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Summary 
In recent times, sketch based techniques are emerging as 
useful data stream computation techniques towards 
processing massive data.  In many applications, finding 
heavy hitters and heavy changers is essential and this task 
demands reversibility property of sketches.  Continuing 
the trend of arriving at newer reversible sketch, this paper 
presents a scheme based on Chinese Remainder Theorem.  
The scheme also involves the usage of two sketches based 
on two different prime-number sets for reducing the false 
positives.  An attempt is made to present the technique on 
sound arguments by bringing in the relevant concepts from 
the existing literature.  Simulation results, including how 
the data distribution affects the performance of the scheme, 
are presented as well. 
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1. Introduction 

Enormously large data sets are getting generated in our 
activities of recent times, like medical imaging, 
surveillance, network monitoring, etc.  Coupled with the 
gathering is an ever-increasing demand for finer data 
analysis in scientific, engineering, and industrial 
applications [1].  One description of modern massive data 
sets is the data stream, which consists of data records or 
items. Data streams possess three challenging properties 
[1]: They represent (either explicitly or implicitly) huge 
amounts of data, they are distributed either spatially or 
temporally, and we receive or observe them at enormously 
high rates. For example, network service providers collect 
logs of network usage (telephone calls or IP flows) in 
great detail from switches and routers and aggregate them 
in data processing centers. They use this data for billing 
customers, detecting anomalies or fraud, and managing the 
network.  In the stream data, each item of the form 
( )value,key  arrives one after the other.  Associated with 
each key is a time-varying signal or time series (Section 2 
brings out these concepts more formally).  The key is the 
identity of an item and the set of all keys of interest define 
the key space or domain size of stream (say, of size N).  In 
the scenarios where data stream model is considered, the 

domain is discrete and is of very large value.  For example, 
IP flows indexed by five-tuples [2]: source IP address (32 
bits), source port (16 bits), destination IP address (32 bits), 
destination port (16 bits), and protocol (8 bits) can result 
in the domain size of 1002 .  That is, for this example, a key 
belongs to the set { }12,,1,0 100 −L .   
In most cases, we cannot accumulate and store all of the 
detailed data [1]. We can archive past data but it is 
expensive to access these data. We would rather have an 
approximate, but reasonably accurate, representation of 
the data stream that can be stored in a small amount of 
space. It is not realistic to make several passes over the 
data in the streaming setting.  It is crucial that we compute 
the summary representation or synopsis on the stream 
directly, in one pass.  The emerging field of data stream 
computation deals with various aspects of computation 
that can be performed in a space- and time-efficient 
fashion when each item in a data stream can be touched 
only once (or a small number of times) [3].  In recent years 
a number of synopsis structures have been developed, 
which can be used in conjunction with a variety of mining 
and query processing techniques in data stream processing.  
Some of the examples of query include [4]: How many 
distinct IP addresses use a given link currently or anytime 
during the day?  What are the top 5 voluminous flows 
currently in progress in a link?  Are traffic patterns in two 
routers correlated?  What are (un)usual trends?, etc.  At 
any moment a synopsis can be used to (approximately) 
answer certain queries over the original data.  Some key 
synopsis methods include those of sampling, wavelets, 
sketches and histograms [5]. 
Sketch based techniques are emerging as useful candidates 
in situations where it is required to handle many time 
series underlying the data stream (as in network 
monitoring application) towards “near real time” or online 
detection of appropriate events (by monitoring the whole 
data).  Additionally, where hardware and energy 
constraints play a dominant role as in sensor networks, 
sketch based techniques would be definitely of great utility 
[5].  Sketches employ hashing techniques to approximate 
the “count” associated with an arbitrary key in a data 
stream using fixed memory resources.  They are 
extraordinarily space efficient, and require space which is 
logarithmic in the number of distinct items in the stream 
domain.  Some of the popular sketches developed and well 
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studied in the literature include Count Min (CM) sketch 
[6] and CR-PRECIS [7].  
Sketch has been recognized as a powerful technique for 
monitoring and analyzing of networks, as it facilitates 
real-time analysis of the massive, high speed data (traffic) 
generated by the networks.  The two significant patterns 
which have many applications in accounting and anomaly 
detection in this context are (i) heavy hitters and (ii) heavy 
changers [2].  A heavy hitter is a key whose traffic volume 
(or any other quantity depending on the context, e.g. 
number of connections) exceeds a predefined threshold.  
Whereas a heavy changer is a key whose change in traffic 
volume between two monitoring intervals exceeds a pre-
defined threshold.  Needless to say, heavy-hitters need not 
necessarily correspond to flows experiencing significant 
changes.  Further, in order to understand the impact of 
different heavy hitters and heavy changers, it is also useful 
to find the associated value (magnitude) of each of the 
heavy hitters and changers.  Sketches mentioned earlier, 
the CM and CR PRECIS are irreversible, meaning that it 
is computationally infeasible to recover all heavy keys 
(heavy hitters or changers) using only the sketch-based 
summaries.  These sketches do not contain information 
about what keys appeared in the stream.  They can tell for 
a given (input) key, whether that input key is heavy with 
high accuracy. This irreversibility holds even if the non-
heavy keys have negligible values [2]. In order to 
negotiate this problem, reversible sketch techniques, like, 
(i) reversible sketch using “modular hashing” and “IP 
mangling” [8] (ii) deltoids together with group testing [9], 
(iii) SeqHash [2] and (iv) XOR-based hashing [10] are 
proposed. 
In this paper, we propose a novel reversible sketch based 
the Chinese Remainder Theorem (CRT).  Rather than 
using the semi-ad hoc procedures of the existing reversible 
sketches, the proposed scheme is based on sound and 
elegant apparatus of number theory.  In the direction of 
reducing false positives for the case of more than two 
heavy keys, two sketches based on two different sets of 
prime numbers is suggested.  It is well known in the 
sketch-related literature that the performance of a sketch 
technique is strongly related to and influenced by the data 
distribution.  It is interesting to study this dependency in 
the context of the proposed sketch, which adds to the 
novelty of the paper.  The paper is organized as follows:  
In Section II, just enough background information is 
captured.  The proposed CRT based reversible sketch is 
systematically discussed in Section III.  Section IV 
touches upon few remarks on the dependency of 
performance of sketches on data distribution.  Some 
simulation results and relevant discussion occupy Section 
V.  Section VI concludes the paper.  

2. Data Stream Model and CRT Based Sketch 

2.1 Data Stream Model 

As mentioned earlier, the streaming is a sequence of items 
of the form ( )value,key , arriving one after the other.  
Little more formally, a data stream S of running length n is 
a sequence of tuples: 

 
( ) ( ) ( )nn vkvkvkS ,,,,,, 2211 L=                      (1) 

 
The above model is very general and one can instantiate it 
in many ways with specific definitions of the key and 
updates.  For example, as mentioned in Section I, the key 
can be defined using one or more fields in packet headers 
such as source and destination IP addresses, source and 
destination port numbers, protocol number etc.  The 
update can be the size of a packet, the total bytes or 
packets in a flow etc.  Associated with each key ik  is a 
time-varying signal ( )iU .  The arrival of each new data 
item ( )ii vk ,  causes the underlying signal to be updated by 

iv : ( ) iviU =+ .  The model discussed so far is the most 
general model referred to as the Turnstile Model. There 
are other special cases of this model as well.  When the 
value iv   is a positive number, which results in 
monotonically increasing key counts, we end up with what 
is called as Cash Register Model.  In the time-series model 
the stream S defines the signal directly, i.e. ith update 
changes ( )iU . 

2.2 The Chinese Remainder Theorem (CRT) 

The CRT is essentially an analytical process of calculating 
dividend from remainders [11].  Assume that unknown 
integer dividend is x. Let dividing it by pair-wise co-prime 
numbers dppp L,, 21  (the pair-wise co prime is simply 

( ) 1,gcd =ji pp  for ji ≠ ) resulted in the remainders 

dmmm L,, 21 , that is, we have simultaneous congruences 
given by : 
 
 ( )ii pmx mod≡  for di ,,2,1 L=                   (2) 
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where iδ  is obtained as follows: First, obtain 
i

i p
NQ =  

and then obtain the modular inverse iq  of iQ  , i.e. 

( )iii pqQ mod1≡ .  Finally, arrive at iδ  as iii qQ=δ .  
Modular inverse can be calculated by extended Euclidean 
algorithm or other improved algorithms developed over 
the years.  

2.3 CR PRECIS Sketch 

The CR-PRECIS sketch is extensively studied by Ganguly 
and Majumder in [7].  The CR-PRECIS data structure is 
depicted in Fig.1 and this two-dimensional array C is 
made of row of counters or “buckets” for each of the d 
hash functions.  Each row is sometimes referred to as the 
hash table and hence we have d hash tables.  The hash 
functions are rather simple and take the form 

  
( ) ii pxxh mod=  for di ,,2,1 L=                (4) 

 
The number of buckets in each hash table is chosen from 
the consecutive primes dppp L,, 21 ; hence we have 
unequal number of buckets in each row (or table).  It is 
useful to note that compared to the randomness involved 
in the hash function generation in other sketches like CM, 
the CR-PRECIS has a deterministic flavor. 
 
The update involved in the sketch is straightforward.  
When a data stream item ( )tt vk ,  arrives, the incoming 
key tk is hashed to a bucket in each row based on the 

remainders obtained by dividing tk  by dppp L,, 21 : 
  
 for di to1=  

[ ][ ] tit vpkiC =+mod   
 end 
 
Essentially, in the CR-PRECIS, we are using the CRT to 
represent Nkt mod  by tdtt mmm L,, 21  where 

itit pmk mod≡ .  As mentioned earlier, with the arrival 

of an item ( )tt vk ,  the buckets represented by 

tdtt mmm L,, 21  are chosen for update by obtaining the 

remainders.  Similarly, for the point query about tk  at a 
particular instant of time, we use the so far accumulated 
values in the counters pointed by tdtt mmm L,, 21 .  These 
values are “aggregated” [12], for example, by evaluating 
median, minimum, etc to arrive at the answer for the query.  
This aggregation or any general estimation is essential for 

arriving at an accurate result due to the problem of 
“collision”.  The latter refers to the fact that multiple keys 
may hash to the same bucket, due to the many-to-one 
mapping from { } { }1,,01,,0 −→− ipN LL .  In other 
words, in each of the relevant buckets for the key tk , there 
is contamination by other keys.  Thus, when the incoming 
update values are non-negative, the hash table counts will 
over-estimate the true count, whereas when the incoming 
updates are either positive or negative (deletions), the hash 
table count could be either an over-estimation or an under-
estimation [5]. In either case, the use of the median among 
the counts provided by the different hash functions for the 
given item provides an estimate in terms of well proven 
theoretical guarantees [5].  However, when the stream 
follows cash-register model with positive “counts” iv , 
minimum provides better estimate. 
 

 
Fig.1 CRT Based Sketch Data Structure 

3. CRT Based Reverse Sketching 

As brought out in Section 1, sketches exhibiting reversible 
property are of great utility in certain applications.  
Essentially, here we are interested in identifying the heavy 
keys: heavy hitters or heavy changers.  In the rest of the 
paper, we will be restricting the discussion to heavy hitters.   
In the direction of identifying heavy hitters, an intermittent 
notion of heavy buckets is generally used.  A bucket is 
called heavy if its counter value (i.e., sum of values of all 
keys hashed to the bucket) crosses a predetermined 
threshold. It is easy to see that for any heavy hitter, every 
bucket that it falls into, in each of the d tables, is a heavy 
bucket. A candidate set Ω  of heavy hitters refers to the 
set of keys whose buckets within the d hash tables are all 
heavy buckets. It is to be noted that Ω  is the superset of 
the actual heavy hitters, and it may contain some non-
heavy hitters that happen to fall into heavy buckets in all d 
hash tables (usual collision).   
 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011 
 

 

62

As mentioned in the previous section, in creating the CR-
PRECIS sketch we take the direction of going from tk  to 

tdtt mmm L,, 21 .  This direction of going from tk  to 

dmmm L,, 21  is easy.  For reverse sketching, we have 

to move from tdtt mmm L,, 21  to tk  .  The mathematical 
apparatus of CRT provides an elegant way to traverse in 
this direction through Eqn.3. Thus, it is quite logical to 
think of reverse sketch based on CRT.  In the direction of 
presenting the proposed reverse sketch we consider two 
cases: one heavy hitter and multiple heavy hitters.  

3.1 One Heavy Hitter Case 

The case of one heavy hitter is rather trivial.  In this case 
each hash table has got one heavy bucket.  Effectively, we 
identify the heaviest bucket (highest-valued counter) in 
each of the hash tables.  Thus obtained counter 
“addresses” or numbers hdhh mmm L,, 21  are then 

utilized in Eqn.3 to arrive at the heavy hitter htk . 

3.2 Multiple Heavy Hitters Case 

In the case of two or more heavy hitters, we end up in 
having more than one heavy bucket in each of the hash 
tables.  The heavy buckets might have been identified by 
comparing the count values to a threshold.  We propose to 
use two sketches based on different sets of prime numbers 
for this scenario.  The idea is to obtain the set of “suspect” 
heavy hitter keys 1Ω  and 2Ω  from each of the sketches 
and then take the intersection of these two sets.  Each of 
the sets 1Ω  and 2Ω  contain many false positive keys, i.e. 
keys which are detected as heavy, but actually are not.  
One proven way to reduce false positives in reverse 
sketches is to have more buckets and hence more memory 
[2].  In our scheme, the false positive keys which result in 
individual sketches are going to get dropped in the process 
of intersection ( 21 Ω∩Ω ).  Effectively, we have a 
systematic way of reducing/eliminating the false positives 
at the cost of additional memory (required for the second 
sketch).  It is also worth noting that since each sketch 
shuffles heavy hitters across different sketch entries, 
approximate agreement among sketches can be used to 
robustly detect the heavy hitters. An example can clarify 
the false positives and the overall scheme itself in a better 
way. 
A data stream of size 1000 elements generated using 
Zipfian distribution (see the next section) with the 
parameter value of 1.3, is CR sketched with the following 
two sets of prime numbers: 
 { } 61 59, 53, 47, 43, 37,1 =P  
and  

 { }  43 41, 37, 31, 29, 23,2 =P  
 
Considering the case of top two heavy hitters, the two 
heavy buckets in each of the hash tables and each of the 
sketches are identified.  They are as follows: 
 
 { }21 41, 48, 20, 29, 2,11 =H  

 { }42 23, 43, 40, 15, 4,12 =H  

 { }29 16, 2, 11, 22, 10,21 =H  

 { }15 32, 4, 22, 15, 20,22 =H  

where  { }29 16, 2, 11, 22, 10,21 =H  is the set of first 
highest heavy buckets in CR sketch 2, etc.  Now, similar 
to the existing methods in the literature, we have to take 
different possible combinations of the heavy buckets in the 
respective sketches.  This leads to 6426 =  different sets 
of heavy buckets for each sketch.  Applying CRT in the 
form Eqn.3, the following two sets of “suspect” keys can 
be generated: 

 =Ω1  {631.0, 5611864927.0, 11604194599.0, 
2952570476.0, 11841387243.0, 3189763120.0, 9182092792.0, 
530468669.0, 8497397987.0, 14109262283.0, 5838103536.0, 
11449967832.0, 6075296180.0, 11687160476.0, 3416001729.0, 
9027866025.0, 995127730.0, 6606992026.0, 12599321698.0, 
3947697575.0, 12836514342.0, 4184890219.0, 10177219891.0, 
1525595768.0, 9492525086.0, 840900963.0, 6833230635.0, 
12445094931.0, 7070423279.0, 12682287575.0, 4411128828.0, 
10022993124.0, 4240497188.0, 9852361484.0, 1581202737.0, 
7193067033.0, 1818395381.0, 7430259677.0, 13422589349.0, 
4770965226.0, 12737894544.0, 4086270421.0, 10078600093.0, 
1426975970.0, 10315792737.0, 1664168614.0, 7656498286.0, 
13268362582.0, 5235624287.0, 10847488583.0, 2576329836.0, 
8188194132.0, 2813522480.0, 8425386776.0, 154228029.0, 
5766092325.0, 13733021643.0, 5081397520.0, 11073727192.0, 
2422103069.0, 11310919836.0, 2659295713.0, 8651625385.0, 1262.0} 

and  

 =Ω2 {631.0, 1317415009.0, 98691952.0, 67324943.0, 
692618100.0, 661251091.0, 791309421.0, 759942412.0, 522109555.0, 
490742546.0, 620800876.0, 589433867.0, 1214727024.0, 1183360015.0, 
1313418345.0, 1282051336.0, 418587958.0, 387220949.0, 517279279.0, 
485912270.0, 1111205427.0, 1079838418.0, 1209896748.0, 
1178529739.0, 940696882.0, 909329873.0, 1039388203.0, 
1008021194.0, 284532964.0, 253165955.0, 383224285.0, 351857276.0, 
996926004.0, 965558995.0, 1095617325.0, 1064250316.0, 340762086.0, 
309395077.0, 439453407.0, 408086398.0, 170253541.0, 138886532.0, 
268944862.0, 237577853.0, 862871010.0, 831504001.0, 961562331.0, 
930195322.0, 66731944.0, 35364935.0, 165423265.0, 134056256.0, 
759349413.0, 727982404.0, 858040734.0, 826673725.0, 588840868.0, 
557473859.0, 687532189.0, 656165180.0, 1281458337.0, 1250091328.0, 
31368271.0, 1262.0} 

Due to the combinations of elements of heavy bucket sets, 
one can see large number of false positives in each of the 
suspect key sets.  They can be reduced by taking the 
intersection of 1Ω  and 2Ω : 

 =Ω∩Ω 21 {631.0, 1262.0}. 
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As a cross-check, the results are compared with actual 
frequency of heavy hitter elements: 
 
Sl.No.      ID     Sketch1     Sketch2     Actual     Error1     Error2 

0             631.0     261           264           258            3               6  

1            1262.0    100           102            94             6               8  
 
The above table shows the estimate of the counts based on 
using the minimum aggregation rule for each of the 
sketches.  The actual values for the two heavy hitters are 
also shown; the accuracy in this toy example is very high 
as for just 1000 keys we have used 300 and 204 counters 
in sketch 1 and sketch 2 respectively. 
Similar observations and arguments can be built for more 
than two heavy hitters.  

4. Effect of Data Distribution on the 
Performance of the Sketch   

As noted, the CR-PRECIS sketch (and CM Sketch as well) 
uses hash functions which map the signal coordinates 
( )iU  to rows of the measurements.  Further, as noted 

earlier, the inherent problem with sketches is that keys 
may collide, namely, hash to the same bucket, producing 
errors in the estimated counts.  What if the signal has only 
s large (or non-zero) entries, i.e., exhibit s-sparsity?  
Elaborating slightly, ( ) ( )[ ]11)0( −= NUUUU L  
has s large values.  It is well known that if hash function h 
is chosen uniformly at random from a pre-specified family 
of hash functions, then the probability that positions i  and 
i′  are hashed into the same bucket is low [12].  Using 
similar arguments, it is possible to show that for s-sparse 
signals which are hashed into more than s buckets, then 
with a high probability, a large fraction of the significant 
entries are hashed into separate “measurements”.  The 
term “measurement” has been brought into context to spell 
out the fact that sketching is closely linked to Compressive 
Sensing (CS); see [12] and [13] for more details.  In fact, 
implicit in many of the guarantee proofs is the ability of 
the hash functions to isolate a few significant signal values 
from one another [12].  Since the sparsity can be linked to 
the data distribution, it is customary to find sentences like 
“the performance of CM sketch is strongly related to and 
influenced by the skew of the data distribution [6]; when 
the skew of the data distribution is larger, its efficiency is 
better, and vice versa”.  In many applications, the signal 
entries follow Zipfian, or power law, distributions; here 
the (relative) frequency of the ith most frequent item is 
proportional to zi − , for some parameter z, where z is 
typically in the range 1 to 3 ( 0=z  gives a perfectly 
uniform distribution).  In such cases, it makes sense to use 

the skew in the distribution to show a stronger 
space/accuracy tradeoff [6].   
The arguments captured so far revolve around random 
hash functions.  But, in CRT based sketching we use 
deterministic hash functions.  With modular operations in 
place for each of the hash functions (see Eqn.4), there is 
an inherent random behavior associated with the hash 
functions.  At this juncture, it is worth noting the 
following statement from [14]: Choosing x randomly in 
{ }1,,0 −NL  is equivalent to, independently choosing im  

randomly from { }1,,0 −ipL  for different i and then 
determining x from the system of simultaneous 
congruences.  Thus, one can expect CRT based sketches to 
behave similarly as the random hash function based 
sketches when it comes to data distribution.  The results of 
next section support this aspect of CRT based reverse 
sketching 

5. Simulation Results and Some Remarks 

Elaborate simulations were carried out towards studying 
the performance of the proposed sketch.  The 
experimentation is carried out with different distributions 
of data (including different Zipfian parameter z), different 
sets of prime numbers (hence different number of total 
buckets) and different number of heavy hitters. 
Fig.2, Fig.3, Fig.4 and Fig.5 depict some typical error 
performance curves for the case of two and four heavy 
hitters respectively.  For each heavy hitter, the curves 
corresponding to both randomization and no 
randomization of keys are provided (note that 
randomization corresponds to “mangling” [8]).  In all 
these figures, the squared error is averaged over 50 
different realizations of data.  As expected, the error 
performance improves when the data exhibits “better 
sparseness”, corresponding to larger values of z in the 
closed interval [1, 3]. 
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Fig.2. Error Performance for Two Heavy Hitters Case; No Randomization 
of Keys 
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Fig.3. Error Performance for Four Heavy Hitters Case; Keys are 
Randomized 
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Fig.4. Error Performance for Four Heavy Hitters Case; No 
Randomization of Keys 
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Fig.5. Error Performance for Four Heavy Hitters Case; Keys are 
Randomized 

The following remarks are worth making about the 
proposed novel CR based reverse sketch: 

(1) The reversing method is very elegant and systematic. 
 
(2) As a further extension, it is possible to arrive at clever 
ways of combining heavy buckets, reducing both 
complexity and number of false positive candidates. 
 
(3) It is interesting to explore the use of regression 
formulation suggested in [2] with the proposed reverse 
sketch for estimating the values (magnitudes) of the heavy 
keys.  Estimation of values of heavy keys is important for 
two reasons. First, when the number of heavy keys is large, 
it is desirable to highlight the most important heavy keys 
with the highest values. Second, using the estimated 
values, one can further reduce the false positive rate by 
eliminating those non-heavy keys included in the 
candidate set of heavy keys. Through experimental studies, 
the authors have shown that by using estimation, it is 
possible to reduce the false positive rate significantly at 
the expense of only a small increase in the false negative 
rate.  Also, an account of the noise values due to non-
heavy keys that are determined by the underlying traffic 
behavior is taken during estimation. 
(4) Since keys are directly hashed or since no modular 
hashing [8] is adopted, mangling is not required.  That is, 
direct hashing some how gets the “correlation” among the 
adjacent keys compensated in the modular operations.  
Simulation results did confirm this (Fig.2, Fig.3, Fig.4 and 
Fig.5). 

6. Conclusions 

In this paper, we systematically presented an elegant 
reversible sketch based on the Chinese Remainder 
Theorem.  Useful simulation results in terms of bringing 
out the dependency of the performance of the proposed 
sketch on data distribution are presented as well.  Efforts 
are under way towards applying the technique in some 
suitable applications.    
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