092325.0, 13733021643.0, 5081397520.0, 11073727192.0,
2422103069.0, 11310919836.0, 2659295713.0, 8651625385.0, 1262.0}

and

 =Ω2 {631.0, 1317415009.0, 98691952.0, 67324943.0,
692618100.0, 661251091.0, 791309421.0, 759942412.0, 522109555.0,
490742546.0, 620800876.0, 589433867.0, 1214727024.0, 1183360015.0,
1313418345.0, 1282051336.0, 418587958.0, 387220949.0, 517279279.0,
485912270.0, 1111205427.0, 1079838418.0, 1209896748.0,
1178529739.0, 940696882.0, 909329873.0, 1039388203.0,
1008021194.0, 284532964.0, 253165955.0, 383224285.0, 351857276.0,
996926004.0, 965558995.0, 1095617325.0, 1064250316.0, 340762086.0,
309395077.0, 439453407.0, 408086398.0, 170253541.0, 138886532.0,
268944862.0, 237577853.0, 862871010.0, 831504001.0, 961562331.0,
930195322.0, 66731944.0, 35364935.0, 165423265.0, 134056256.0,
759349413.0, 727982404.0, 858040734.0, 826673725.0, 588840868.0,
557473859.0, 687532189.0, 656165180.0, 1281458337.0, 1250091328.0,
31368271.0, 1262.0}

Due to the combinations of elements of heavy bucket sets,
one can see large number of false positives in each of the
suspect key sets. They can be reduced by taking the
intersection of 1Ω and 2Ω :

 =Ω∩Ω 21 {631.0, 1262.0}.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

63

As a cross-check, the results are compared with actual
frequency of heavy hitter elements:

Sl.No. ID Sketch1 Sketch2 Actual Error1 Error2

0 631.0 261 264 258 3 6

1 1262.0 100 102 94 6 8

The above table shows the estimate of the counts based on
using the minimum aggregation rule for each of the
sketches. The actual values for the two heavy hitters are
also shown; the accuracy in this toy example is very high
as for just 1000 keys we have used 300 and 204 counters
in sketch 1 and sketch 2 respectively.
Similar observations and arguments can be built for more
than two heavy hitters.

4. Effect of Data Distribution on the
Performance of the Sketch

As noted, the CR-PRECIS sketch (and CM Sketch as well)
uses hash functions which map the signal coordinates
()iU to rows of the measurements. Further, as noted

earlier, the inherent problem with sketches is that keys
may collide, namely, hash to the same bucket, producing
errors in the estimated counts. What if the signal has only
s large (or non-zero) entries, i.e., exhibit s-sparsity?
Elaborating slightly, () ()[]11)0(−= NUUUU L
has s large values. It is well known that if hash function h
is chosen uniformly at random from a pre-specified family
of hash functions, then the probability that positions i and
i′ are hashed into the same bucket is low [12]. Using
similar arguments, it is possible to show that for s-sparse
signals which are hashed into more than s buckets, then
with a high probability, a large fraction of the significant
entries are hashed into separate “measurements”. The
term “measurement” has been brought into context to spell
out the fact that sketching is closely linked to Compressive
Sensing (CS); see [12] and [13] for more details. In fact,
implicit in many of the guarantee proofs is the ability of
the hash functions to isolate a few significant signal values
from one another [12]. Since the sparsity can be linked to
the data distribution, it is customary to find sentences like
“the performance of CM sketch is strongly related to and
influenced by the skew of the data distribution [6]; when
the skew of the data distribution is larger, its efficiency is
better, and vice versa”. In many applications, the signal
entries follow Zipfian, or power law, distributions; here
the (relative) frequency of the ith most frequent item is
proportional to zi − , for some parameter z, where z is
typically in the range 1 to 3 (0=z gives a perfectly
uniform distribution). In such cases, it makes sense to use

the skew in the distribution to show a stronger
space/accuracy tradeoff [6].
The arguments captured so far revolve around random
hash functions. But, in CRT based sketching we use
deterministic hash functions. With modular operations in
place for each of the hash functions (see Eqn.4), there is
an inherent random behavior associated with the hash
functions. At this juncture, it is worth noting the
following statement from [14]: Choosing x randomly in
{ }1,,0 −NL is equivalent to, independently choosing im

randomly from { }1,,0 −ipL for different i and then
determining x from the system of simultaneous
congruences. Thus, one can expect CRT based sketches to
behave similarly as the random hash function based
sketches when it comes to data distribution. The results of
next section support this aspect of CRT based reverse
sketching

5. Simulation Results and Some Remarks

Elaborate simulations were carried out towards studying
the performance of the proposed sketch. The
experimentation is carried out with different distributions
of data (including different Zipfian parameter z), different
sets of prime numbers (hence different number of total
buckets) and different number of heavy hitters.
Fig.2, Fig.3, Fig.4 and Fig.5 depict some typical error
performance curves for the case of two and four heavy
hitters respectively. For each heavy hitter, the curves
corresponding to both randomization and no
randomization of keys are provided (note that
randomization corresponds to “mangling” [8]). In all
these figures, the squared error is averaged over 50
different realizations of data. As expected, the error
performance improves when the data exhibits “better
sparseness”, corresponding to larger values of z in the
closed interval [1, 3].

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3 x 106

Zipfian Parameter

A
ve

ra
ge

 S
qu

ar
e

E
rro

r

1st heavy hitter
2nd heavy hitter

Fig.2. Error Performance for Two Heavy Hitters Case; No Randomization
of Keys

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

64

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3 x 106

Zipfian Parameter

A
ve

ra
ge

 S
qu

ar
e

E
rro

r

1st heavy hitter
2nd heavy hitter

Fig.3. Error Performance for Four Heavy Hitters Case; Keys are
Randomized

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3 x 106

Zipfian Parameter

A
ve

ra
ge

 S
qu

ar
e

E
rro

r

1st heavy hitter
2nd heavy hitter
3rd heavy hitter
4th heavy hitter

Fig.4. Error Performance for Four Heavy Hitters Case; No
Randomization of Keys

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3 x 106

Zipfian Parameter

A
ve

ra
ge

 S
qu

ar
e

E
rro

r

1st heavy hitter
2nd heavy hitter
3rd heavy hitter
4th heavy hitter

Fig.5. Error Performance for Four Heavy Hitters Case; Keys are
Randomized

The following remarks are worth making about the
proposed novel CR based reverse sketch:

(1) The reversing method is very elegant and systematic.

(2) As a further extension, it is possible to arrive at clever
ways of combining heavy buckets, reducing both
complexity and number of false positive candidates.

(3) It is interesting to explore the use of regression
formulation suggested in [2] with the proposed reverse
sketch for estimating the values (magnitudes) of the heavy
keys. Estimation of values of heavy keys is important for
two reasons. First, when the number of heavy keys is large,
it is desirable to highlight the most important heavy keys
with the highest values. Second, using the estimated
values, one can further reduce the false positive rate by
eliminating those non-heavy keys included in the
candidate set of heavy keys. Through experimental studies,
the authors have shown that by using estimation, it is
possible to reduce the false positive rate significantly at
the expense of only a small increase in the false negative
rate. Also, an account of the noise values due to non-
heavy keys that are determined by the underlying traffic
behavior is taken during estimation.
(4) Since keys are directly hashed or since no modular
hashing [8] is adopted, mangling is not required. That is,
direct hashing some how gets the “correlation” among the
adjacent keys compensated in the modular operations.
Simulation results did confirm this (Fig.2, Fig.3, Fig.4 and
Fig.5).

6. Conclusions

In this paper, we systematically presented an elegant
reversible sketch based on the Chinese Remainder
Theorem. Useful simulation results in terms of bringing
out the dependency of the performance of the proposed
sketch on data distribution are presented as well. Efforts
are under way towards applying the technique in some
suitable applications.

References

[1] A.C. Gilbert and M.J. Strauss, “Group Testing in Statistical

Signal Recovery”, Technometrics, Vol. 49, No. 3, August,
2007, pp. 346-356

[2] T. Bu, J. Cao, A. Chen and P. Lee, “Sequential hashing: A
flexible approach for unveiling significant patterns in high
speed networks”, Elsevier, Computer Networks, No.54, July
2010, pp.3309-3326

[3] B. Krishnamurthy, S. Sen, Y. Zhang and Y. Chen, “Sketch-
based Change Detection: Methods, Evaluation, and
Applications”, Proceedings of the 3rd ACM SIGCOMM
Conference on Internet Measurement October 2003, USA,
pp. 234-247

[4] Luca Becchetti, “Compact data structures: data streaming”,
June 2011,

 www.dis.uniroma1.it/~becchett/Elective/slide/stream.pdf

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

65

[5] C.C. Aggarwal and P S. Yu, “A Survey on Synopsis
Construction in Data Streams”, Book Chapter in Data
Streams: Models and Algorithms, Ed. C.C. Aggarwal,
Springer, Jan.2007

[6] G. Cormode, “Count-Min Sketch”, Encyclopedia of
Database Systems, Springer, 2009, pp. 511-516.

 dimacs.rutgers.edu/~graham/pubs/papers/cmencyc.pdf
[7] S. Ganguly and A. Majumder, “CR-PRECIS: A

deterministic summary structure for update data streams”, in
ESCAPE, 2007, pp.48-59

[8] R. Schweller, A. Gupta, E. Parsons and Y. Chen,
“Reversible Sketches for Efficient and Accurate Change
Detection over Network Data Streams”, Proceedings of the
4th ACM SIGCOMM conference on Internet measurement,
Italy, Oct. 2004

[9] G. Cormode and S. Muthukrishnan, ”What’s New: Finding
Significant Differences in Network Data Streams”, Proc. of
IEEE INFOCOM, Hong Kong, March 2004, pp. 1534 -1545.

[10] W. Feng, Q. Guo, Z. Zhang and Z. Jia, “Reversible Sketch
Based on the XOR-based Hashing”, IEEE Asia-Pacific
Conference on Services Computing (APSCC 06),
Guangdong, Dec.2006, pp.93-98.

[11] C. Wang, Q. Yin and W. Wang, “An efficient ranging
method based on Chinese remainder theorem for RIPS
measurement”, Science China-Information Sciences, Vol.53,
No.6, June 2010, pp. 1233-1241

[12] A. Gilbert and P. Indyk, “Sparse Recovery Using Sparse
Matrices”, Proc. of IEEE, Vol.98, Issue 6, June 2010, pp.
937-947.

[13] B.S. Adiga, M. Girish Chandra, Ravishankara Shastry and
Swanand Kadhe, “Data Streams and Sketching”, TCS
Technical Report, July 2011.

[14] Johan Hastad, Lecture Notes, “Advanced Algorithms”, Jan.2000

B. S. Adiga obtained his BE (Electrical
Engg.) and MTech (Industrial
Electronics) degrees from Karnataka
Regional Engineering College, Surathkal,
India. He obtained his PhD in Computer
Science from the Indian Institute of
Science, Bangalore, India. He worked
as a scientist at National Aerospace
Laboratories, Bangalore, India, for
nearly 20 years. Later on, he was with

Motorola India Electronics Limited and Philips Innovation Labs,
Bangalore, India. Presently, he is a Principal Scientist at the
Innovation Labs, Tata Consultancy Services, Bangalore, India.
His interests are in the broad areas of Signal Processing,
Communications and Computing including, Error Control
Coding, Compressive Sensing, High-Performance Computing
and Multimedia Signal Processing.

Ravishankara Shastry obtained his
Masters degree from VTU Belagaum in
Computer Applications in 2002 and
Masters degree from Chennai
Mathematical Institute (CMI) Chennai in
Theoretical Computer Science in 2010.
Prior to join TCS Innovation Labs, he
worked as Software Engineer in IBM

India Software Labs(IBM ISL) Bangalore. Currently, he is a
researcher at the Innovation Labs, Tata Consultancy Services,

Bangalore, India. His interests are in algorithms for massive data
sets, graph theory, combinatorics, Machine learning and data
mining in data streams.

M. Girish Chandra obtained his BE in
Electronics from University
Visvesvaraya College of Engineering,
Bangalore and MTech from IIT Madras
in Communication Systems and High
Frequency Technology. He earned his
PhD as a Commonwealth Scholar in
Digital Communication from Imperial
College, London. Presently, he is a
Senior Scientist at the Innovation Labs,

Tata Consultancy Services, Bangalore, India. Earlier, he was
holding the position of Assistant Director at the Aerospace
Electronics Division of National Aerospace Laboratories,
Bangalore, India. His interests are in the broad areas of
Communications and Signal Processing, including, Error Control
Coding, Compressive Sensing, Cross-Layer Design and
Multimedia Signal Processing.

Rajan M.A has B.E., M.Tech. and PhD
Degrees in Computer Science and
Engineering, and M.Sc., M.Phil and
PhD in Mathematics. During 2000-2005,
he worked at the ISRO Satellite Centre
(ISAC), Bangalore, INDIA as a Scientist
and was actively involved in realization
of several spacecrafts. From September

2005 onwards, he is with Innovation Labs, Tata Consultancy
Services, Bangalore as Research Scientist. His areas of interest
include Computer Networks, Cross Layer Design, Number
Theory, Graph Theory, Combinatorics, Coding Theory and
Functional Analysis. He has published several research papers in
national and international conferences and journals.

