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Abstract 
Moment functions are widely use in image analysis as feature 
descriptors for pattern recognition. In this work, we propose a 
method to recognition problem using Legendre moments. The 
proposed approach is based on the decomposition of the original 
image into block images. The optimal number of moment used 
to represent original image is deduced from the measure of the 
error between the original image and its reconstructed. Servo 
image is used to demonstrate the performance of the proposed 
method. 
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1. Introduction 

The mathematical concept of moments and function 
moments has been around for many years and has been 
utilized in many fields ranging from mechanics and 
statistics to pattern recognition, detection of pathology 
and scene analysis [1-4].  
Historically, the first significant work considering 
moments for pattern recognition was performed by Hu [5]. 
Teague [6] has suggested the notion of orthogonal of 
moments to cover the image from moments based on the 
theory of continuous orthogonal polynomials, and has 
introduced both Zernike and Legendre moments. Many 
works have focused on the reconstruction aspect of 
orthogonal moments and have shown that the image can 
be reconstructed easily from a set of orthogonal moments: 
Moment Invariants (MI) [5], Zernike Moments (ZM) 
[7][8] and Legendre Moments (LM)[9]. MI is poor in the 
representation of image shape due to its non- 
orthogonality. LM and ZM can be used to represent an 
image with minimum amount of redundancy of 
information. ZM has superior performance both as region-
based and shape-based descriptor but is computationally 
complex when compared to LM [10]. To compute the ZM 
of an image the centre of the image is taken as the origin 
and the pixel coordinates are mapped to the range of unit 
circle. Those pixels that fall outside unit circle are not 
used in the computation [11]. This has motivated us to use 
LM to represent the image in this work. 
For selecting an optimal number of moments from the 
digital images, Teh and Chin [12] have considered the 

mean square error between an image and its reconstructed 
version as a good measure of image representation ability. 
Liao and Pawlak [13] suggested a statistic cross-
validation methodology. However, all methods depend on 
the unknown original image function or difficult in its 
implementation. 
In this work, the Legendre moments representation and 
reconstruction method by block processing is proposed. 
The optimal order of reconstruction is automatic selection 
by using the local error of each block image. 
The paper is organized as follows: in the section 1,  

2. Image reconstruction from Orthogonal 
Moments 

The orthogonal functions and their moments have been 
utilized as features in much image processing application 
pattern recognition, scenes analysis, localisation of 
pathology and target identification. Moments of image are 
treated as region-based shape descriptor.  

2.1 Legendre Polynomial 

The nth-order Legendre polynomial is defined by 
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The Legendre polynomials have the generating function 
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From the generating function_ the recurrent formula of 
the Legendre polynomials can be acquired 
straightforwardly: 

       )()
21

1(
0

2 ∑
∞

=

=
+− i

i
i xpr

dr
d

rrxdr
d  

      )(
)21( 0

1

2
32

∑
∞

=

−=
+−

−

i
i

i xpir
rrx

rx
  (3) 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011 

 

120

)()21()()(
0

12

0

xpirrrxxprrx i
i

i
i

n

i

i ∑+−=−
∞

=

−

=
∑  

Then we have 

)()1(                            
)(2)()1()()(

1

11

xpk
xxkpxpkxpxxp

k

kkkk

−

+−

−+
−+=−

 (4) 

Or the recurrent formula of the Legendre polynomials: 
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The Legendre polynomials )(xpn  are a complete 

orthogonal basis set on the interval [ ]11− : 
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Where  mnδ  is the Kronecker function, that is:  
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2.2 Legendre Moments 

Legendre moments belong to the class of orthogonal 
moments and they were used in several pattern 
recognition applications. They can be used to attain a near 
zero value of redundancy measure in a set of moment 
functions so that the moments correspond to independent 
characteristics of the image. The definition of Legendre 
moments has a form of projection of the image intensity 
function into Legendre polynomials. 
The two-dimensional Legendre moments of order 
( qp + ), with image intensity function f(x,y), are defined 
as: 
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with  2]1,1[),( −∈yx  

The recurrence relation of Legendre polynomial )(xpm , is 
given as follows;  
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Where xxpxp == )(  ,1)( 10  and  1>m . Since the 
region of definition of Legendre polynomials is the 
interior of [ ]11−  , a square image of MN ×  pixels 
with intensity function ),( jif , 
( MjNi <≤<≤ 1 and 0 ), is scaled in the region of 

1,1 ≤≤− yx , as a result of this, equation (8)  can now be 
expressed in discrete form as: 
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Where  mnβ  is the normalizing constance: 
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ix  and jy  denote the normalized pixel coordinates in the 

range of [ ]11− , which are given by 
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If only Legendre moments of order Mx≤ are given, the 
function ),( jif  can be approximated by a truncated 
series: 
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3. Image Reconstruction from Legendre 
Moments 

The input image, which is described by the function
),( yxf , is partitioned into square blocks of pixels of size 

(k, l), a thing that produces a number of sub-images which 
will be reconstructed separately. 
Let MN ×  be the image size by pixels and let (k, l) 
represent the block size. The number of image blocks is 

given by 
l

M
K
N
× . 

The image function f(x,y) can be expressed by image 
blocks as follows: 
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Where ),(, yxf ba  is the sub-image associated to block 
{a,b} . 
The equation (A1) can rewrite each image block as 
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The block image function reconstructed from ba
mnL ,   to a 

given order θ can intuitively be defined as: 
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4. Optimal-order moments 

To measure the error between the original image and its 
reconstructed version is given by:  

dxdyyxfyxffferror MxMx
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wherein Mx  is the highest moment order involved in 

reconstruction, and ),(~ yxf Mx  represents the 
reconstructed image from ),( yxf  and 1,1 ≤≤− yx . 
The normalized mean square error between the original 
image ),( yxf  and the reconstructed image ),(~ yxf Mx  is 
defined by: 
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The local error between the original block image and its 
reconstructed version block can be approximated by the 
given expression: 
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(19) 
and the global error is computed from the whole local 
error: 
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With i  is the order of moment. 
To measure the performance of resemblance between the 
block images iMxf ,

~
 and 1,

~
−iMxf can be expressed by: 

=MxDerror  iMxerror , - 1, −iMxerror              (21) 

5. Experimental results 

In this section, simulation results are  provided to validate 
the framework developed in the previous section. The 
image which is shown in figure (1) is used as the  test 
image (Medical Image). 
 

 
Figure 1: The original image 

The original image is reconstructed by   blocks using the 
Legendre moment which is shown in figure (2). 
 

 
 (a)                 (b)                   (c)                 (d)     

Figure 2: The reconstructed image using Legendre moments with the 
block size (4 × 4) at the orders 20(a), 25(b),   34(c) and 42 (d) 

 

Figure (3) shows the error (Eq 20) values from the reconstructed image 
from order 1 up to order 90. It should be noted that the error decreases 

monotonically after order 30. 

 

 

Figure (4) show the variation of error (Eq 21). 
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Conclusion 

In this work a  brief   historical survey of the development 
of concept of moments, first introduced by Hu and 
improved with Teague, Zernike and Legendre, was 
provided. After a demonstration of image reconstruction 
from orthogonal moments, the Legendre Moments 
technique (LM) was proposed. Being of an orthogonal 
nature, this method proved to be with high performance as 
it is used to attain   a nearly zero value of redundancy in a 
set of moments functions – by contrast to the Zernike 
Moments method (ZM) whose the only flaw is that it is 
computationally more complex. 
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