
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

123

Manuscript received August 5, 2011
Manuscript revised August 20, 2011

Time Stamp based global log and monitor approach to handle
orphans in distributed systems

Shamsdueen. E†, Dr. V. Sundaram††

†Research Scholar, Karpagam University, Coimbatore, India
††Director, MCA, Karpagam Engg. College, Coimbatore, India

Summary
Orphan handling in distributed system is very important because,
the orphans make problems like inconstancy of data[2],[7],
wastage of resources[2], and the execution time of the server
processes. Moreover, having no orphan state[1] in distributed
system is very rare. The timestamp based global log and monitor
approach tries to answer the questions like, What happens when
the client crashes while the token is being updated? and how the
monitor process knows the communication link between client
and server which participate in the RPC mechanism is down. In
order to tackle these type of situations a deadline is setup with
the token which is traveling across the system to find out
whether any client which participates in the RPC is down or not.
This approach provides such a mechanism that should find out
the orphans and killed immediately after the orphan is born. So it
prevents the orphans from seeing inconsistent information [4].
Key words
RPC, orphans, Global log, time stamp ,etc.

1. Introduction

RPC is the fundamental communication mechanism for
client/server interaction in distributed systems. The client
is the initiator of an RPC, and the server provides the
implementation of the remotely executed procedure. It is
shown in the figure 1.The request message in the figure 1
contains all current input parameters for the procedure call.
Conversely, the response message contains all results for
the corresponding request produced by the server.

Figure 1. Client/server interaction in Distributed system

Figure 2 shows the situation in an RPC where the client
that breaks down during the execution of a remote
procedure call. It results the orphan execution at the server
end.

Figure 2. Client Process crash

An orphan process is a process that is being executed at
the server and in the meanwhile the initiator (parent) of
that process has been crashed down or the parent process
has been aborted or the communication link between
client and server has been down. In effect, there will be no
parent process to wait for the result of an orphan
computation. So, the result of such a computation is no
more needed either [11]. Moreover, such computations
make many problems like,
1. Inconsistency of data,

2. Wastage of resources

3. Wastage of server execution time

Orphan process may also increase the computational cost
[3]. So, orphans in distributed systems are to be found out
and killed immediately. Many approaches are there in the
literature to detect and kill orphans. The main approaches
are,
Extermination [10]: orphan is killed by looking into log
entry which is made by a client before and RPC is made.
Reincarnation [10]: the way it works is to divide time up
sequentially numbered epochs. When a client reboots, it

Reply

Request

Server Client

Client

Ti
m
e

Client Server

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

124

broadcasts a message to all remote computations on behalf
of that the client are killed.
Gentle reincarnation: when an epoch broadcast comes in,
each machine checks to see if it has any remote
computations, and if so, tries to locate their owner. Only if
the owner cannot be found is the computation is killed.
Expiration[9]: In this approach, a deadline shall belong to
all RPCs. If the work is not completed within the specified
time, then one new deadline shall be requested.
All the above approaches are effective in some aspects and
also have some limitations. For example, in the case of
extermination, it is good when system contains very less
number of RPCs, otherwise the log will be very lengthy
and this approach says nothing about the grand orphans-
result of nested invocation [6]. In all the above
approaches, the orphan is detected and killed only after
rebooting the client. In the global log and monitor
approach, the orphan is detected immediately after an
orphan is born. In this approach, the detection and killing
is done by the global monitor by constantly listening the
clients who are participating in the RPC. It is done by
sending a token through the system and receiving back the
token by the global monitor. The monitor process checks
for the data structure associated with the token and finds
the value of status variable. If the value is 1, then the
corresponding client is alive and if it is ‘0’, then the
monitor process realize that the particular client is no more
there in the system.

2. Time stamp based global log approach

In the global log and monitor approach [5], a time stamp
parameter is added in order to answer the problems listed
below.
• What happens if token is lost due to downing of a

node just after it receives the token and it is being
updated? Figure3.

• While the token is being transmitted the
communication link fails, figure4, then the result is
same, and that is the lost token. How it tackles?

In the above two circumstances, the monitor process does
not get the token back and the monitor process cannot
identify the server process where the orphans are active.
The only solution to the above problem is to regenerate
the token and send it through the network again. Now the
question arises here is that in what interval the token to be
regenerated? A time stamp is set with the token, so that
the token can be regenerated after that deadline of the
token.
The deadline of the token can be calculated on the basis of
the number of machines of the system, and the channel

capacity, and the time required to update the token by
each client processes.

The deadline, D= N*t*δ
Where N is the number of systems and ‘t’ is the time
needed to update the token and ‘δ’ is the communication
delay and it is depending up on the quality of the
communication channel and the network speed.

Figure 3. Client crashes down while the token is being updated

Figure 4. Communication link fails while sending back the token

Here we assume that the‘t’ is same for all processes. The
deadline is low when number of system is less in number
and network provides very high speed.

3. The Protocol

Monitor process: sends the token, t1, through the system
to know whether the clients are alive or not by looking
into the value of the status variable associated with the
token. If variable value=1, it indicates that the client is
alive and if value is 0, it indicates that the client is no
more.

Monitor Client

Token

Ti
m
e

Monitor Client

Token

Ti
m
e

Updated
Token

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

125

Case 1:
Client: after receiving the token, t1, the client updates the
status variable of the token to 1, indicates that the client is
alive, and passes the token to the monitor process or to the
next node of the system.
Case 2:
Client process: after receiving the token, t1, the client
updates the token. While updating the token the client
crashes. The result is that the monitor process does not get
the token back or the token would not be passed to the
next node(who participates in the RPC) of the system.
Case 3:
The communication link with the client fails while the
token is possessed by the client. In this case too, the token
would not be back to the monitor process.
Monitor: In Cases 2&3, after the deadline, D = N*t*δ, the
monitor process regenerates the token and sends the token
again through the system and gets back the system.

4. Conclusion

The solution to the problems, the client crash and
communication link fail, is to regenerate the token sent by
the monitor process. The regeneration of the token can be
done by any algorithm which is used in the network
systems. The regenerated token is again sent through the
system and find out the parent process which are active
and which are down. The orphans of the corresponding
down processes are killed by sending appropriate
messages to the server processes. If the communication
link of the system is very much prone to fail, then this
time stamp based approach is not suitable because the
token would not reach back to the monitor process in all
occasions. This causes regeneration of the token again and
again. By doing so the orphans of other crashed process
cannot be identified. i.e., the orphans of other process still
active at their servers. So, this approach is suitable when
the communication link is almost reliable.

References
[1] Min Ma, Shiyao Jin, Chaoqun Ye, and Xiaojian Liu,

“Dynamic Fault Tolerance in Distributed Simulation
System”, Springer-Verlag Berlin Heidelberg, ICCS, Part1,
LNCS 3991, pp. 769-776, 2006

[2] A.D. Birrell and B.J. Nelson, “Implementing remore
procedure calls”, ACM Trans. Comput. Syst., Vol. 2. no.1,
pp. 39-59, Feb 1984.

[3] Jaochim Baumann and Kurt Rothermel, “The Shadow
Approach: An Orphan Detection Protocol for Mobile
Agents”, Springer-Verlag London Ltd, Personal
Technologies (1998) 2: pp. 100-108

[4] Valerie Issarny, Gilles Muller, and Isabelle Puaut.
“Efficient Treatment of Failures in RPC Systems”. Proc.
13th Symposium on Reliable Distributed Systems, pp. 170-
180. IEEE Comp. Society Press, 1994.

[5] Shamsudeen. E and Dr. V Sundaram. Article: An Approach
for Orphan Detection. International Journal of Computer
Applications 10(5):28–30, November 2010. Published By
Foundation of Computer Science.

[6] S. Pleisch, A. Kupsys, and A. Schiper. “Preventing Orphan
Requests in the Context of Replicated Invocation”. In Proc.
22nd Symp. on Reliable Distributed Systems, pages 119–
129, 2003.

[7] M. P. Herlihy and M. S. McKendry, Time-Stamp based
orphan elimination, IEEE Transactions on Software
Engineering, vol. 15, no. 7, pp. 825-831, 1989.

[8] Maurice Herlihy, Nancy Lynch, Michael Merritt, and
William Weihl. On the correctness of orphan elimination
algorithms. In Proceedings of the 17th Annual IEEE
Symposium on Fault- Tolerant Computing, July 1987.

[9] M. Jahanshahi, K. Mostafavi, M.S. Kordafshari, M.
Ghlipour, A.T. Haghighat, “ Two new Approaches for
Orphan Detection”, Proc. IEEE 19th International
Conference on Advanced Information Networking and
Applications (ANAI‟05), 2005

[10] Pradeep K. Sinha, “Distributed Operating Systems-
Concepts and Design”, Prentice Hall, 2008.

[11] Fabio Panzieri, Santosh K. Shrivastava, “A Remote
Procedure Call Mechanism Supporting Orphan Detection
and Killing” Proc. IEEE Transaction on Software
Engineering, Vol. 14, No. 1, 1988.

