
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

124

Manuscript received September 5, 2011
Manuscript revised September 20, 2011

COMMPC - Component Based Middleware for Pervasive
Computing

R. Nagaraja†, and Dr. G. T. Raju††

†Associate Professor, Bangalore Institute of Technology, Bangalore, Karnataka, India
††Professor and Head Computer Science and Engineering, R N S Institute of Technology, Bangalore, Karnataka, India

Summary
Portable devices like laptops, palm tops, PDAs or mobile phones
have become widespread. Similarly network functionality like
GSM, Bluetooth or WLAN has become a standard. Nevertheless,
not many applications take mobility into account. An application
and its communication functions are tightly coupled and the
applications assume that network behavior does not change
during the application use. Here in this paper we propose and
implement a new component based lightweight middleware
based on Service Component Architecture (SCA) consisting of a
small foot-print core layer and a modularized pluggable
infrastructure. The SCA eases the reconfiguration of the
components at runtime to support different communication
mechanisms and service discovery protocols. Besides using SCA,
new functionalities can be added to the middleware platform that
can be provided by remote applications. The architecture
presented in this paper is suitable for mobile devices and
extensible to make use of abstractions to conquer heterogeneity
in mobile devices. The prototype of the architecture is
implemented using fractal tools and tested on Nokia mobile
phones and laptops. A minimum configuration of the platform
can be executed on embedded systems. Resource-rich execution
environment are supported by the extensibility of the middleware.
The resulting core component is about 250Kbytes in size.

Key words:
 CDC Connected Device Configuration, CLDC Connected
Limited Device Configuration, SCA Service Component
Architecture, QRPC Queued Remote Procedure call, IE
Intelligent Environment, IIOP Internet Inter-ORB Protocol, BT
Blue tooth, AC access mode, AM adhoc mode.

1. Introduction

Some of the challenges the mobile devices have to face are
adaptability to changes (limited sources, bandwidth, peers,
network conditions, services) and constant change from
one environment to another (different base stations,
different domains, varying communication rate etc.). There
is a need to define and develop infrastructure and
associated services which can be accepted to a broad range
of environments from Internet based applications, to local
networks, to mobile applications on PDA’s and smart
phones, to embedded systems. This can benefit in two
ways. First, it enables the easier deployment of mobile

applications in different environments by taking advantage
of common platform provided by adaptable architecture.
Second, due to change of technology, redevelopment of
middleware has to be done to take benefit of new
technologies. The impact of this will be helpful for
software vendors and service providers to adapt their
products and services more rapidly to new and emerging
technologies. In the architecture one or more of the
required component services can be loaded and started by
a system level entity. This plug and play approach obviates
the need for all middleware components to be running on a
low power device at all times. Customizable architecture
can optimize energy as they can be pruned depending on
the workload and devices can be in contact using the
available service interfaces. In order to provide a dynamic
architecture for resource constraint devices, we created a
dynamic lightweight container offering enterprise level
capabilities for such devices.
With this architecture we are able to dynamically assemble
communication part of an application. These components
can then later on be adapted at runtime as per situation
requirements. For example, mobile devices are having
number of network interfaces for communication like
GPRS, Bluetooth, Wireless LAN or IrDA. With our
infrastructure, an application can dynamically supported
by best possible network interface according to the
situation that prevails or demands. This infrastructure can
build multi-hop, multi-network bridge across several
devices. This is the result of combination of SCA and
protocol independent communication, as we are able to do
arbitrary runtime changes to adapt communication part of
application with acceptable overhead.
The application adaptation for a particular network
interface is done by invocation broker in association with
adaptation manager [11] and transport plug-ins. The
adaptation is based on device status and context changes.
The adaptation layer takes care of different
communications.
The paper is structured as follows: section 2 presents the
challenges to be addressed in mobile device environment,
section 3 the existing middleware capabilities are
described, section 4 presents proposed new middleware
architecture, section 5 implementation, performance are

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

125

explained and section 6 presents the conclusion and future
work.

2. Challenges to be addressed

The networking interface used by portable devices range
from infrared communications to Wi-Fi communication.
The device interfaces used also changes due to the
mobility. A device may change the network due to
non-availability, cost of network and power requirement of
the network. Distributed applications in this scenario are
structured as application objects and services interacting
with each other. Services in turn use device capabilities or
further services of local device or of a remote device.
Hence, the context-aware application has to tackle the
following challenges.
• The Mobility, Accessing Methods and Functioning:

Portable devices exhibit different properties like
sometimes stationary and sometimes moving as they
are carried by users. The device complexity varies
from simple to stand-alone systems. There will be
large variation in resources, capabilities and
communication patterns. Thus the mobile devices
have variation in functioning, mobility and accessing
methods.

• The heterogeneous protocol service discovery: The
heterogeneity in protocols to discovery and access
service is handled by accommodating multiprotocol
service discovery with different communication
paradigms like RPC, event based [10] [20],
request-response, publish/subscribe etc. [4] [14].

• Programming interface, protocol support and device
support: The programming interface has to take care
of heterogeneity of device capability to support
application portability. Uniform programming
interface can be achieved by modelling the device
capabilities as components. In order to enable
communication with devices having difference
capabilities a device specific communication model
can be used, separating the communication model
from application. In order to allow all devices to use
the architecture a minimum functionality is
implemented on the devices and this can be enhanced
depending on the availability of the resources in the
device. Some of the above mentioned facilities are
supported by classical middleware for distributed
application for resource rich platforms.

3. Existing Middleware Capabilities

3.1 Some of Non Component based Middleware

Device heterogeneity is handled in classical middleware
like CORBA [15], Java RMI or DCOM to provide

homogenous access to remote entities independent of
operating system and platform. One of the objective of
these middleware is to provide as much as functions
possible for effective use of the available resources. This
objective is not suitable for resource constraint devices. In
addition these middleware assume stable networks.
Conventional middleware are designed with dynamic
reconfiguration capability to adapt their behaviour to
changing environment and application requirements.
These middleware do not support different communication
models and different protocols for incoming and outgoing
messages. The Rover kit provides this functionality for its
QRPC concept on top of different transport protocols but
addresses disconnected accesses to an infrastructure and
not spontaneous networking.
The UIC is based on a micro-kernel that can be
dynamically extended to interact with different existing
middleware solutions. Still, the used protocol is
determined before the start of the interaction and cannot be
switched between request and replay and abstractions are
provided only for remote services.
Gaia [8] provides an infrastructure to spontaneously
connect devices offering or using services registered in
Gaia. Gaia recreates an intelligent environment in which
the user mobile devices are integrated on-the-fly when
entering the area. To integrate the existing system, like
CORBA, interaction between application objects is done
via Unified Object Bus, which is layer on top of these
systems. As essential system services, such as discovery
and lookup are provided by Gaia infrastructure. Mobile
device cannot cooperate automatically without the
infrastructure.
In contrast to this, our architecture aims at supporting the
cooperation of nearby devices using temporarily available
hardware and software capabilities of nearby devices,
independent of the presence of the external infrastructure
[26] [28]. An infrastructure, such as IE, may be included
into a spontaneous network as temporarily available
services.

3.2 Some of Component Based Middleware

Several middleware approaches have been proposed to
deal with pervasive environments. The trend to build
container suitable for small devices had already started in
many projects. Many micro kernel based container like
Merlin [22], JBoss [16] and Spring [23] are small in size
but they still relay on service available in infrastructure
network like JNDI in JBoss or heavy use of XML in
Merlin and J2EE services in Spring.
Micro-kernel architecture design for small devices like
OSGi [24] and FRACTAL based on SCA [1], are available
from Open Service Gateway Infrastructure and major
software vendors. FRACTAL has been selected because of
language independence and support for resource constraint

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

126

devices like CDLC compatible devices.
ReMMoc [5] is a reflective middleware to support mobile
application development and uses OpenCOM [9] as its
underlining component technology. OpenCOM [9] is
implemented in C++ and available for few platforms.
Another thing about ReMMoc [5] is that it provides
dynamic reconfiguration in terms of binding and service
discovery protocols. In order to do that, all functionality
associated with different communication mechanism and
service discovery must be in the device. In our case, the
functionality should only be loaded when it is required.
AdaptiveBPEL [3] is a policy driven middleware for the
flexible composition of Web Services. This approach is
more focused on the automatic service integration,
according to the application needs, than the middleware
adaptation.
Prim [25] is a software architecture which provides
programming language-level constructs for implementing
components, connectors, configurations and events. The
middleware is assembled before deployment according to
the required components. So far no runtime assembly can
be performed as required in a dynamic reconfigurable
middleware.
GaiaOS [8][13] is a component based meta-operating
system, that run on top of existing systems, such as
Windows2000, WindowsCE, and Solaris. It is used in a
middleware infrastructure for active spaces. The system
focuses on the management of active space resources and
provides location, context and event services.
Jadabs [6] is a dynamic lightweight Platform for Ad-hoc
infrastructure based on component based container and
aspect programming. The platform gives access to both
local applications using local infrastructure as well as
other devices using distributed infrastructure. It is
developed for CDC compatible devices. Our platform is
based on language independent component framework
[12] and can configure applications using context
configuration to CLDC compatible devices also.

4. Design Rationale

4.1 Requirements

Fulfilling the following criteria is the main goal in
designing the new middleware.
• Reduced Footprint: The infrastructure should be small

enough to fit into small devices without affecting the
working environment of the devices.

• Dynamic Adaptation: The adaptation must be dynamic,
automatic without user integration. Functionalities
should be added and removed as per the requirement
without stopping the application.

• Flexible Architecture: The functionalities required
for adaptation (components, services etc.,) can be

provided by local repository, related connected
devices or a remote repository.

• Platform Independency: The platform independent
architecture using components can be implemented on
resource rich as well as resource poor devices and
provides flexible platform for implementation of
vendor specific applications.

The application programming interface contains the
uniform abstraction of services as well as device
capabilities via interfaces. The requests are directed to
local service handler or remote service handler by
invocation broker. Invocation broker allows different
patterns like request/response, event, synchronous,
asynchronous etc., for communication. A core model
containing minimal functionality of accepting and
dispatching request called Invocation broker is designed as
a core component and other services like inter-operability
protocols as well as object life cycle management [18]
[19] are added as plug-in components. The invocation
broker receives an invocation from an application or from
a remote device and if the request is for a service available
locally, it invokes appropriate methods to service the
request using local service handler (Fig. 1). Remote
service handler, which receive an invocation or a reply to a
previous invocation (also represented as an invocation) are
submitted to invocation broker to dispatch to
corresponding local device service or device capability. In
case of an invocation request for a service not available in
the local device, the invocation handler dispatches the
invocation to the remote device through remote service
handler using the device network interface which can be
used to reach the device at that instant (Fig. 2).

Fig 1: Local Device Capability / Service Access

Fig 2: Remote Device Capability / Service Access

The remote service handler installed on the remote device
receives and checks to see whether requesting service is
available or not. If the service is available on that device
the corresponding methods are invocated through local

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

127

service handler or the same procedure is used to dispatch
request to a remote device.
The new middleware architecture is as shown in Fig. 3.
The description of different modules is as follows:

4.2 Application Objects

Application objects generate method calls to invocation
broker and uses context based conversion stubs for
converting requests to invocation and skeletons are used
for converting invocation to execute local services or
device capabilities. In case of request (in the form of
invocation) the invocation is dispatched to invocation
broker for further processing. The invocation broker
supports lookup services for local services and device
capabilities.

4.3 Local Services and Remote Device Details

The local service registry maintains all locally available
services and device capabilities. Services can be either
application objects offering a service or device capabilities.
Applications can query for available services by either
specifying a name or the functional properties, i.e. the
interface. The device registry maintains a list of all
currently reachable devices and the transport plug-ins
which provide the access to another device. A defined
policy (like energy awareness, network interface) can be
used to select a transport plug-in in case of availability of
multiple transport plug-ins for a particular device. The
underlying concept can be used to implement integration
of other lookup mechanisms e.g. Jini and UPnP.

Fig 3: COMMPC Middleware Architecture

4.4 Invocation Broker

Invocation broker accepts invocation generated either
manually or by a stub call. Invocation is also used by the
invocation broker to access the registries for service
lookups. An invocation is represented as object and is
similar to dynamic invocation request in CORBA [15].
The format of the invocation is as shown in the Fig. 4.

Fig. 4 shows the elements of an invocation. Device and
ServiceIDs are used to denote a sender and receiver of an
invocation. ServiceIDs are unique and local to a device
and this ID along with a unique DeviceID forms a unique
ID globally. The message IDs are used for synchronization
issues. A service context fields allows the specification of
additional parameters that indicate the properties relevant
to the processing of the invocation in the architecture such
as synchronization issues or QOS parameters. Basically,
the context is a name-value list where parameters are
added freely. The payload contains the operations and
parameters. In point-to-point communication the
operations and parameters are interpreted as remote
method invocation. In case of event based communication
no receiver needs to be specified and the operation denotes
the event-type on which application can subscribe [14]
[17].

Fig 4: Invocation Object Structure

The invocation carries the target object and its messageID.
If a MessageID is contained in the receiver field of the
invocation, this indicates that a caller is either blocked or
awaiting an asynchronous delivery of the invocation. In
case of a blocked call the waiting thread is freed and the
invocation is provided as return. In the asynchronous
case the invocation broker uses remote invocation handler
to call up the application through a callback. In this case
the MessageID is used to designate the application
callback registered at the invocation broker. Because of
decoupling of communication model from the underlying
interoperability protocols, a request/response based
communication model can be realized over two
event-protocols. An event can be sent as a single request in
an RPC-based interoperability protocol. An interaction can
take place over different transport plug-ins for out-going
and in-coming invocations.

4.5 Adaptation Manager

The adaptation manager decides about loading required
functionalities as per the situation identified by invocation
broker through device and its network interfaces. The
invocation broker on detection of a remote invocation gets
device interface from device details table and forwards the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

128

invocation to adaptation manager through Remote service
handler. Remote service handler initiates appropriate calls
to services of adaptation manager to implement different
communication patterns like synchronous and
asynchronous communication with the remote devices.
Adaptation manager uses device interface given by
invocation broker to decide the components to be loaded.
The components can be loaded either from local storage or
from remote repository. The adaptation layer can load the
transport plug-in components as per parameters passed by
invocation broker. At this level the capabilities of
middleware can be extended as per the requirement to
provide different level of services by loading appropriate
transport plug-ins.
Platform specific capabilities, e.g. device capabilities and
transports are represented as plug-ins (Implemented as
components) and become accessible to the application
programmers as services. Adaptation manager allows the
dynamic loading and integration of new plug-ins.
Adaptation layer is responsible for accepting an invocation,
marshal it, and transmit it as a protocol data unit to a
remote peer, which then constructs an invocation by
unmarshalling it. The simplest transport plug-in would use
object serialization to marshal an invocation into a byte
buffer and send the buffer via a transport protocol e.g.
TCP/IP. Other transport plug-ins could rely on existing
interoperability protocols and marshal and represent the
invocation accordingly e.g., map it to a request-message in
IIOP and marshal the parameter by CDR, which allows
interoperability with CORBA based systems. The
invocation broker may use any transport plug-in unless an
application specifies a distinct transport protocol. The
remote device details registry maintains a list of all
currently available transport plug-ins to a specific device.
Hence communication can take place as long as at least
one transport plug-in allows the communication.

4.6 Device Platform

The device capabilities are provided in this layer and are
represented as interfaces to be used by either transport
plug-in components or by invocation broker (local service
handler component). Required device capabilities can be
loaded on demand in case of resource poor devices to save
space.

5. Implementation and Performance

5.1 Component Based Prototype Design

A prototype of component based implementation (Fig.5) is
designed to verify and test the performance of our concept
of protocol independent communication among
heterogeneous devices. The core component is composite
component having Invocation Broker, Adaption Manager

and Discovery Manager. Invocation Broker is
implemented as a composite component with Invocation
Handler component, Local Service Handler component
and Remote Service Handler component. The local
services and device capabilities are implemented in the
Local Service Handler component as interfaces. Remote
Service Handler component was implemented to handle
the remote invocation call and incoming invocation from
Adaptation Manager. The Adaptation Manager handles
remote invocation as well as incoming invocations. This
component dynamically loads the required transport
components as per the device interface provided by
Invocation Handler.

Fig 5 Component Architecture of Middleware

Discovery Manager component detects all devices in the
neighborhood using device discovery protocols. These
protocols are implemented as components and loaded
whenever required by discovery manager for device
discovery. Discovery Manager sends the details of devices
found to Invocation Handler to record in device details
table.
A prototype of the component based architecture is
implemented (Fig.6) using SCA implementation Fractal
[12] for components and ADL for configuration
specification. Eclipse, maven and Fractal as plugin were
used to develop platform specific codes. The middleware
COMMPC is built on JULIA [2], a java implementation of
the fractal component model. COMMPC core provides
FRACTAL components with abstractions and tools to
handle invocations and activities. COMMPC ADL extends
JULIA’s architecture description language with features
for distributed deployment and dynamic application
configuration. COMMPC library provides a library of
components implementing functions like communication
channels. COMMPC is built on top of these three modules.
COMMPC is a message (invocation) based
communication framework for network interface

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

129

transparent communication. The Invocation Broker with
service and device registry, Adaptation Manager, transport
plug-ins like TCP-transport, UDP-Transport and
BT-Transport are implemented. The Invocation Broker
handles different synchronization concept and the service
context is used to indicate the synchronization of RPC
calls. For synchronization invocation, sub and skeleton
support is implemented as part of Invocation Broker.

Fig 6: COMMPC Implementation Framework

5.2 Performance

The prototype is tested on two computing environments,
one on laptop environment and another on mobile devices.
(i) Desktop Environment: The Three transport plug-ins are
realized on laptop environment, two based on the java
standard serialization mechanism on top of TCP/IP using
laptops in adhoc mode and access point mode and a
second based on Java RMI. The Adaptation Manager is
implemented and allows the dynamic and static
configuration of the system. The core model of the frame
work occupied 250Kbytes as measured during the idle
mode using task manager. During runtime, when
invocation is exchanged, the system uses up to 600Kbytes.
To measure the execution performance overhead
introduced by the additional communication via the
architecture, comparison of sending invocation via a Java
RMI transport plug-in with a pure Java RMI-based system
is done. The measurements were conducted for a
synchronous RPC communication by transmitting
invocations for an operation, which takes a single string
input parameter and returns immediately. The strings were
of different sizes. This was done for both local and remote
invocations.
In case of local invocation (Fig. 7.), our method was
clearly faster than RMI. This is due to the fact that RMI in
this case uses the loop-back interface including the RMI
and TCP protocol stack where as our core model forwards
the call directly to the service skeleton and does not use
the RMI based transport plug-in at all.
In case of remote invocation (Fig. 8.), the frame work
introduces an additional performance overhead of about

20%. This is due to the fact of creating invocations from
the stub objects and their interpretation by the skeletons.
(ii) Mobile Device Environment: Two of the protocols
switching were implemented on mobile devices using
Bluetooth J2ME optional package and Wireless Messaging
API (WMA API). Jar files consisting of device discovery
module, service discovery module, communication module
and invocation broker were created and tested using Java
MESDK3.0 and Emulator default CLDC phones. It was
tested on Nokia mobile devices Nokia-3120, Nokia-7210
and Nokia-Express. We used WMA API 2.0 JSR 120 for
GSM [27] and JSR 82 Release 3, JCP version 2.1 [27] for
Bluetooth specification.

Fig 7: Local Communication Performance for both methods

Fig 8: Remote Communication performance for both methods using
different transport plug-ins

Table 1: Performance Details

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

130

The minimum required characteristics of mobile devices
were 512KB of total memory and compliant
implementation of J2ME CLDC. Table 1 shows the
performance of prototype on mobile devices for transfer of
an invocation using two communication channels namely
Bluetooth and GSM.

6. Conclusion and future work

In this paper, we have introduced component based
platform for mobile devices. With this platform, users can
access different resources like services on different devices.
The platform also supports multiple communication
protocols and models. We have chosen Fractal as an
approach to build our platform to take advantage of SCA
and component paradigms. In this paper we showed how
to use platform to access local as well as remote services
using multi-protocol communication as well as multimode
communication. We tested our platform using CDLC
compatible mobile phones platform and laptops.

Table 2: Comparison of Microkernel Middleware with COMMPC

A Comparison of features offered by the existing
middleware and current middleware for pervasive
computing (COMMPC) is presented in Table 2.
Currently, we are in the process of extending the
functionalities to include other limited resources like
memory and bandwidth for adaptation. To show the
feasibility of our approach for accessing web services by
mobile devices we are working on extending the
functionalities of application, considering the available
limited resources using model driven approach [7].
References
[1] Service Component Architecture specifications,

http://www.osoa.org/display/Main/Service+Component+Ar
chitecture+Specifications, 2007.

[2] Eric Bruneton, Thierry coupaye, Maltheu Leclercq, Vivien
Quema, and Jean-Bernard Stefani, “An Open component
Model and its support in Java”. In proceedings of the
International Symposium on Component based Software
Engineering (CBSE 2004), Edinburgh, Scotland, 2004.

[3] A. Erradi and P. Maheshwari, “Adaptivebpel: Policy-driven
middleware for flexible web services composition,” In MWS
2005 Workshop at EDOC 2005, pages 5–12, Enschede, The
Netherlands, 2005.

[4] C. A. Flores-Cort´es, G. S. Blair, and P. Grace, “A
multiprotocol framework for ad-hoc service discovery,” In
MPAC ’06: Proceedings of the 4th international workshop on
Middleware for Pervasive and Ad-Hoc Computing (MPAC
2006), page 10, New York, NY, USA, 2006, ACM.

[5] P. Grace, G. S. Blair, and S. Samuel, “Remmoc: A reflective
middleware to support mobile client interoperability in
CoopIS/DOA/ODBASE,” pages 1170–1187, 2003.

[6] Jadabs, “Dynamic Lightweight Infrastructure for Small
Devices,” http://jadabs.berlios.de.

[7] C.Parra and L. Duchien, “Model-driven adaptation of
ubiquitous applications,” In 1st International Workshop on
Contextaware Adaptation Mechanisms for Pervasive and
Ubiquitous Services (CAMPUS 08), pages 97–102, Oslo,
Norway, June 2008.

[8] R. Cerqueira, C. K. Hess, M. Rom´an, and R. H. Campbell,
“Gaia: A Development Infrastructure for Active Spaces,” In
Workshop on Application Models and Programming Tools
for Ubiquitous Computing (held in conjunction with the
UBICOMP 2001), Sept. 2001

[9] M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas, “An
Efficient Component Model for the Construction of Adaptive
Middleware,” Proceedings of Middleware 2001, Nov. 2001.

[10] G. Cugola, E. Di Nitto and A. Fuggetta,“The JEDI
eventbased infrastructure and its application to the
development of the OPSS WFMS,” IEEE Transactions on
Software Engineering, 27(9), 2001.

[11] Daniel Romero, Carlos Parra, Lionel Seinturier and Laurence
Duchien, Rubby Casallas, “An SCA-Based Middleware
Platform for Mobile Device,” EDOC Conference (2008),
DOI : 10.1109/EDOCW.2008.17.

[12] Fractal, ObjectWeb, Open Source Middleware, 2004,
http://fractal.objectweb.org/.

[13] M. Roman, and R.H. Campbell, “GAIA: Enabling Active
Spaces “, Proceedings of the 9th ACM SIGOPS European
Workshop, pp. 229-234, Kolding, Denmark, September
2000.

[14] A. Frei, A. Popovici, and G. Alonso, “Eventizing
Applications in an Adaptive Middleware Platform,”
Technical Report TR 451, Swiss Federal Institute of
Techonolgy Zurich, Mar. 2004.

[15] OMG, CORBA Messaging, report orbos/98-05-06, 1998.
[16] J. Group. Jboss. http://www.jboss.org.
[17] M. Haupt, M. Mezini, M. Cilia, and A. P. Buchmann,

“Towards Event-Based Aspect-Oriented Runtime
Environments, Technical Report TUD-ST-2002-01,”
Software Technology Group, Darmstadt University of
Technology, Alexanderstrasse 10, 64289 Darmstadt,
Germany, 2002.

[18] H.Cervantes and Richard S. Hall, “Automating Service
Dependency Management in a Service-Oriented Component
Model,” In Proceedings of the 6th Workshop on

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

131

Component-Based Software Engineering (CBSE), May
2003.

[19] IBM, Service Management Framework, 2004.
http://www-306.ibm.com/software/wireless/smf/.

[20] Y. D. Bromberg and V. Issarny, “Service discovery protocol
interoperability in the mobile environment,” In T. Gschwind
and C. Mascolo, editors, SEM, volume 3437 of Lecture
Notes in Computer Science, pages 64–77. Springer, 2004.

[21] C. Szyperski, “Component Software: Beyond
Object-Oriented Programming,” Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[22] Merlin.The Apache Avalon Project, 2004.
http://avalon.apache.org/merlin.

[23] Spring. Java/J2EE Application Framework 2004,
http://www.springframework.org.

[24] OSGi, Open Service Gateway Initiative. OSGi
Service-Platform, IOS Press, release 3 edition, Mar. 2003.

[25] M. Mikic-Rakic and N. Medvidovic, “Adaptable
Architectural Middleware for
Programming-in-the-Small-and-Many,” In Proceedings of
the 4th ACM/IFIP/USENIX International Middleware
Conference, pages 455–473. Springer-Verlag, June 2003.

[26] R. Nagaraja, Dr G. T. Raju, “Multiprotocol Communication
for Mobile Devices,” IET-International Conference on Next
Generation Networks-2010, page 68-73, Mumbai, India,
2010.

[27] Bluetooth details, midlet details, WMA developers.sun.com
and java.sun.com

[28] R. Nagaraja, Dr. G. T. Raju, “SCA based Multiprotocol
Communication for mobile devices”, ISBN:
978-1-4244-7923-8, iNSPEC Accession Number: 11973847,
Digital object Identifier: 10.1109/ ICETECT.2011.5760263,
Dated 02th May 2011.

R. Nagaraja received the B.E., M. E., and
MS degrees from Bangalore Univ. in
1985, 1989, and from BITS 1998,
respectively. He is presently working as
associate professor in Information Science
and Engineering department at Bangalore
Institute of Technology, Bangalore. His
research interest includes building adhoc
infrastructure for mobile devices, building

self-adaptive systems, protocol independent communication,
component based design for heterogeneous devices and model
driven engineering. He is a member of IET, ISTE and IACSIT.

Dr. G. T. Raju received the B.E., M.E.,
and PhD from Bangalore University in
1992, 1995 and 2008 from Visvesvaraya
Technological University. His is
currently working as Professor and Head
Computer Science and Engineering
Department at RNSIT, Bangalore. His
research interest includes data mining,

artificial intelligence and neural networks. He is a member of
CSI and ISTE.

