
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

94

Manuscript received August 5, 2011
Manuscript revised August 20, 2011

Procedural Generation of 3D Cave Models with Stalactites and
Stalagmites

Juncheng Cui†, Yang-Wai Chow† and Minjie Zhang††,

School of Computer Science and Software Engineering, University of Wollongong, Australia
Advanced Multimedia Research Lab†

Intelligent Systems Research Lab††

Summary
The increasing popularity of computer graphics applications in
video games and movie production has resulted in a growing
demand for the development of virtual environments with rich
visual scene content. As such, the use of procedural content
generation techniques is an attractive solution that can avoid the
manual effort involved in the creation of highly complex scenes,
by automating the generation of scene content. However, while
there is much research on procedural content generation
techniques, the procedural generation of 3D cave models is
relatively unexplored. The focus of our research is on procedural
cave generation, and this paper presents a method of producing a
smooth triangle mesh of procedurally generated interior cave
walls with visually plausible stalactites and stalagmites.
Key words:
Procedural Content Generation, Caves, Stalactite, Stalagmite.

1. Introduction

The creation of visual content for virtual environments can
be a laborious and time consuming task. Nevertheless, the
increasing popularity of computer graphics applications in
areas such as movie production, video games, training
simulations, and the like, has resulted in the growing
expectation for virtual environments with rich scene
content. This demand for visually realistic scenes
increases the level of complexity and the amount of detail
required in the creation of scene content, like 3D models,
textures, weather effects, etc. It is an extremely arduous
task for virtual environment developers to manually create
such complex content. As such, procedural content
generation is a research area that has received much
attention in recent years.
Procedural content generation, or procedural modelling, is
the automated generating of scene content using a
computer. While reductions in the amount of work and
costs associated with manual content creation is one of the
main advantages of generating content procedurally, the
development of procedural content generation techniques
offers a variety of other benefits including automatically
adding a degree of randomness to the generated content.

Therefore, procedural techniques are great for creating
naturally occurring phenomena, like fire and smoke, and
many researchers have proposed a variety of different
methods for such purposes [1, 2, 3, 4].
Caves are natural environments that are common in
movies and video games. Furthermore, the creation of
virtual 3D cave models is useful for the development of
training simulations for cave explorers [5]. Yet research
examining procedural techniques for the generation of
underground and cavernous environments has remained
largely unexplored [6, 7]. Our research examines the use
of procedural techniques in the generation of synthetic 3D
cave models. The focus of this research is not to develop a
physically-based modelling technique, but rather to
generate visually plausible 3D cave models.
In our previous work, an approach to procedurally
generating 3D cave structures and storing this in voxel-
based octrees, then obtaining the cave wall surfaces from
the voxels was developed [8]. This paper presents a
method of smoothing the triangle mesh representation of
the interior cave walls in a crack-free manner, as well as
an approach to procedurally add stalactites and stalagmites
to the 3D cave model.
The remaining contents of the paper are organised as
follows. An overview of related work is provided in
section 2, which includes previous efforts on procedural
content generation, as well as the creation of 3D cave
models, stalactites and stalagmites. In section 3, a brief
overview of our previous work is described. Section 4
details the approach developed in this research. This is
followed by section 5 which presents and discusses
experimental results. Finally, section 6 concludes the
paper and describes our future work.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

95

2. Related Work

2.1 Procedural Content Generation

There are a variety of diverse procedural content
generation techniques that have been developed by the
research community for many different areas. Researchers
have devised techniques for using algorithms to automate
the generation of urban environment features, for example,
the creation of buildings [9], roads [10], and even entire
cities [11]. There is also a large body of work on
procedural techniques for creating scene content for
natural environments, such as plants and trees [12], skies
[13], terrains and landscapes [14, 15]. In addition, the
procedural simulation of other naturally occurring
phenomena that have additional requirements, like
animation properties, have also been studied, these include
fire [1, 2], smoke [3, 4], and ocean waves [16].

2.2 Modelling 3D Caves

The development of procedural techniques for terrain
generation is an especially successful area of procedural
content generation, which is particularly relevant to cave
generation. Over the years, much progress has been made
toward developing efficient methods for generating
synthetic terrains, using approaches like fractal modelling
and physical erosion simulations [14]. However,
traditional methods for representing terrains typically rely
on 2D height maps for storing height field information.
While height maps are simple and easy to use, this
approach creates the limitation in that there can only be a
single height value for each position on the horizontal
plane. Thus, this restriction precludes the representation of
overhands, arches or even caves [15].
To overcome this limitation, voxel grids have been used to
represent concave terrain features [17]. In spite of this, the
use of voxels is generally demanding in terms of data
storage and computation. As such, methods to encode
surfaces in sparse voxel octrees have been shown to
significantly reduce memory and computational
requirements [18]. Peytavie, et al. [15] developed a
compact volumetric discrete data-structure for
representing complex terrains, including caves. However,
while they proposed a technique for the procedural
generation of rock piles, their work mainly focused
developing a framework for easing the burden of complex
terrain creation through the use of high level terrain
modelling and sculpting tools.
Boggus and Crawfis [5, 6] previously investigated the
procedural generation of synthetic 3D cave models of
solution caves. These are caves formed by rock being

dissolved by acidic water. Their proposed method was a
physically-based approach that involved approximating
water transport to create coarse level of detail models for
cave passages. Nonetheless, the generated cave models
were limited to two planar surfaces; namely, the cave's
floor and ceiling. In their latter work, they proposed a
framework for modelling and editing 3D caves with any
geometry [19]. However, while they described how
speleothems could procedurally be added to their
specialised cave data structure, this did not form part of
their reported work.

2.3 Speleothems

Speleothems refer to mineral depositions formed in caves
[7]. Common examples of these cave formations in
limestone caves include stalactites, stalagmites and
columns. The latter is typically formed when stalactites
and stalagmites meet. The growth of stalactites and
stalagmites is due to water dissolving some of the
limestone. Studies have proposed models to approximate
the physical formation of stalactites [20], and similar
methods have also been developed to simulate 3D icicle
formations [21].
Tortelli and Walter [7] presented an approach for
modelling speleothem growth based on geological studies.
In their work, they take advantage of the powerful
computational capabilities of GPUs to model the genesis
and growth of stalactites, stalagmites and columns, in real-
time from a set of meaningful geological parameters. Their
method, however, is not suitable for this research because
the purpose of this research is not to grow speleothems,
but rather to add visually plausible stalactites and
stalagmites to a 3D cave model.

3. Previous Work

In our previous work, we developed an approach to
procedurally generate 3D cave structures from 3D noise
functions and storing the resulting interior cave walls in a
voxel-based octree [8]. The octree data structure was
employed to reduce memory storage requirements. In
addition, previous work described a method of
determining the polygonal surfaces of the cave walls from
the voxel octree. An example of the resulting interior cave
walls is shown in Fig. 1, where Fig. 1(a) portrays a 2D
cross-section of a cave generated using a noise function,
and Fig. 1(b) depicts a view of 3D voxels representing the
cave walls.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

96

(a) (b)

Fig. 1 Interior cave walls. (a) 2D cross-section; (b) 3D voxels.

It can be seen that the resulting cave model does not
contain any notable cave features. Furthermore, rendering
the polygonal cave wall surfaces obtained directly from
the low resolution voxels produces unrealistic cube like
walls, as can be seen in Fig. 1(b). Therefore, the research
presented in this paper builds on top of existing work by
demonstrating a method of smoothing the resulting
polygonal mesh, as well as adding visually plausible
stalactites and stalagmites to the procedurally generated
cave model.

4. Our Approach

4.1 Polygonal Mesh Smoothing

Our aim is to convert the interior cave wall surface
polygons obtained from data stored in a voxel-based
octree, into a smoother looking polygonal mesh. This
resulting mesh can then be rendered in real-time using
standard triangle rasterisation techniques. While there are
existing techniques to extract iso-surfaces from voxel data,
for example, the popular marching cubes technique [22],
we did not want to generate completely smooth surfaces as
this would be unrealistic for caves. In other words, we
want to smoothen the edges of the voxels so that the cave
would not look like cube blocks, yet we did not want
completely smooth iso-surfaces.

To achieve this, a Laplacian smoothing function [23] was
employed to smooth the mesh:

(1)

Where v represents the original vertex location, and vi
stands for all the neighbouring vertices surrounding v.
Thus, v' represents the adjusted vertex position. λ is the
weighting factor and is typically set to 0.5. The
implementation of this function effectively changes the
original location of the triangle vertices and moves them

closer toward their adjacent vertices, hence removing
sharp corners and creating a smoother polygonal mesh.

However, simply using equation 1 gives rise to the
appearance of cracks or `holes' in the cave model walls.
This is because the original polygons were obtained from
the voxel-based octree, hence their sizes are non-uniform
as the octree voxel nodes differ in sizes. Therefore,
shifting certain vertices away from their original locations
will result in gaps due to certain polygons not aligning.
Fig. 2(a) is a screenshot that shows the appearance of
cracks in the cave walls (i.e. the black areas). Fig. 2(b)
illustrates the reason why the cracks occur; the new vertex
E' does not align with the A'C' edge, hence producing a
gap between the edge and the vertex. This is a problem
also seen in terrain Level of Detail (LOD) management,
when trying to simplify polygonal meshes [24]. However,
unlike triangle simplification algorithms used in terrain
LOD management that deal with information stored in 2D
height maps, in our case a 3D octree solution is required.

(a)

(b)

Fig. 2 ‘Holes’ that appear during naïve polygon mesh smoothing. (a)
Cracks that appear in the rendered 3D mesh; (b) Illustration of the reason

for the cracks.

Our solution is to split the large triangle into smaller
corresponding triangles that perfectly align. While this
will increase the number of triangles in the final mesh, it
will smoothly patch the cracks in the cave walls. We also

() ()10,1
1

≤≤
−

+=′ ∑
=

λλλ
n

i
iv

n
vv

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

97

need to maintain the original winding order of the vertices
(i.e. clockwise or counter-clockwise order), as this has
implications on the rendering of the triangles, e.g. back-
face culling. Fig. 3 illustrates examples of how triangles
would be split to produce a crack-free mesh from the
smoothening processes, note that this actually takes place
in 3D. In Fig. 3(a), changing the original locations of
vertices A to H will result in the appearance of cracks. To
overcome this, triangles 1, 2, and 3 will have to be split.
This will result in the smaller triangles as shown in Fig.
3(b). Triangles were checked and split in a particular order.
Fig. 4 illustrates the possible scenarios that result from the
checking and splitting of triangles in the specific order of
edge BC, followed by edge AB, then finally edge AC. In
the figure, scenario 1 represents the case where no
splitting is necessary; on the other hand, scenarios 2, 3 and
4 occur when only splitting only has to be performed
along one of the edges; whereas the remaining scenarios
show the cases where the triangle has to be split along
multiple edges.

(a) (b)

Fig. 3 Triangles to be split to avoid cracks.

Fig. 4 Triangle splitting order.

4.2 Generating Stalactites and Stalagmites

Short et al. [20] proposed the following physically-based
equation to approximate the shape of stalactites based on
the relationship between factors like the radius and length:

(2)

In equation 2, ζ is proportionate to the asymptotic shape of
the stalactite. On the other hand, ρ is proportionate to the
ratio of the radius and the stalactite's length. Therefore, we
can generate stalactites with different shapes by assigning
a different initial radius to each stalactite. Also, a scaling
factor was applied to the results of ζ to make the stalactite
appear more slender or stockier.

Stalagmites grow in conjunction with stalactites, as water
from the cave ceiling flows to the tip of a stalactite before
dripping to the floor of the cave, thus forming a
corresponding stalagmite over time. A parameter was used
to control the growth ratio between the stalactites and
stalagmites. A value of 1.0 for this parameter means that
the stalactites and stalagmites grow at equal rates.
Stalagmites, however, typically grow at a faster rate as
compared to stalactites. Therefore, the parameter was
usually set to 1.5.

The locations of the stalactites and stalagmites can be
randomly placed on the ceiling and floor of the cave
structure. Additionally, the resulting shape of stalactites
and stalagmites that are created using different parameters
can be combined together. This gives rise to variations in
the appearance of the stalactites and stalagmites.

5. Experiments

The techniques described in this paper were implemented
in an application program. The program generates voxel-
based 3D cave structures with stalactites and stalagmites
procedurally, then produces a smooth polygonal mesh of
the resulting cave model. The implementation was written
in C# and the XNA framework was used to render the
resulting polygonal mesh of the 3D cave in real-time. The
3D cave model was rendered with directional lighting
without any textures. Experiments were conducted to
examine the effectiveness of the crack-free smoothening
algorithm, as well as the appearance of the procedurally
generated stalactites and stalagmites. The experimental
results are presented below, along with a discussion about
the results.

.ln
3
1

4
3)(3

2
4
3

const+−−≅ ρρρρζ

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

98

5.1 Results and Discussion

Fig. 5 shows a comparison of the interior cave walls
before and after the smoothening process. Screenshots
showing the wireframe and solid polygonal mesh
representations before smoothening are provided in Fig.
5(a) and Fig. 5(b), respectively. Fig. 5(c) and Fig. 5(d) in
turn, show screenshots of the wireframe and solid
polygonal mesh representations after the smoothening
process. It can be seen that there are no cracks in the
resulting smoothened cave walls. This shows the
effectiveness of our triangle splitting approach in
eliminating potential cracks due to vertex perturbations.

(a)

(b)

(c)

(d)

Fig. 5 Before and after smoothing. (a) Wireframe before the smoothing
process; (b) Solid mode before smoothing; (c) Wireframe after the

smoothing process; (d) Solid mode after smoothing.

Table 1, shows typical results of the triangle splitting
approach used to eliminate cracks. The table depicts the
total number of triangles before and after the smoothening
process, for increasing levels of voxel resolution used in
the generation of the 3D cave structure. Results show that
in general, the number of additional triangles generated to
produce a crack-free mesh from the smoothening process
is less than 10%. This increase is a small price to pay
when it comes to generating a smooth crack-free mesh.

Table 1: Total number of triangle before and after the smoothing process.
Max Voxel

Octree Depth
Number of Triangles

Before Smoothing After Smoothing
5 1296 1344
6 5196 5388
7 21376 22328
8 90760 95888
9 388084 418864

Fig. 6 shows a 2D cross-sectional depiction of the shape of
stalactites and stalagmites that can be added to the ceiling
and floor of a cave. Fig. 6(a), (b) and (c) depict stalactites
and stalagmites of diverse shapes formed when different
radii, r, and scaling factors, s, were used. The figures show
that smaller scaling factors facilitates stockier shapes. The
shape of stalactites and stalagmites resulting from a
combination of those in Fig. 6(a), (b) and (c), is shown in
Fig. 6(d). The combination of the stalactites and
stalagmites shapes that were generated using different
parameters, gives rise to variation and the appearance of
randomness. This is realistic because variation and
randomness is part of naturally occurring speleothems.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

99

(a) (b) (c)

(d)

Fig. 6 2D cross-section of stalactites and stalagmites. (a) r = 5-10 units, s
= 10; (b) r = 10-20 units, s = 1; (c) r = 20-50 units, s = 0.5; (d)

Combining a, b and c.

(a)

(b)

Fig. 7 Simulation of 3D stalactites. (a) Before smoothing; (b) After
smoothing.

Fig. 7(a) shows a 3D voxel representation of stalactites,
whereas Fig. 7(b) shows the same stalactites after the
polygonal smoothening process. A voxel representation of
a procedurally generated 3D cave passage with stalactites
and stalagmites is shown in Fig. 8(a). The same cave
passage is shown after the polygonal smoothing process in
wireframe mode in Fig. 8(b) and in solid mode in Fig. 8(c).

It can be seen that our approach is effective in producing
visually plausible 3D cave models with stalactites and
stalagmites.

(a)

(b)

(c)

Fig. 8 3D cave model with stalactites and stalagmites. (a) Voxel
representation of the cave before smoothing; (b) Wireframe after

smoothing; (c) Solid mode after smoothing.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

100

6. Conclusion and Future Work

This paper is concerned with the procedural generation of
3D cave models. Our main contributions include a method
of producing a smooth triangle mesh of procedurally
generated interior cave walls. In addition, an approach to
splitting triangles to overcome the problem of cracks in
the smoothened mesh was described.

This paper also presents a method of procedurally
generating visually plausible stalactites and stalagmites
and adding these to the cave structure. We have
implemented these methods experimentally and presented
our results to demonstrate the effectiveness of our
approach. Future work will investigate techniques of
generating other cave features like cave columns,
flowstones, cave scallops, etc. Furthermore, the procedural
generation and incorporation of realistic textures for caves
will also be examined.

References
[1] Nguyen, D.Q., Fedkiw, R. and Jensen, H.W., “Physically

based Modeling and Animation of Fire,” ACM Transactions
on Graphics (TOG), Vol. 25, No. 3, pp. 614-623, 2006.

[2] Fuller, A.R., Krishnan, H., Mahrous, K., Hamann, B. And
Joy, K.I., “Real-time Procedural Volumetric Fire,” in
Proceedings of the 2007 Symposium on Interactive 3D
Graphics (SI3D ’07), pp. 175-180, 2007.

[3] Rasmussen, N., Nguyen, D.Q., Geiger, W. and Fedkiw, R.,
“Smoke Simulation for Large Scale Phenomena,” ACM
Transactions on Graphics (TOG), Vol. 22, No. 3, pp. 703-
707, 2003.

[4] Shi, L. and Yu, Y., “Controllable Smoke Animation with
Guiding Objects,” ACM Transactions on Graphics (TOG),
Vol. 24, No. 1, pp. 140-164, 2005.

[5] Boggus, M. and Crawfis, R., “Procedural Creation of 3D
Solution Cave Models,” in Proceedings of the 20th IASTED
International Conference on Modelling and Simulation, pp.
180-186, 2009.

[6] Boggus, M. and Crawfis, R., “Explicit Generation of 3D
Models of Solution Caves for Virtual Environments,” in
Proceedings of the 2009 International Conference on
Computer Graphics and Virtual Reality, pp. 85-90, 2009.

[7] Tortelli, D.M. and Walter, M., “Modeling and Rendering
the Growth of Speleothems in Real-time,” in Proceedings of
the Fourth International Conference on Computer Graphics
Theory and Applications (GRAPP ’09), pp. 27-35, 2009.

[8] Cui, J., Chow, Y.W. and Zhang, M., “A Voxel-based Octree
Construction approach for Procedural Cave Generation,”
International Journal of Computer Science and Network
Security, Vol. 11, No. 6, pp.160-168, 2011.

[9] Müller, P., Wonka, P., Haegler, S., Ulmer, A. and Van Gool,
L., “Procedural Modeling of Buildings,” ACM Transactions
on Graphics (TOG), Vol. 25, No. 3, pp. 614-623, 2006.

[10] Galin, E., Peytavie, A., Marechal, N. and Guerin, E.,
“Procedural Generation of Roads,” in Computer Graphics
Forum, Vol. 29, No. 2, pp. 429-438, 2010.

[11] Parish, Y.I.H. and Müller, P., “Procedural Modeling of
Cities,” in Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques
(SIGGRAPH ’01), pp. 301-308, 2001.

[12] Lluch, J., Camahort, E. and Vivo, R., “Procedural
Multiresolution for Plant and Tree Rendering,” in
Proceedings of the 2nd International Conference on
Computer Graphics, Virtual Reality, Visualisation and
Interaction in Africa (AFRIGRAPH ’03), pp. 31-38, 2003.

[13] Roden, T. and Parberry, I., “Clouds and Stars: Efficient
Real-time Procedural Sky Rendering using 3D Hardware,”
Advances in Computer Entertainment Technology, pp. 434-
437, 2005.

[14] Zhou, H., Sun, J., Turk, G. and Rehg, J.M., “Terrain
Synthesis from Digital Elevation Models,” IEEE
Transactions on Visualization and Computer Graphics, Vol.
13, No. 4, pp. 834-848, 2007.

[15] Peytavie, A., Galin, E., Grosjean, J. and Merillou, S.,
“Arches: a Framework for Modeling Complex Terrains,”
Computer Graphics Forum, Proceedings of
EUROGRAPHICS, Vol. 28, No. 2, pp. 457-467, 2009.

[16] Jeschke, S., Birkholz, H. and Schumann, H., “A Procedural
Model for Interaction Animation of Breaking Ocean
Waves,” in Proceedings of the 11th International
Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG ’03), 2003.

[17] Jones, M.D., Farley, M., Butler, J. and Beardall, M.,
“Directable Weathering of Concave Rock using Curvature
Estimation,” IEEE Transactions on Visualization and
Computer Graphics, Vol. 16, No. 1, pp. 81-94, 2010.

[18] Laine, S. and Karras, T., “Efficient Sparse Voxel Octrees,”
in Proceedings of the 2010 Symposium on Interactive 3D
Graphics (SI3D ’10), pp. 55-63, 2010.

[19] Boggus, M. and Crawfis, R., “Prismfields: A Framework for
Interactive Modeling of Three Dimensional Caves,” in
Proceedings of the 6th International Conference on
Advances in Visual Computing (ISVC ‘10), Volume Part II,
pp. 213-221, 2010.

[20] Short, M.B., Baygents, J.C., Beck, J.W., Stone, D.A.,
Toomey III, R.S. and Goldstein, R.E., “Stalactite Growth as
a Free-boundary Problem: A Geometric Law and its
Platonic Ideal,” Physical Review Letters, Vol. 94, No 1,
Article 018501, 2005

[21] Kim, T., Adalsteinsson, D. and Lin, M.C., “Modeling Ice
Dynamics as a Thin-film Stefan Problem,” in Symposium
on Computer Animation (SCA ’06), pp. 167-176, 2006.

[22] Lorensen, W.E. and Cline, H.E., “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” in
Proceedings of the 14th Annual Conference on Comupter
Graphics and Interactive Techniques (SIGGRAPH ’87), pp.
163-169, 1987.

[23] Vollmer, J., Mencl, R. and Müller, H., “Improved Laplacian
Smoothing of Noisy Surface Meshes,” in Computer
Graphics Forum, Vol. 18, No. 3, pp. 131-138, 1999.

[24] Wu, J., Yang, Y.F., Gong, S.R. and Cui, Z.M., “A New
Quadtree-based Terrain LOD Algorithm,” Journal of
Software, Vol. 5, No. 7, 2010.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

101

Juncheng Cui received the B.S.
degrees in Software Engineering from
Tongji University, China, in 2007. He
is currently working toward to the M.S.
degree under the supervision of Dr.
Yang-Wai Chow and A/Prof. Minjie
Zhang. His research interests include
computer graphics, procedural content
generation and artificial intelligence.

Yang-Wai Chow received his BSc.,
B.Eng. (Hons.) and Ph.D. from Monash
University, Australia, in 2003 and 2007.
He is currently a Lecturer in the School
of Computer Science and Software
Engineering, at the University of
Wollongong, Australia. His research
interests include computer graphics,
virtual reality, interactive real-time
interfaces, human visual perception and
human computer interaction.

Minjie Zhang is an Associate
Professor in the School of Computer
Science and Software Engineering and
the Director of Intelligent System
Research Group in the Faculty of
Informatics, at University of
Wollongong, Australia. She received
her BSc. degree from Fudan University,
China in 1982 and the PhD degree in

Computer Science from the University of New England,
Australia in 1996. Her research interests include distributed
artificial intelligence, multi-agent systems, agent-based
simulation and modeling in complex domains, grid computing,
and knowledge discovery and data mining.

