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Summary 
The increasing popularity of computer graphics applications in 
video games and movie production has resulted in a growing 
demand for the development of virtual environments with rich 
visual scene content. As such, the use of procedural content 
generation techniques is an attractive solution that can avoid the 
manual effort involved in the creation of highly complex scenes, 
by automating the generation of scene content. However, while 
there is much research on procedural content generation 
techniques, the procedural generation of 3D cave models is 
relatively unexplored. The focus of our research is on procedural 
cave generation, and this paper presents a method of producing a 
smooth triangle mesh of procedurally generated interior cave 
walls with visually plausible stalactites and stalagmites. 
Key words: 
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1. Introduction 

The creation of visual content for virtual environments can 
be a laborious and time consuming task. Nevertheless, the 
increasing popularity of computer graphics applications in 
areas such as movie production, video games, training 
simulations, and the like, has resulted in the growing 
expectation for virtual environments with rich scene 
content. This demand for visually realistic scenes 
increases the level of complexity and the amount of detail 
required in the creation of scene content, like 3D models, 
textures, weather effects, etc. It is an extremely arduous 
task for virtual environment developers to manually create 
such complex content. As such, procedural content 
generation is a research area that has received much 
attention in recent years. 
Procedural content generation, or procedural modelling, is 
the automated generating of scene content using a 
computer. While reductions in the amount of work and 
costs associated with manual content creation is one of the 
main advantages of generating content procedurally, the 
development of procedural content generation techniques 
offers a variety of other benefits including automatically 
adding a degree of randomness to the generated content. 

Therefore, procedural techniques are great for creating 
naturally occurring phenomena, like fire and smoke, and 
many researchers have proposed a variety of different 
methods for such purposes [1, 2, 3, 4]. 
Caves are natural environments that are common in 
movies and video games. Furthermore, the creation of 
virtual 3D cave models is useful for the development of 
training simulations for cave explorers [5]. Yet research 
examining procedural techniques for the generation of 
underground and cavernous environments has remained 
largely unexplored [6, 7]. Our research examines the use 
of procedural techniques in the generation of synthetic 3D 
cave models. The focus of this research is not to develop a 
physically-based modelling technique, but rather to 
generate visually plausible 3D cave models. 
In our previous work, an approach to procedurally 
generating 3D cave structures and storing this in voxel-
based octrees, then obtaining the cave wall surfaces from 
the voxels was developed [8]. This paper presents a 
method of smoothing the triangle mesh representation of 
the interior cave walls in a crack-free manner, as well as 
an approach to procedurally add stalactites and stalagmites 
to the 3D cave model. 
The remaining contents of the paper are organised as 
follows. An overview of related work is provided in 
section 2, which includes previous efforts on procedural 
content generation, as well as the creation of 3D cave 
models, stalactites and stalagmites. In section 3, a brief 
overview of our previous work is described. Section 4 
details the approach developed in this research. This is 
followed by section 5 which presents and discusses 
experimental results. Finally, section 6 concludes the 
paper and describes our future work. 
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2. Related Work 

2.1 Procedural Content Generation 

There are a variety of diverse procedural content 
generation techniques that have been developed by the 
research community for many different areas. Researchers 
have devised techniques for using algorithms to automate 
the generation of urban environment features, for example, 
the creation of buildings [9], roads [10], and even entire 
cities [11]. There is also a large body of work on 
procedural techniques for creating scene content for 
natural environments, such as plants and trees [12], skies 
[13], terrains and landscapes [14, 15]. In addition, the 
procedural simulation of other naturally occurring 
phenomena that have additional requirements, like 
animation properties, have also been studied, these include 
fire [1, 2], smoke [3, 4], and ocean waves [16]. 

2.2 Modelling 3D Caves 

The development of procedural techniques for terrain 
generation is an especially successful area of procedural 
content generation, which is particularly relevant to cave 
generation. Over the years, much progress has been made 
toward developing efficient methods for generating 
synthetic terrains, using approaches like fractal modelling 
and physical erosion simulations [14]. However, 
traditional methods for representing terrains typically rely 
on 2D height maps for storing height field information. 
While height maps are simple and easy to use, this 
approach creates the limitation in that there can only be a 
single height value for each position on the horizontal 
plane. Thus, this restriction precludes the representation of 
overhands, arches or even caves [15]. 
To overcome this limitation, voxel grids have been used to 
represent concave terrain features [17]. In spite of this, the 
use of voxels is generally demanding in terms of data 
storage and computation. As such, methods to encode 
surfaces in sparse voxel octrees have been shown to 
significantly reduce memory and computational 
requirements [18]. Peytavie, et al. [15] developed a 
compact volumetric discrete data-structure for 
representing complex terrains, including caves. However, 
while they proposed a technique for the procedural 
generation of rock piles, their work mainly focused 
developing a framework for easing the burden of complex 
terrain creation through the use of high level terrain 
modelling and sculpting tools. 
Boggus and Crawfis [5, 6] previously investigated the 
procedural generation of synthetic 3D cave models of 
solution caves. These are caves formed by rock being 

dissolved by acidic water. Their proposed method was a 
physically-based approach that involved approximating 
water transport to create coarse level of detail models for 
cave passages. Nonetheless, the generated cave models 
were limited to two planar surfaces; namely, the cave's 
floor and ceiling. In their latter work, they proposed a 
framework for modelling and editing 3D caves with any 
geometry [19]. However, while they described how 
speleothems could procedurally be added to their 
specialised cave data structure, this did not form part of 
their reported work. 

2.3 Speleothems 

Speleothems refer to mineral depositions formed in caves 
[7]. Common examples of these cave formations in 
limestone caves include stalactites, stalagmites and 
columns. The latter is typically formed when stalactites 
and stalagmites meet. The growth of stalactites and 
stalagmites is due to water dissolving some of the 
limestone. Studies have proposed models to approximate 
the physical formation of stalactites [20], and similar 
methods have also been developed to simulate 3D icicle 
formations [21]. 
Tortelli and Walter [7] presented an approach for 
modelling speleothem growth based on geological studies. 
In their work, they take advantage of the powerful 
computational capabilities of GPUs to model the genesis 
and growth of stalactites, stalagmites and columns, in real-
time from a set of meaningful geological parameters. Their 
method, however, is not suitable for this research because 
the purpose of this research is not to grow speleothems, 
but rather to add visually plausible stalactites and 
stalagmites to a 3D cave model. 

3. Previous Work 

In our previous work, we developed an approach to 
procedurally generate 3D cave structures from 3D noise 
functions and storing the resulting interior cave walls in a 
voxel-based octree [8]. The octree data structure was 
employed to reduce memory storage requirements. In 
addition, previous work described a method of 
determining the polygonal surfaces of the cave walls from 
the voxel octree. An example of the resulting interior cave 
walls is shown in Fig. 1, where Fig. 1(a) portrays a 2D 
cross-section of a cave generated using a noise function, 
and Fig. 1(b) depicts a view of 3D voxels representing the 
cave walls.  
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(a) (b) 

Fig. 1  Interior cave walls. (a) 2D cross-section; (b) 3D voxels. 

It can be seen that the resulting cave model does not 
contain any notable cave features. Furthermore, rendering 
the polygonal cave wall surfaces obtained directly from 
the low resolution voxels produces unrealistic cube like 
walls, as can be seen in Fig. 1(b). Therefore, the research 
presented in this paper builds on top of existing work by 
demonstrating a method of smoothing the resulting 
polygonal mesh, as well as adding visually plausible 
stalactites and stalagmites to the procedurally generated 
cave model. 

4. Our Approach 

4.1 Polygonal Mesh Smoothing 

Our aim is to convert the interior cave wall surface 
polygons obtained from data stored in a voxel-based 
octree, into a smoother looking polygonal mesh. This 
resulting mesh can then be rendered in real-time using 
standard triangle rasterisation techniques. While there are 
existing techniques to extract iso-surfaces from voxel data, 
for example, the popular marching cubes technique [22], 
we did not want to generate completely smooth surfaces as 
this would be unrealistic for caves. In other words, we 
want to smoothen the edges of the voxels so that the cave 
would not look like cube blocks, yet we did not want 
completely smooth iso-surfaces. 
 
To achieve this, a Laplacian smoothing function [23] was 
employed to smooth the mesh: 
 

 
(1) 

 
 

Where v represents the original vertex location, and vi 
stands for all the neighbouring vertices surrounding v. 
Thus, v' represents the adjusted vertex position. λ is the 
weighting factor and is typically set to 0.5. The 
implementation of this function effectively changes the 
original location of the triangle vertices and moves them 

closer toward their adjacent vertices, hence removing 
sharp corners and creating a smoother polygonal mesh. 
 
However, simply using equation 1 gives rise to the 
appearance of cracks or `holes' in the cave model walls. 
This is because the original polygons were obtained from 
the voxel-based octree, hence their sizes are non-uniform 
as the octree voxel nodes differ in sizes. Therefore, 
shifting certain vertices away from their original locations 
will result in gaps due to certain polygons not aligning. 
Fig. 2(a) is a screenshot that shows the appearance of 
cracks in the cave walls (i.e. the black areas). Fig. 2(b) 
illustrates the reason why the cracks occur; the new vertex 
E' does not align with the A'C' edge, hence producing a 
gap between the edge and the vertex. This is a problem 
also seen in terrain Level of Detail (LOD) management, 
when trying to simplify polygonal meshes [24]. However, 
unlike triangle simplification algorithms used in terrain 
LOD management that deal with information stored in 2D 
height maps, in our case a 3D octree solution is required. 
 

 
(a) 

(b) 

Fig. 2  ‘Holes’ that appear during naïve polygon mesh smoothing. (a) 
Cracks that appear in the rendered 3D mesh; (b) Illustration of the reason 

for the cracks. 

Our solution is to split the large triangle into smaller 
corresponding triangles that perfectly align. While this 
will increase the number of triangles in the final mesh, it 
will smoothly patch the cracks in the cave walls. We also 
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need to maintain the original winding order of the vertices 
(i.e. clockwise or counter-clockwise order), as this has 
implications on the rendering of the triangles, e.g. back-
face culling. Fig. 3 illustrates examples of how triangles 
would be split to produce a crack-free mesh from the 
smoothening processes, note that this actually takes place 
in 3D. In Fig. 3(a), changing the original locations of 
vertices A to H will result in the appearance of cracks. To 
overcome this, triangles 1, 2, and 3 will have to be split. 
This will result in the smaller triangles as shown in Fig. 
3(b). Triangles were checked and split in a particular order. 
Fig. 4 illustrates the possible scenarios that result from the 
checking and splitting of triangles in the specific order of 
edge BC, followed by edge AB, then finally edge AC. In 
the figure, scenario 1 represents the case where no 
splitting is necessary; on the other hand, scenarios 2, 3 and 
4 occur when only splitting only has to be performed 
along one of the edges; whereas the remaining scenarios 
show the cases where the triangle has to be split along 
multiple edges. 
 

 
(a) (b) 

Fig. 3  Triangles to be split to avoid cracks. 

Fig. 4  Triangle splitting order. 

4.2 Generating Stalactites and Stalagmites 

Short et al. [20] proposed the following physically-based 
equation to approximate the shape of stalactites based on 
the relationship between factors like the radius and length: 

 
 

(2) 
 

 
In equation 2, ζ is proportionate to the asymptotic shape of 
the stalactite. On the other hand, ρ is proportionate to the 
ratio of the radius and the stalactite's length. Therefore, we 
can generate stalactites with different shapes by assigning 
a different initial radius to each stalactite. Also, a scaling 
factor was applied to the results of ζ to make the stalactite 
appear more slender or stockier. 
 
Stalagmites grow in conjunction with stalactites, as water 
from the cave ceiling flows to the tip of a stalactite before 
dripping to the floor of the cave, thus forming a 
corresponding stalagmite over time. A parameter was used 
to control the growth ratio between the stalactites and 
stalagmites. A value of 1.0 for this parameter means that 
the stalactites and stalagmites grow at equal rates. 
Stalagmites, however, typically grow at a faster rate as 
compared to stalactites. Therefore, the parameter was 
usually set to 1.5. 
 
The locations of the stalactites and stalagmites can be 
randomly placed on the ceiling and floor of the cave 
structure. Additionally, the resulting shape of stalactites 
and stalagmites that are created using different parameters 
can be combined together. This gives rise to variations in 
the appearance of the stalactites and stalagmites. 

5. Experiments 

The techniques described in this paper were implemented 
in an application program. The program generates voxel-
based 3D cave structures with stalactites and stalagmites 
procedurally, then produces a smooth polygonal mesh of 
the resulting cave model. The implementation was written 
in C# and the XNA framework was used to render the 
resulting polygonal mesh of the 3D cave in real-time. The 
3D cave model was rendered with directional lighting 
without any textures. Experiments were conducted to 
examine the effectiveness of the crack-free smoothening 
algorithm, as well as the appearance of the procedurally 
generated stalactites and stalagmites. The experimental 
results are presented below, along with a discussion about 
the results. 
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5.1 Results and Discussion 

Fig. 5 shows a comparison of the interior cave walls 
before and after the smoothening process. Screenshots 
showing the wireframe and solid polygonal mesh 
representations before smoothening are provided in Fig. 
5(a) and Fig. 5(b), respectively. Fig. 5(c) and Fig. 5(d) in 
turn, show screenshots of the wireframe and solid 
polygonal mesh representations after the smoothening 
process. It can be seen that there are no cracks in the 
resulting smoothened cave walls. This shows the 
effectiveness of our triangle splitting approach in 
eliminating potential cracks due to vertex perturbations. 
 

 
(a) 

 
(b) 

 
(c) 

 

(d) 

Fig. 5  Before and after smoothing. (a) Wireframe before the smoothing 
process; (b) Solid mode before smoothing; (c) Wireframe after the 

smoothing process; (d) Solid mode after smoothing. 

Table 1, shows typical results of the triangle splitting 
approach used to eliminate cracks. The table depicts the 
total number of triangles before and after the smoothening 
process, for increasing levels of voxel resolution used in 
the generation of the 3D cave structure. Results show that 
in general, the number of additional triangles generated to 
produce a crack-free mesh from the smoothening process 
is less than 10%. This increase is a small price to pay 
when it comes to generating a smooth crack-free mesh. 

Table 1: Total number of triangle before and after the smoothing process. 
Max Voxel 

Octree Depth 
Number of Triangles 

Before Smoothing After Smoothing
5 1296 1344
6 5196 5388
7 21376 22328
8 90760 95888
9 388084 418864

 
Fig. 6 shows a 2D cross-sectional depiction of the shape of 
stalactites and stalagmites that can be added to the ceiling 
and floor of a cave. Fig. 6(a), (b) and (c) depict stalactites 
and stalagmites of diverse shapes formed when different 
radii, r, and scaling factors, s, were used. The figures show 
that smaller scaling factors facilitates stockier shapes. The 
shape of stalactites and stalagmites resulting from a 
combination of those in Fig. 6(a), (b) and (c), is shown in 
Fig. 6(d). The combination of the stalactites and 
stalagmites shapes that were generated using different 
parameters, gives rise to variation and the appearance of 
randomness. This is realistic because variation and 
randomness is part of naturally occurring speleothems. 
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(a) (b) (c) 

 
 
 
 
 
 
 
 
 
 
 

(d) 

Fig. 6  2D cross-section of stalactites and stalagmites. (a) r = 5-10 units, s 
= 10; (b) r = 10-20 units, s = 1; (c) r = 20-50 units, s = 0.5; (d) 

Combining a, b and c. 

(a) 

(b) 

Fig. 7  Simulation of 3D stalactites. (a) Before smoothing; (b) After 
smoothing. 

Fig. 7(a) shows a 3D voxel representation of stalactites, 
whereas Fig. 7(b) shows the same stalactites after the 
polygonal smoothening process. A voxel representation of 
a procedurally generated 3D cave passage with stalactites 
and stalagmites is shown in Fig. 8(a). The same cave 
passage is shown after the polygonal smoothing process in 
wireframe mode in Fig. 8(b) and in solid mode in Fig. 8(c). 

It can be seen that our approach is effective in producing 
visually plausible 3D cave models with stalactites and 
stalagmites. 
 

(a) 

(b) 

(c) 

Fig. 8  3D cave model with stalactites and stalagmites. (a) Voxel 
representation of the cave before smoothing; (b) Wireframe after 

smoothing; (c) Solid mode after smoothing. 
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6. Conclusion and Future Work 

This paper is concerned with the procedural generation of 
3D cave models. Our main contributions include a method 
of producing a smooth triangle mesh of procedurally 
generated interior cave walls. In addition, an approach to 
splitting triangles to overcome the problem of cracks in 
the smoothened mesh was described.  
 
This paper also presents a method of procedurally 
generating visually plausible stalactites and stalagmites 
and adding these to the cave structure. We have 
implemented these methods experimentally and presented 
our results to demonstrate the effectiveness of our 
approach. Future work will investigate techniques of 
generating other cave features like cave columns, 
flowstones, cave scallops, etc. Furthermore, the procedural 
generation and incorporation of realistic textures for caves 
will also be examined. 
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