
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011 

 
 

60

Manuscript received September 5, 2011 
Manuscript revised September 20, 2011 

Generic Programming in C++ and Java 

Shilpa Mathur 
  

Bhagwant University, India 
  
ABSTRACT 
This paper is about Generic Programming in Java and C++. One 
of the main motivations for including generic programming 
support in both Java and C++ is to provide type-safe 
homogeneous containers. To improve the support for generic 
programming in C++, we introduce concepts to express the 
syntactic and semantic behavior of types and to constrain the 
type parameters in a C++ template. 
KEYWORDS  
Generic programming, Constrained Generics, Parametric 
Polymorphism, C++ templates, C++ concepts, Standard 
Template Library (STL). 

1. TERMINOLOGY 

Generic programming can be seen simply as the act of 
using type parameters. A broader definition was given by 
the organizers of a seminar on generic programming: 
Generic programming is a sub-discipline of computer 
science that deals with finding abstract representation of 
efficient algorithms, data structures and other software 
concepts and with their systematic organization. The goal 
of generic programming is to express algorithms and data 
structures in a broadly adaptable, interoperable form that 
allows their direct use in software construction. Key ideas 
include: 

• Expressing algorithms with minimal assumptions 
about data abstractions, and vice versa, thus 
making them as interoperable as possible. 

• Lifting of a concrete algorithm to as general a 
level as possible without losing efficiency; i.e., 
the most abstract form such that when 
specialized back to the concrete case the result 
is just as efficient as the original algorithm. 

• When the result of lifting is not general enough to 
cover all uses of an algorithm, additionally 
providing a more general form, but ensuring 
that the most efficient specialized form is 
automatically chosen when applicable. 

• Providing more than one generic algorithm for 
the same purpose and at the same level of 
abstraction, when none dominates the others in 
efficiency for all inputs. This introduces the 
necessity to provide sufficiently precise 

characterizations of the domain for which each 
algorithm is the most efficient. 

2. GENERIC PROGRAMMING 

Generic programming is implemented differently in 
different programming languages. Generic programming 
is a kind of polymorphism. Each variable and routine 
which can have different types depending on certain 
circumstances during the execution of a program is 
polymorphic.Genericity is also called parametric 
polymorphism. 

2.1. JAVA 

Java is an object oriented language that allows 
programmers to create generic classes. When creating 
generic classes the developer puts at least one type 
parameter in angle brackets after each class or interface 
declaration. These type parameters may be bound or 
unbound in java. 

2.1.1 Genericity internals 

The compilation of a generic class in Java is homogeneous 
for each instantiation of generic type. The complier 
removes all type information related to type parameters. 
This process is called type erasure. By erasing the type 
parameters, raw types are created. This is done by Java 
compiler in order to be backward compatible with older 
non-generic libraries. The raw type of Foo<Integer> is 
Foo. Furthermore, it is impossible to use the type 
parameter at run-time. It is removed by the compiler. An 
attempt to compile the following class results in an error: 
 
public class FooBar<T> 
{ 
public static void main(String args[])  
{T t = new T();  //not allowed  } 
} 

2.1.2 Wildcards 

In Java the type of generic container can be unknown. 
Instead of a type that replaces the type parameter the 
wildcard ? is used. We can use this wildcard bound or 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011 
 

 

61

unbound. When using a wildcard for a generic container 
we must be aware of the fact that some constraints exist 
on variables which represent such containers. This code 
snippet shows the usage of a wildcard: 
 
Public static void showAll(List ? extends Printable> 
elems){ 
for (Printable p : elems) System.out.Println(p);  } 
 
This static method showAll() can be called only with list 
which contain subtypes of Printable. Our Printable 
interface declares a toString method. Therefore for each 
element in this list we can output it to standard out. The 
complier can statically ensure that each element provides a 
toString method, because each element implements the 
Printable interface. If an object in java provides the 
toString method, then we can output its string retranslation 
to standard out. If you are familiar with Java you will 
know that we don’t need a Printable interface which 
declares the toString. Everything (except primitive types) 
is a subtype of Object and Object already implements the 
toString method. Our example is used to demonstrate 
wildcards. Our declaration type of our elems variable can 
be List<? Extends Object> and this declaration is 
equivalent to List<?>. 
Furthermore we must be aware of the fact that within 
showAll we can’t perform any writing operation which 
would insert objects into our elems list. If extends is used 
our container is accessible read only. 
We can also use super keyword. This allows only super 
types of a bound to replace the type parameter. In this 
example the bound is Item. For example: 
 
public static void initList ( List < ?  super Item> items) { 
// in the loop generate some ‘Items’ and insert them into 
//items  
items.add(. . .); 
} 
Into the items we can add anything of type Item or its 
super type.in this case we can’t read from items. The list 
items is only writable. 

2.1.3 Library Development 

In Java the type variable can be used without a bound. 
Often it is not required to constrain the library user. 
Consider any unconstrained generic container from the 
JDK .In this case it is even desirable that a user can create 
a collection of any type. When no constraint is specified, 
the Java compiler uses implicitly Object as a constraint. 
Each reference type (except the primitive types: 
int,double,..)in Java is a subtype of Object. 
 
If the library developer wants to constrain a generic type, 
he/she uses the keyword extends. Extends state that only 

subtypes can be replaced for the type variable. Consider 
the example: 
 
Interface UploadAble { 
String getPath() ; } 
 
Class ToUpload<Payload extends UploadAble>{ 
private List<Payload>elems; 
public void uploadAll() { 
for(Payload p : elems) { 
a.Uploader.upload( p.getPath()); 
} 
} 
// ‘add’ also implement here 
  
This generic ToUpload class has only one type parameter. 
We can use this generic class as a container for objects 
which are uploadable.An object is uploadable if it 
implements the UploadAble interface and provides the 
getpath method. For type parameter  Payload only 
subtypes of UplaodAble can be inserted. Subtypes of 
UploadAble must implement the getPath method which is 
called within uploadAll.With this approach the library 
user is constrained in such a way that the compiler ensures 
that the type inserted for Payload must implement the 
getPath method. 
In Java it is also possible that the library developer uses 
type parameters recursively. This is necessary when 
binary methods are implemented by classes which 
implement generic interfaces. Consider the code snipped 
given in Figure 1. 
The class Integer is a simplified form of Java’s standard 
class with the same name.Integer is extended from the 
generic Comparable<A> interface. This may be confusing, 
but it is well defined. This type of genericity is based on 
the formal model of F-bounded Polymorphism for OO 
programming. 
The advantage of this approach is that the type of formal 
parameter is defined by the type parameter not by 
subtyping. This avoids constraints on subtyping 
(covariance and binary methods) and it ensures that this 
and that have the same declared type. 
 
Figure1 
interface Comparable<A> { 
Boolean equal<T  that> 
} 
 
Class Integer implements Comparable<Integer> { 
private int value; 
boolean equal (Integer that) { 
return this.value == that.intValue(); 
} 
} 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011 
 

 

62

2.1.4 Library Usage 

The library user can use the provided ToUpload class in 
some application: 
 
ToUpload files =  new ToUpload<Myfile> () ; 
//generate some files- f1 and f2 
files.add(f1); 
files.add(f2); 
files.uploadAll(); 
 
The reuse of the ToUpload container is quite intuitive. If 
the library use uses its own class for the type parameter 
Payload which does not implement getPath, then the 
compilation of this little code snippet will fail. The error 
message of the compiler will tell the user that his/her class 
does not implement the UploadAble interface. The getPath 
method is not provided by the user defined class. 
Recursive type parameters can also be used by the library 
user, for example a list is supposed to be ordered is 
declared like this: 
 
OrderedList<T extends Orderable<T>> 
 
Even the library user can constrain himself in order to 
avoid bugs. In this case only subtypes of Orderable<T> 
can be used to create an OrderedList.This is ensured by 
the complier. An OrderedList can contain only elements 
which are subtypes of Orderable and a partial ordering 
exists on this collection. We use recursive bounds to avoid 
problems with covariance. 

2.2. C++ 

2.2.1 Genericity internals 

The type of translation of C++ templates and  C++ 
concepts is called heterogeneous. For each instance of a 
generic class or function the compiler generated its own 
code. This type of translation can be seen as an advantage 
because the generated code is often faster compared to that 
of the homogeneous compilation method. When 
compiling heterogeneously the compiler can optimize the 
code much better especially for primitive types. 

2.2.2 C++ Concepts 

Current C++ templates system is fragile. It does not 
provide any type system for constrained type parameters. 
It can’t check whether concrete types meet requirements 
when instantiated with type parameters. Library 
development and usage suffer because these contexts are 
not divides. Any time a user inserts a type which does not 
meet all the requirements as expected by the generic type, 
and then error messages combine the context of library 
development with that of usage. An upgrade of C++ 

template to C++ concepts is supposed to eliminate all 
these disadvantages. In this section a generic find function 
will be extended with C++ concepts. This example will 
give an introduction on how C++ concepts are used and 
what they offer. 
C++ concepts will provide three different means to 
constrain generic types. Here is a short description of their 
purposes:  
 
concept: This is an abstract interface-like collection of 
functions, operators and associated types. If a type is 
supposed to meet the requirements of a particular concept 
it must provide all the functions and operators ad specified 
in the concepts. An associated type for functions and 
operators within the concept in order to determine their 
types. 
 
where: Where clauses constrain the type parameter in 
terms of a particular concepts. A concrete type must meet 
that concepts in order to be correct substitution for a type 
parameter. An experimental version of g++ which 
supports concepts uses requires clauses instead of where 
clauses. 
 
concept_map: It specifies how a type meets the 
requirements of a concept. It maps the type into the 
domain of this particular concept. A concept_map can be 
template too. 

2.2.3 Library development 

Consider a fragile STL find function using templates. 
template<typename InputIterator,typenameT> 
InputIterator 
find(InputIterator first,InputIterator last,const T& value) { 
while(first<last && !(*first = =  value) ) 
++first ; 
return first; 
} 
The user makes two calls to find with the appropriate 
types, according to the convention of the STL: 
std : : vector<int> v; 
find  (v.begin(), v.end(), 5); //okay 
std : : List<int> l; 
find(l.begin(), l.end(), 41); // error 
 
Both vector and list iterators are InputIterators.The reason 
why finds fails to complie with list iterators is because 
they do not provide a < operator. The less-than-operator is 
part of the termination condition of the while loop within 
the implementation of this find algorithm. When 
compiling this code we get an error message saying that in 
the implementation of this find algorithm we don’t have a 
less-than-operator. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011 
 

 

63

In this section we will show how C++ concepts are used to 
create “better” generic functions. First we must create an 
InputIterator concept. The first and second arguments of 
find are supposed to meet the requirements of the 
InputIterator concept. When creating this concept, all 
functions and operators an InputIterator must provide are 
part of this concept, those are the increment (++) and the 
dereferencing (*) operator. The dereferencing operator 
returns an instance of a type which is determined by the 
iterator itself. When dereferencing an iterator (iterators are 
pointers) which points to list<int> it returns an instance of 
a different type than an iterator which points to an element 
of a different type. That’s what the associated types are 
used for, in our case the associated type value_type is 
changed depending on the type of iterator. The associated 
type difference_type determines the distance between the 
begin and end of the iterator. This type is also iterator 
dependent. When iterating over an array of integers this 
distance is an int.This type varies as the iterator which is 
used. All we know so far is that the difference_type has to 
meet the requirement of a SignedIntegral type. This nested 
where clause states how this associated type 
difference_type has to behave. It must be an integer like 
type can be positive and negative. This is a complete 
InputIterator concept which states all requirements on 
types: 
 
concept InputIterator<typename Iter> { 
typename value_type; 
typename difference_type; 
where SignedIntegral<difference_type>; 
Iter& operator++(Iter&); 
Iter operator++(Iter&,int); 
bool operator= =(Iter,Iter); 
value_type operator*(Iter); 
}; 
 
Futhermore, we need an EqualityComparable concept 
which ensures that types are comparable using equal. In 
terms C++ they must overload the = = operator. It also 
ensures that they have the same type. 
 
This is our extended find version: 
 
template<typename Iter , typename T> 
where InputIterator<Iter> 
&& EqualityComparable<InputIterator<Ite>: : 
value_type,T> 
Iter find (Iter first,Iter last,const T& value) { 
while(first !=last && !(*first = =  value) ) 
++first; 
return first; } 
 
The most interesting line from the point of C++ concepts 
is the where clause (if removes, the implementation is 

equivalent to STL’s find, this is because of backward 
compatibility of templates and concepts).It says” The type 
of the type parameter Iter must meet the requirement of 
the InputIterator concept and the type of dereferencing 
operator InputIterator<Iter>: value_type must be equal-
comparable with the type of the type parameter T”.T is the 
type we are looking for. 
In terms of C++ concepts we are not yet finished. We 
must establish a mapping between concrete types and the 
InputIterator concept. This is done because otherwise the 
compiler does not know which types meet this 
InputIterator concept.To establish a mapping between int* 
and the InputIterator concept we can declare this concept 
map: 
 
concept_map InputIterator<int *> { . . . }; 
 
But this is not satisfactory because every pointer meets the   
requirements of            an   
InputIterator concept. Therefore a concept_map can be 
template: 
 
template<typename T> 
concept_map InputIterator<T*>{ 
typedef  T value_type; 
typedef ptrdiff_t difference_type; 
}; 
The body of a concept_map states how a type meets the 
requirements of a concept. In this case associated types 
value_type and difference_type are given concrete types 
which are determined by the type variable T. 

2.2.4 Library usage 

The library is now ready for usage, the library user uses 
the new find function: 
 
int main() { 
List<Person> persons; 
persons.push_back(p1);      /*p1-p3 are instances of 
Person*/ 
persons.push.back(p2); 
persons.push_back(p3); 
find(persons.begin(),persons.end(),person_looking_for); 
} 
 
The compiler ensures that the user uses only types which 
meet all the requirements of find. 

3. CONCLUSION 

This paper presents how generic programming is 
implemented in Java and C++.Java is a language where 
the current system for generic programming distinguishes 
between   context of library development and the context 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011 
 

 

64

of library usage. The compiler diagnoses the error .In the 
correct context if some bug appeared somewhere in one of 
these contexts. Java is efficient and user friendly when 
developing and using generic libraries.C++ templates are 
fragile. An upgrade from templates to C++ concepts is 
supposed to eliminate these fragilities. Although this 
upgrade is not part of C++ standard yet, the expectations 
are quite promising. 
 
REFERENCES 
[1] A.Andrei. Modern C++ Design: Generic Programming and 

Design Patterns Applied. Addison-     Wesley Professional 
2001 

[2] R.Garcia, J.Jarvi, A.Lumsdaine, J.G.Siek and J.Willcock.A 
comparative study of language Support for generic 
programming 

[3] B.Stroustrup.The C++ Programming Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 
2000. 

[4] Bjarne Stroustrup.Parameterized types for C++.Journal of 
Object-Oriented Programming,     1(5):5-16, 1989 

[5] Joseph A.Bank, Barbara Liskov and Andrew 
C.Myers.Parameterized Types and Java. Technical report 
MIT LCS TM-553 

[6] Luca Cardelli and Peter Wegner.On understanding types, 
data abstraction and polymorphism. 

[7] Brian Cabana, Suad Alagic and Jeff Faulkner. Parametric 
polymorphism for Java: is there any Hope in sight? 
SIGPLAN Not.,39(12):22-31,2004. 

[8] David vandevoorde and Nicoli M.Josuttis.C++ Templates: 
The Complete Guide. 

[9] Sun microsystems inc.-a tutorial to generics. 
http://java.sun.com/docs/books/tutorial/generics/index.html. 

[10] Concepts: Linguistic Support for Generic Programming in 
C++.Douglas Gregor, Jaakko         J¨arvi, Jeremy Siek. 

[11] A Comparative Study of Language Support for Generic 
Programming. Ronald Garcia  Jaakko J¨arvi Andrew 
Lumsdaine, Jeremy Siek Jeremiah Willcock. 

[12] M.Abadi and L.Cardelli.  On subtyping and matching. 
 

Shilpa Mathur has done Bachelors of 
Engineering in Information Technology 
from Rajasthan University, India in the 
year 2005.She has experience of working 
as a Lecturer in an Engineering College. 
Currently she is pursuing Masters of 
Technology in Software Engineering from 
Bhagwant University, India. 


