
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

214

Manuscript received August 5, 2011
Manuscript revised August 20, 2011

SmartSense: A Novel Smart and Intelligent Context-Aware
Framework

Anuja Meetoo-Appavoo
Faculty of Engineering University of Mauritius

Abstract: Traditional interactive applications are limited to using only explicit user input. However, as users are moving away from
traditional desktop computing environments towards mobile and ubiquitous computing environments, there is an increasing need for such
pervasive applications, which operate in an extremely dynamic and heterogeneous environment, to be context-aware. Yet, context is
poorly utilized and building context-aware applications is currently complex and time-consuming mainly due to a lack of architectural
support. There is currently no established generic architecture and most context-aware applications have been built in an ad hoc manner.
This paper presents SmartSense, a smart and intelligent context-aware framework for the easy creation and flexible deployment of
context-aware applications, and hence helps in transforming physical spaces into computationally active and intelligent environments. In
addition to fully supporting all the requirements of a context-aware architecture, it (1) allows applications to easily acquire contextual
information, reason about it using different logics and then adapt themselves to changing contexts, (2) allows autonomous heterogeneous
components to have a common semantic understanding of contextual information and aids in developing more scalable and interoperable
applications through the use of ontologies, (3) provides an improved Quality of Context (QoC) for location and seamless indoor and
outdoor location tracking through sensing fusion, (4) employs machine learning, and (5) is generic, i.e. will support any context-aware
application, and scalable.
Keywords: Context-awareness, framework, architecture, middleware, sensing fusion, machine learning.

INTRODUCTION

With the infiltration of mobile devices and mobile
communication to support a mobile lifestyle, pervasive
computing is becoming increasingly popular. Computing
is moving away from desktop and permeating into
several everyday objects and the environment in which
we live thus allowing services to be provided to users
anywhere and at anytime. Traditional interactive
applications are limited to using only explicit user input.
However, the new generation of applications operates in
an extremely dynamic and heterogeneous environment
where the availability of resources and services may
change significantly during a typical period of system
operation. Thus, applications must be context-aware and
dynamically adapt to changes in their environment due to
activities of the users or other objects. Today, context-
awareness is receiving growing attention and has moved
beyond its research roots.

Yet, despite context being vital and the prevalence of
powerful networked computers that makes feasible the use
of an increasing number of commercial off-the-shelf
sensing technologies, context is a poorly utilized source of
information in interactive computing. Building context-
aware applications is currently complex and time-
consuming mainly due to a lack of architectural support.
There is currently no established generic architecture and
most context-aware applications have been built in an ad
hoc manner. In this paper, SmartSense, a novel smart and
intelligent context-aware framework that supports the
development and evolution of context-aware applications

is proposed. The main aim of SmartSense is to make
physical spaces, such as rooms, homes, offices and
shopping centers, intelligent and eventually aid humans in
these spaces.

Section 2 gives a technical discussion on context and
context-awareness. Section 3 presents the requirements of
a context-aware framework and evaluates some related
works with respect to the requirements. Section 4 presents
SmartSense, my proposed context-aware framework.
Section 5 gives an overview of a proof-of-concept
application built on SmartSense, namely a child tracking
service. Section 6 provides an evaluation of SmartSense,
outlining its strengths and benefits. Finally, section 7
concludes the paper, outlining some future works.

CONTEXT AND CONTEXT-AWARENESS

Apprehending the need for context [1] is only the
initial step towards using it effectively. However, a better
understanding of context will enable application designers
to more effectively select what context to use in their
applications and provide insights into the types of data
that need to be supported and the abstractions and
mechanisms required to support context-aware computing.
The method of context acquisition [2] is of paramount
importance when designing context-aware systems since
it predefines the architectural style of the system at least to
some extent. Some examples of on-going research
projects in the field of context-awareness are discussed in
[3] - [11] and common context-aware applications are
outlined in [12] - [15]. A context model [2] defines and
stores context data in a form that can be processed by

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

215

machines. Early models [16] primarily dealt with
modeling of context with respect to one application or an
application class. However, generic models that cater for
several applications are desired. The most relevant context
modeling approaches [2] are (1) key-value model [2], (2)
markup scheme model [2], (3) graphical model [2], (4)
object-oriented model [2], (5) logical model [2], and (6)
ontology based model [17]. These approaches are based
on data structures used for representing and exchanging
contextual information in the respective system. Moreover,
the ontology based model is the most expressive and
fulfils largely the requirements [2] defined in [16].

Quality of Context (QoC) [18] refers to information
that describes context information and can be used to
determine the worth of the information. Sensing a lot of
redundant and conflicting information [19] makes
efficient management of context information challenging.
QoC parameters can then be used to resolve conflicts in
context information. However, only a few works [20]
support quality of context in context-aware applications.

CONTEXT-AWARE FRAMEWORK

Context is vital for the new generation of applications
where the user’s context, e.g. the user’s location and the
people and objects around him/her, is dynamic.
Moreover, recent advances in technology, namely in
sensors, hardware, networking and software, have made
feasible the development of context-aware applications.

Yet, context is poorly utilized due to a few properties
of context [1], namely (1) context is acquired from non-
traditional devices with which humans have limited
experience, (2) context must be abstracted to make sense
to applications, (3) context may be acquired from multiple
distributed and heterogeneous sources, and (4) context is
dynamic.

However, despite these problems, researchers have
been able to develop context-aware applications. But an
ad hoc process has been employed making the
development of context-aware applications complex and
time-consuming. This lack of architectural support makes
it hard to build new applications and limits the amount of
reuse across applications, requiring common
functionalities to be rebuilt for every application.
Therefore, the main problem preventing the use of context
and development of more context-aware applications is a
lack of architectural support. Existing architectures [21]
fail to provide the necessary support for adaptive context-
aware applications leading to the need for context-aware
framework.

The following are the most crucial prerequisites of a
context-aware framework:

i. Context specification [1], [22]: A context-aware

framework must provide the flexibility to context-

aware applications to query it or subscribe to it for
required context information.

ii. Separation of concern and context handling [1]:
Separating context acquisition from context use
will help reduce the design process of acquisition
and enable applications to use context information
without the need to worry about sensor details and
how to acquire context from it.

iii. Context interpretation [1], [22]: Context
interpretation must be provided by the framework
to make it reusable by multiple applications. It
must be independent of applications using it.

iv. Constant availability of context acquisition [1],
[22]: A component responsible for acquiring
context must be independent of applications using
it such that context is constantly available to any
application requiring it. This will also relieve
application designers from the concerns of context
acquisition components.

v. Transparent distributed communications [1]:
Context-aware applications and sensors may be
distributed among several computing devices.
However, this must be transparent to both sensors
and applications, thus freeing designers from the
need to build a communications framework.

vi. Context storage [1], [22]: Past context information
must be made available to context-aware
applications as well as components of the
architecture, e.g. to predict future context values.

vii. Resource discovery [1], [2], [22]: Context sources
are not stable or permanently available. In such a
dynamic environment, resource discovery is vital.
This feature also enables designers to discover
what context and components are already
available in the environment at design time.

viii. Model of the environment [22]: Availability of
such a model to the framework and applications
allows for more sophisticated inferencing.

ix. Machine learning: Rule based inferences have the
disadvantage of requiring explicit rule definitions
by humans and do not provide the flexibility of
adapting to changing circumstances. Machine
learning techniques help to deduce higher level
context and hence cater for this shortcoming.

There are currently a diversity of near-context-aware

architectures [1], [22], context-aware architectures [1],
[22] – [25] and context-aware middleware [26] – [35].
However, they all have loopholes and each is restricted
to a specific domain. Furthermore, none of them fully
supports all the requirements of a context-aware
framework that have been identified, as shown in table 2
[36]. Thus, there is no generic established context-aware
architecture to aid in building context-aware applications.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

216

Table I. Summary of Existing Architectures and Middleware

C
on

te
xt

Sp

ec
ifi

ca
tio

n

Se
pa

ra
tio

n
of

 C
on

ce
rn

&

 C
on

te
xt

 H
an

dl
in

g

C
on

te
xt

In

te
rp

re
ta

tio
n

C
on

st
an

t A
va

ila
bi

lit
y

of
 C

on
te

xt

A
cq

ui
si

tio
n

Tr
an

sp
ar

en
t

D
is

tr
ib

ut
ed

C

om
m

un
ic

at
io

ns

C

on
te

xt
 S

to
ra

ge

R
es

ou
rc

e
D

is
co

ve
ry

M
od

el
 o

f t
he

E

nv
ir

on
m

en
t

M
ac

hi
ne

 L
ea

rn
in

g

Near-Context-Aware Architectures
 Open Agent Architecture P X X P X N/A

HIVE P P X X X N/A
 MetaGlue P X X X N/A

Context-Aware Architectures
 Context Toolkit P X X

 Sulawesi P P X X X P N/A
 Stick-e Notes P X X X X P X N/A
 EasyLiving P P X P P N/A

 Schilit’s System Architecture P P X P X P N/A
 CALAIS P X X N/A N/A

 TEA P X X X P N/A N/A
 SAIsense X

Context-Aware Middleware
 CASS N/A X X N/A

 SOCAM N/A N/A X N/A
 MiddleWhere N/A N/A X N/A

 Gaia N/A N/A N/A X
 QoSDREAM N/A N/A N/A N/A N/A N/A N/A

 CAPNET N/A N/A N/A N/A X N/A
 CoBrA N/A N/A N/A X N/A
 Contory X N/A

X = No Support; P = Partial Support; = Complete Support; N/A = Not Available

SMARTSENSE: A NOVEL SMART AND INTELLIGENT CONTEXT-AWARE FRAMEWORK

SmartSense eases the development of new context-
aware applications as well as the evolution of existing
ones, e.g. to seamlessly change the current sensing
techniques used. At the core of the framework is an
inference engine, based on the predictive model of
context defined in the ontology, to make inferences about
the current context and help context-aware applications
in determining how to adapt their behavior when new
context information is acquired. A key feature of the
framework is that it employs machine learning to deduce
higher level context and provides the flexibility of
adapting to changing circumstances, hence making
SmartSense smart and intelligent. Furthermore,
SmartSense is server-based and hence scalable, i.e.
remains effective with an increase in the number of users
and services and new components can be added as and
when needed. It also implies that SmartSense does not
suffer from processor and memory constraints that would
apply to a mobile computer. This makes feasible the use
of artificial intelligence (AI) components and the storage
of large amounts of data, namely context history, facts
and inference rules. The architecture employs ontologies
to model context, namely the Web Ontology Language
(OWL) to encode facts and the Semantic Web Rule

Language (SWRL) to encode rules, thus making context-
aware applications interoperable and scalable. The
sensing fusion algorithm improves the QoC for location
and makes the framework adaptive by granting the
flexibility to alter location sensing techniques on the fly
without affecting applications or infrastructure
components dependent on location context. As such, the
architecture supports seamless indoor and outdoor
location tracking.

Fig. 1 depicts the overall architecture of SmartSense
and is followed by a brief description of each of its
components. The components are implemented in Java
and are multithreaded. Thus, SmartSense is also platform-
independent and its components are capable of handling
multiple incoming messages.

A. Context Widget
Context widget, that is similar to the context widget

in Context Toolkit [23], acts as a mediator between an
application and its operating environment. It relieves
applications from context sensing issues by wrapping the
hardware or software sensor with a uniform interface.
This provides the flexibility of exchanging a context
widget with another widget providing the same type of

Existing Framework

Requirements

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

217

context information without affecting the applications
using it. Furthermore, context widgets (1) can be shared
by all executing applications and are independent of
these applications, (2) are reusable and persistent, and (3)
continuously send updated context information to the
context manager for context encoding and storage and

further processing when needed. Thus, context widget
caters for (i) context specification, (ii) separation of
concern and context handling and (iii) constant
availability of context acquisition. Context information is
made available through querying or notification
mechanisms via a common, uniform interface.

Figure 1. SmartSense framework

B. Context Manager
The context manager comprises of two

subcomponents, namely:
(1) Context interpreter: The context interpreter derives
higher level or richer forms of information from low-
level or raw context information acquired from context
widgets. It is independent of applications and can be used
by multiple applications. The latter need not be
concerned about the procedures involved but only
interact with the interpreted information. The context
interpreter works by invoking the inference engine.
(2) Context Encoder: The context encoder encodes
context information acquired from sensors through
context widgets using OWL and stores it in context
history. In cases where a running application is
dependent on the context, the context manager sends the
URI of the saved context to the context provider. Thus,
the context manager caters for (i) context interpretation.

C. Sensing fusion
A plethora of location sensing technologies is

available and no single technique has emerged as the
clear winner in all types of environment. Instead, the use
of different location sensing technologies [37] is
expected in different environments depending on their
specific requirements. Some environments may also
require the deployment of multiple location technologies.
However, different location sensing techniques give
location information in different formats and with

different resolution and confidence. SmartSense employs
a sensing fusion algorithm [38] to (i) fuse location
context acquired from any number of different location
sensing techniques using probabilistic reasoning
techniques to obtain an optimal estimate of the context
information, thus improving accuracy and positioning
probability, (ii) resolve conflicts, and (iii) handle
uncertainty. It also enables seamless transition from one
location sensing technique to another.

D. Context history
Applications may be dependent on current context as

well as past context to adapt their behavior. Hence,
context acquired from sensors are encoded in Web
Ontology Language (OWL) [39] – [41], more precisely
OWL DL, and stored in context history even when no
applications currently require them. Context history can
be queried by applications and thus caters for (i) context
storage.

E. Knowledge Base
Knowledge base contains facts encoded in OWL and

rules encoded in Semantic Web Rule Language (SWRL)
[41] – [43]. It is used by the inference engine to infer
new facts and solve problems of context-aware pervasive
applications. The knowledge base is tailored to each
application built on SmartSense and can be altered or
updated without affecting the implementation of the
inference engine.

Sensor(s)

Context Acquisition (Context Widget(s))

 Components of SmartSense

Hardware or software sensors that
acquire context from the environment

Context Manager Context Manager

Sensing Fusion

Inference Engine

Knowledge
Base

(OWL+ SWRL)

Context
History
(OWL)

Context Interpreter

Context Encoder

Context Synthesiser

Context‐aware applications built on
SmartSense

Context Provider

Context-Aware Applications

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

218

F. Inference Engine
The inference engine Bossam version 0.9b5 [42],

developed by M. Jang, is used to find matching goals
when a change in context is detected. Applications can
then adapt their behaviors in-line with the inference. It
employs inference rules to perform context reasoning
over stored facts and works in conjunction with a
knowledge base that stores facts and rules, and a context
history that stores past and current context as facts. The
framework also caters for reasoning and learning
mechanisms that allows for more accurate prediction of
context and hence adaptation of the application. Thus, it
caters for (i) machine learning.

G. Context Provider
The context provider [36] accepts subscriptions from

context consumers, keeps record of subscribers for
particular context types and issues a callback to them
when updated context is available from the context
manager. While context widgets provide applications
with raw context information, context providers employs
reasoning and learning mechanisms [44] to reason about
context and offers context encoded in OWL. Thus, it
caters for (i) context specification. Different context
providers may use different reasoning or learning
mechanisms, hence logics. Yet, their common grounding
on the predicate model allows for a uniform query by
context consumers. All context providers support a
similar interface allowing consumers to issue queries for
context information without worrying about the type of
the context provider, hence greatly simplifying the
development of context-aware applications.

H. Context Synthesiser
A context synthesizer acquires sensed context from

various context providers, deduce higher-level or abstract
context from them, and provide the deduced context to
consumers. For example, a context synthesizer can infer
a child’s activity based on the number of children in the
room and the applications that are running. Context
synthesizers accept subscriptions from context
consumers, keep records of subscribers for particular
context types and issue a callback to them when updated
context is available from the context manager. Reasoning
and learning mechanisms, based on Bayes theorem [44],
are also employed. All context information sensed as
well as user actions are stored in the context history.
These act as training examples for the framework. This
approach is especially useful for learning users’
behaviours by studying their actions over a period of
time. Eventually, applications can even take proactive
actions on behalf of the user depending on the context
and thus save valuable time of a user. Thus, it caters for
(i) context specification and (ii) machine learning.

I. Communication between the Components of the
Framework
Components of SmartSense are autonomous in

execution, i.e. they are instantiated and execute
independently of each other. Context-aware applications
are usually distributed on several computers for better
performance and efficiency. SmartSense allows a peer-
to-peer communication among them using HyperText
Transfer Protocol (HTTP) and eXtensible Markup
Language (XML). Messages are encoded in XML and
wrapped with HTTP. These allow for the lightweight
integration [1] of distributed components, enable the
architecture to benefit from the platform- and language-
independence features of XML and enable to build more
interoperable context-aware services. Two classes,
namely XMLHTTPClient and XMLHTTPserver, are
provided to send and receive messages respectively.
Application programmers need not write these classes,
but merely create instances of them to use them. The
default communication protocol for SmartSence can be
modified to account for other protocols, e.g. Simple Mail
Transfer Protocol (SMTP), simply by creating an object
that speaks the SMTP protocol for outgoing
communications and one for incoming communications.
Thus, it supports (i) transparent distributed
communications.

J. Resource Discovery
Resource discovery mechanisms [5] are rarely used in

existing frameworks. However, such dynamic
mechanisms are important, particularly in pervasive
environment, where available sensors and the context
sources change rapidly. In real world applications, used
context sources are neither stable nor permanently
available. SmartSense exploits Jini [45] - [47] that allows
service registration by context providers and service
discovery by context consumers. All components of
SmartSense and applications built on it register
themselves to the discovery service, which provides
information required to communicate with them at run-
time. This caters for (i) resource discovery.

PROTOTYPE APPLICATION BUILT ON THE PROPOSED
FRAMEWORK

A child tracking service has been implemented on the
framework. The service allows parents to track their
children by viewing the latter’s location on their portable
device as well as getting a prediction of the child’s
activity, e.g. whether he is playing around or watching a
film, and mood, e.g. whether he is happy or sad. It uses
location context and status of applications in the room,
exhibits the use of the components of SmartSense and
illustrates the sensing fusion algorithm and learning
mechanisms of the framework. The application currently

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

219

deals with part of a building and can be extended to any
building by altering the stored model of the environment.

SmartSense components used in this application are
widgets providing location context and the status of
applications, sensing fusion algorithm, physical
interpreter, symbolic interpreter, physicalToSymbolic
interpreter, context encoder, context provider, inference
engine, context history and knowledge base. A screenshot
of the application is given in fig. 2 where location values
from six sensors are fused to obtain an optimal location
value for the child being tracked.

Examples of rules for the ChildActivity context
provider are as follows:

Child(sitting) AND Television(On)
=> ChildActivity(Watching Movie)
People(Room, >, 1) AND NOT Child(sitting)
=> ChildActivity(Playing)

Sensing of the child’s mood [44] of is very

challenging since it is difficult to write rules to determine
the mood of a person as each person is different and a
large number of factors can influence a person’s mood.
The child tracking application employs a learning
mechanism, based on the Naïve Bayes algorithm, that
takes into account factors like the location of the child,
time of the day, which other persons are in the room with
him and his activity to determine the child’s mood. Past
context is used to train the components of the framework
for some time.

Figure 2. Screenshot of Child Tracking Service

EVALUATION

SmartSense is a hybrid solution and greatly facilitates
the development of any context-aware applications. A
child tracking service has been easily implemented using
the framework. SmartSense allows applications to

subscribe to context widgets or context providers for
context types they require and receive notifications when
updated context values are acquired. This eliminates the
need for the applications to query the widgets at regular
intervals for new context values. It also hides the details
of context sensors, thus allowing the underlying sensors
to be replaced without affecting the applications
dependent on context they provide. Moreover, the
context widgets are independent of applications and can
thus be shared among several applications. It has features
of both a context-aware architecture and a context-aware
middleware. Moreover, SmartSense makes use of
machine learning and thus allows the flexibility of
adapting to changing circumstances. It has been found
that prediction of the mood of the child was fair in
different situations after some training, given that
humans [44] are fairly repetitive creatures, i.e. their
moods in different contexts follow certain predictable
patterns. It should however be noted that predictions may
not always be perfect since it is quite difficult to take into
account all possible factors that can influence the mood
of the user. Good guesses can be made based on the
available information.

Furthermore, SmartSense supports all the
requirements identified for a context-aware framework.
The sensing fusion algorithm of SmartSense improves
the QoC for location by refining the location context
values acquired from any number of location sensors,
each employing a different location sensing technique.
The algorithm also makes it very simple to dynamically
change the underlying location sensing technique at run
time, and thus caters for seamless indoor and outdoor
location tracking. SmartSense also supports the
lightweight integration of components though the use of
XML and HTTP for communication. XML provides
platform- and language- independence. Moreover, the
components are implemented in Java rendering the
architecture platform independent. Interpreters provided
by SmartSense are independent of and can be shared
among applications. In addition, the use of ontologies to
model context enables more scalable and interoperable
applications to be built. Bossam, the inference engine
used by SmartSense, makes use of URI to refer to files
which makes it suitable for use with the distributed
infrastructure components.

CONCLUSION

This paper has presented a set of requirements
identified for a context-aware framework and a study of
existing relevant near-context-aware architectures and
on-going existing context-aware architectures and
context-aware middleware. It has been shown that none
of the existing architectures fully satisfies all the
requirements. Thus, SmartSense, a novel smart and
intelligent context-aware framework has been proposed

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

220

and implemented. A proof-of-concept application,
namely a child tracking service, has been implemented
using the framework to illustrate that the latter facilitates
the development of context-aware applications. While
SmartSense supports all requirements of a context-aware
framework, there are still rooms for improvement to
make SmartSense a commercially acceptable framework.
Some issues that merit further investigation are (i)
improving the sensing fusion algorithm to take into
account freshness of context values by associating a
time-to-live value in seconds with each sensor value,
after which the value is considered stale and unusable,
(ii) allowing an infrastructure component that went down
to automatically restart any unfinished jobs when the
system works again, e.g. the context provider can
periodically save the current list of subscribers to
permanent storage so that it can be restored to its last
working state when restarted, (iii) enabling the
architecture to detect failure of a component and
automatically restart it as well as restore it to its last
working state, (iv) providing a graphical interface to aid
the developer in constructing inference rules by
presenting him with a list of the various types of contexts
available and a list of possible behaviours of the
application for the different context, (v) improving the
learning mechanisms, such making use of reinforcement
learning.

REFERENCES

[1] A. k. Dey, Providing architectural support for building
context-aware applications, PhD Thesis (Georgia Institute
of Technology), 2000.

[2] M. Baldauf, S. Dustdar, & F. Rosenberg, A survey on
context-aware systems, International Journal of Ad Hoc
and Ubiquitous Computing, 2006.

[3] K. L Mills, AirJava: Networking for smart spaces, Proc.
USENIX Embedded Systems Workshop, Cambridge,
Massachusetts, 1999, 29 – 34.

[4] Information Society Technologies Research Group, The
disappearing computer. [Online] Available from:
http://www.disappearing-computer.net [Accessed 2011].

[5] Electrical Engineering and Computer Science Department,
University of California, Berkeley, The endeavour
expedition: Charting the fluid information utility. [Online]
Available from http://endeavour.cs.berkeley.edu
[Accessed 2011].

[6] Carnegie Mellon University, Project Aura, Distraction-
free ubiquitous computing. [Online] Available from:
http://www.cs.cmu.edu/~aura [Accessed 2011].

[7] MIT Laboratory for Computer Science and MIT Artificial
Intelligence Laboratory, MIT Project Oxygen - Project
overview. [Online] Available from:
http://oxygen.lcs.mit.edu [Accessed 2011].

[8] Department of Computer Science and Engineering,
University of Washington, Portolano: An Expedition into
Invisible Computing. [Online] Available from:
http://portolano.cs.washington.edu [Accessed 2011].

[9] Microsoft Research, Easy Living. [Online] Available
from: http://research.microsoft.com/easyliving [Accessed
2011].

[10] S. Shafer, J. Krumm, B. Brumitt, B. Meyers, M.
Czerwinski, & D. Robbins, The new EasyLiving project at
Microsoft Research, Joint DARPA/NIST Smart Spaces
Workshop, Maryland, 1998.

[11] M. Lucente, IBM Research, DreamSpace: natural
interaction. [Online] Available from:
http://www.research.ibm.com [Accessed 2011].

[12] G. Chen, & D. Kotz, A Survey of context-aware mobile
computing research, Technical Report TR2000-381
(Department of Computer Science, Dartmouth College),
2000.

[13] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper,
& M. Pinkerton, Cyberguide: a mobile context-aware tour
guide, Wireless Networks, 3(5), 1997, 421 – 433.

[14] S. Meyer, & A. Rakotonirainy, A Survey of research on
Context-Aware Homes, Proc. Workshop Conference on
Wearable, Invisible, Context-Aware, Ambient, Pervasive
and Ubiquitous Computing, Australia, 21, 2003, 159 – 168.

[15] R. M. Gustavsen, Condor - an application framework for
mobility-based context-aware applications. Proc.
UBICOMP 2002 Workshop on Concepts and Models for
Ubiquitous Computing, Goeteborg, Sweden, 2002.

[16] T. Strang, & C. Linnhoff-Popien, A context modeling
survey, The 1st International Workshop on Advanced
Context Modeling, Reasoning and Management,
Nottingham, 6th International Conference on Ubiquitous
Computing (UbiComp1004), UK, 2004, 33 – 40.

[17] H. Chen, T. Finin, & A. Joshi, An Ontology for Context-
Aware Pervasive Computing Environments. IJCAI
Workshop on Ontologies and Distributed Systems (Great
Britain), 2003, 18, 3, 197 – 207.

[18] Zied Abid, Sophie Chabridon, Denis Conan, “A
Framework for Quality of Context Management”, Quality
of Context, First International Workshop, QuaCon 2009,
Stuttgart, Germany, June 25-26, 2009, pp. 120-131.

[19] Atif Manzoor, Hong-Linh Truong, Schahram Dustdar,
"Quality Aware Context Information Aggregration System
for Pervasive Environment", The 5th International
Symposium on Web and Mobile Information Services
(WAMIS 2009), (c) IEEE Computer Society, Bradford,
UK, May 26-29, 2009.

[20] Hong-Linh Truong, Schahram Dustdar, "A Survey on
Context-aware Web Service Systems", Invited Paper,
International Journal of Web Information Systems, 5(1):5
- 31, (c) Emerald, 2009.

[21] M. J. Franklin, K. Tan, and C. Lui, Mobile Data
Management. Go online to http://books.google.mu/, 15.

[22] J. Ensing, Software architecture for the support of context-
aware applications, Koninklijke Philips Electronics N.V.
2002, UR 2002/841, 2002.

[23] A. K. Dey, & G. D. Abowd, The Context Toolkit: Aiding
the development of context-aware applications, Workshop
on Software Engineering for Wearable and Pervasive
Computing, Limerick, Ireland, 2000.

[24] A. K. Dey, D. Salber, M. Futakawa, & G. Abowd, An
architecture to support context-aware applications, GVU
Technical Report, GIT-GVU-99-93, Georgia Institute of
Technology, 1999.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.8, August 2011

221

[25] A. K. Dey, G. D. Abowd, & D. Salber, A context-based
infrastructure for smart environments, Proc. 1st
International Workshop on Managing Interactions in
Smart Environments (MANSE’99), Ireland, 1999, 114 –
128.

[26] P. Fahy, & S. Clarke, CASS - Middleware for mobile
context-aware applications. Proc. 2nd ACM SIGMOBILE
International Conference on Mobile Systems, Applications
and Services (Mobisys’2004), USA, 2004.

[27] T. Gu, H. K. Pung, & D. Q. Zhang, A Middleware for
building context-aware mobile services. Proc. IEEE
Vehicular Technology Conference (VTC-Spring 2004),
Italy, 2004.

[28] T. Gu, H. K Pung, & D. Q. Zhang, A service-oriented
middleware for building context-aware services, Journal
of Network and Computer Applications, 28(1), 2005, 1 –
18.

[29] A. Ranganathan, J. Muhtadi, S. Chetan, R. Campbell, & M.
D. Mickunas, MiddleWhere: A Middleware for location
awareness in ubiquitous computing Applications, Proc.
5th ACM/IFIP/USENIX International Conference on
Middleware, Canada, 2004, 397 – 416.

[30] A. Ranganathan, & R. H. Campbell, A Middleware for
context-aware agents in ubiquitous computing
environments, ACM/IFIP/USENIX International
Middleware Conference 2003, Germany, 2003, 143 – 161.

[31] O. Davidyuk, J. Riekki, V. Rautio, & J. Sun, Context-
aware Middleware for mobile multimedia applications.
Proc. 3rd International Conference on Mobile and
Ubiquitous Multimedia (MUM’04), Maryland, 83, 2004,
213 – 220.

[32] H. Naguib, G. Coulouris, & S. Mitchell, Middleware
support for context-aware multimedia applications. Proc.
IFIP TC6/WG6.1 3rd International Working Conference
on New Developments in Distributed Applications and
Interoperable Systems, Netherland, 198, 2001, 9 – 22.

[33] S. Khungar, & J. Riekki, A context based storage for
ubiquitous computing applications. Proc. 2nd European
Union symposium on Ambient intelligence, Netherlands,
84, 2004, 55 – 58.

[34] H. Chen, T. Finn, & A. Joshi, An ontology for context-
aware pervasive computing environments, IJCAI
Workshop on Ontologies and Distributed Systems, Great
Britain, 18(3), 2003, 197 – 207.

[35] O. Riva, Contory: A Middleware for the provisioning of
context information on smart phones, Proc. 7th ACM
International Middleware Conference (Middleware'06),
4290, Springer, 2006, 219 – 239.

[36] D. Sathan, A. Meetoo and R. K. Subramaniam, Context
Aware Lightweight Energy Efficient Framework,
WORLD ACADEMY OF SCIENCE, ENGINEERING
AND TECHNOLOGY, 52, April 2009.

[37] C. G. Carlson, & D. E. Clay, The Earth Model -
Calculating Field Size and Distances between Points using
GPS Coordinates, Site Specific Management Guidelines,
2002.

[38] A. Meetoo & K. K. Khedo, SAIsense: A Novel Scalable,
Adaptive and Intelligent Context-Aware Architecture,
International Journal of Computers and Applications, 2011,
33 (3).

[39] D. L. McGuiness, & F. Harmelen, OWL Web Ontology
Language Overview, W3C Recommendation February
2004. [Online] Available from:
http://www.w3.org/TR/owl-features/ [Accessed 2011].

[40] M. K. Smith, C. Welty, R. Voltz, & D. McGuiness, OWL
Web Ontology Language Guide, W3C Recommendation
February 2004. [Online] Available from:
http://www.w3.org/TR/owl-guide/ [Accessed 2011].

[41] Z. Zhang, & J. A. Miller, Ontology Query Languages for
the Semantic Web: A Performance Evaluation, Master
Thesis (University of Georgia), 2005.

[42] G. Meditskos, & N. Bassiliades, Towards an Object-
Oriented Reasoning System for OWL, International
Workshop on OWL Experiences and Directions, B.
Cuenca Grau, I. Horrocks, B. Parsia, P. Patel-Schneider
(Ed.), Ireland, 2005.

[43] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B.
Grosof, & M. Dean, SWRL: A Semantic Web Rule
Language Combining OWL and RuleML, W3C Member
Submission May 2004. [Online] Available at:
http://www.w3.org/Submission/SWRL/ [Accessed 2011].

[44] A. Ranganathan & R. H. Campbell, A Middleware for
Context-Aware Agents in Ubiquitous Computing
Environments, In ACM/IFIP/USENIX International
Middleware Conference, Rio de Janeiro, Brazil, Jun 16-20,
2003.

[45] M. C. O’Connor, FCC Certifies Ubisense’s UWB, RFID
Journal, The World’s RFID Authority. [Online] Available
from: http://www.rfidjournal.com [Accessed 2006].

[46] G. Roussos, Location Sensing Technologies and
Applications, School of Computer Science and
Information Systems Birkbeck College, University of
London, 2002.

[47] R. Bridgelall, Characterization of Protocol-compatible
Bluetooth/802.11 RFID Tags. [Online] Available from:
http://rfdesign.com [Accessed 2006].

