
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

98

Manuscript received September 5, 2011
Manuscript revised September 20, 2011

Technique to thwart the opening of a virus embedded file without
the aid of an anti-virus software.

Sriram Kalyanaraman

Sri Venkateswara College of Engineering, Sriperumbudur, Chennai, India

Summary
A technique devised to prevent the spread of virus by first
detecting it and then stopping it’s execution by not allowing the
infected file to open in the first place. The technique is capable of
carrying out this functionality without using an anti-virus program.
Key words:
virusStopper ,Virus signature

1. Introduction

A virus by definition is a computer program that can
replicate itself and spread from one computer to another or
possibly even within the same computer by the opening of
certain previously infected files. Most viruses are embedded
in other type of files probably image, text or video files.
When these are executed (i.e. opened) the replication
process starts. But the most vital point to note is that,
viruses remain harmless as long as they are left alone by not
allowing them to execute. But this is not always possible
because novice users or sometimes even expert users tend to
open these viruses embedded files with or without intention.
So, this makes the anti-virus software an absolute necessity.
But this newly proposed technique provides the much
needed protection without anti-virus software.

2. Tables, Figures and Equations

2.1 Tables and Figures

Table 1:Binary values of a sample virus

Table 2:Randomly generated binary values

Table 3:Sequence of 0’s is generated

Table 4:Sequence of 1’s is generated

Fig. 1 Working of the virusStopper

Fig. 2 Proposed Architecture of the replication process of virusStopper

Sample virus code 1 0 1 0 0 0 1 1 1 0

Randomly generated
sequence 1 1 0 1 1 0 0 1 1 1

Composed
entirely of 0’s 0 0 0 0 0 0 0 0 0 0

Composed
entirely of 0’s 1 1 1 1 1 1 1 1 1 1

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

99

3. Paragraphs and Itemizations

A virus code like all other programs is composed entirely of
binary values. The virusStopper code contains the
following modules:

Module 1:
It reads a file and searches for the virus pattern in it. Virus
patterns also known as virus signatures are stored in
separate files (something like a database). If a pattern is
found in the original file that matches any of the virus
signatures, Module 2 is called.

Module 2:
Catches the virus embedded file and calculates the length of
the file (or the length of the virus pattern).

Module 3:
This module calls the BitGenerator() method. This method
generates a sequence of random bits whose length is equal
to that of the original file’s length. Refer to Table 2 for the
sample values of the randomly generated code.

Module 4:
This contains equals () method. It compares the original file
and the randomly generated file binary bit by bit. If at least
one bit differs then the file is never opened.
At the worst case if all the bits match, then Module 5 is
called.
Module 5:
When both the original and the randomly generated files
match at every bit, virusStopper generates a new sequence
based on the resources available,

Case1:
A set of new random binary values (Refer to Table 2) to
compare with the original file is generated and the
comparison of the two files is done again. This process is
repeated until a match never occurs. This process is iterative
in nature.

Case2:
A sequence of complete 1’s is generated (Refer to Table 3)
and the comparison is made. This method will be effective
because no code (virus code) will be composed of the same
bit entirely.

Case 3:
 A sequence of complete 0’s is generated (Refer to Table 4)
and the comparison is made. Again, this method will be
effective because no code (virus code) will be composed of
the same bit entirely.

A sample code is written in Java to implement the above
said concept of thwarting the opening of a virus embedded
file.

// Programmatic representation of Fig. 1
import java.io.*;
public class ReadStringFromFile {
public static void main(String[] args) {
File file = new File("C://sample//samplevirus.txt");

int ch;
StringBuffer strContent = new StringBuffer("");
FileInputStream fin = null;
try{
fin = new FileInputStream(file);
while((ch = fin.read()) != -1)
strContent.append((char)ch);
fin.close();
}
catch(FileNotFoundException e{
System.out.println("File " + file.getAbsolutePath() +
 " could not be found on filesystem");
}

catch(IOException ioe){
System.out.println("Exception while reading the file" + ioe);
}
System.out.println("File contents :");
System.out.println(strContent);
System.out.println(strContent.length());
BitGenerator bg = new BitGenerator();
String generateBits = bg.generate(strContent.length());
System.out.println(generateBits);

while(strContent.equals(generateBits)) {
generateBits = bg.generate(strContent.length());
}
}
}

Explanation for the above code is as follows,
A file is created and binary values are entered. This is
assumed to be the sample virus code under study. The file is
opened and the contents are read character by character.
During this process, the file is searched for any of the
known virus signatures .These signatures may be stored on
a database or a file system. When the end of file is reached,
the program calculates the length of the sample input file.

//Random Bit Generator
import java.util.Random;
public class BitGenerator{
public static void main(String[] args) {
String bits = "";
Random r = new Random();

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

100

for(int i=0; i<10; i++){
int x = 0;
if(r.nextBoolean()) x=1;
bits += x;
}
System.out.println(bits);
}
}

And the functionality of Random Bit Generator program is
to generate a random sequence of binary values equal to the
length of input file. A new random sequence will be
generated until the contents of the sample input file and the
randomly generated file do not match. The above
demonstrated programs are bundled together and is referred
as the virusStopper.
The best place for the implementation of virusStopper
would be within the operating system .Whenever a new
application program is started, virusStopper places a copy of
itself within that application program (Refer to Figure 2) .It
then scans all the file extensions associated with that
application program. When many programs are opened
simultaneously, virusStopper replicates itself from the
operating system. The basic difference between a virus and
virusStopper is mentioned below,

Virus: Replicates itself to cause damage to the system.
virusStopper: Replicates itself to prevent damage to the
system.

So a distributed environment is created which makes the
whole virus thwarting process a highly efficient one.
The virusStopper program is present in the main memory.
But once the application program is erased from the main
memory, the virusStopper code is also erased. So, the
resources held by it previously will be automatically
released. The biggest advantage of this technique is it’s
simplicity and that the installation of virusStopper into the
operating system is a onetime process and works efficiently
as long the operating system is used.

References
[1] http://en.wikipedia.org/wiki/Computer_virus
[2] www.stackoverflow.com
[3] http://www.pamukcular.com/?p=102

Sriram Kalyanaraman is a Final year
student of B.Tech Information
Technology at Sri Venkateswara College
of Engineering, Sriperumbudur, Chennai,
India.

