
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

141

Manuscript received September 5, 2011
Manuscript revised September 20, 2011

Design of a Modified Rijndael Algorithm Using 2D Rotations

Pushpa R. Suri†, Sukhvinder Singh Deora††

†Associate Professor, Department of Computer Sc. & Applications, Kurukshetra University, Kurukshetra, India
†† Assistant Professor, Dept. of Computer Sc. & Applications, NC Institute of Computer Sciences, Israna, Panipat India

Summary
Rijmen and Daemen had proposed Rijndael algorithm for
Advanced Encryption Standard (AES) in June 1998. It was
accepted for commercial use due to its symmetric and parallel
structure, well adapted to modern processors and its suitability to
smart cards. Rijndael algorithm uses an iterated block cipher
with a variable block length and a variable key length. The block
length and the key length can be independently specified to 128,
192 or 256 bits. We are proposing a modification which we
rotate the bytes using 2 Dimensional rotation of the block after
Step 4, thereby increasing confusion-diffusion. The proposed
scheme will have improved complexity that increases the
security for a 128 and 256 bits block case without increase in the
length of the key used.
Key words:
Exclusive OR (XOR), permutation, bytes, substitution, shift and
2D rotation operation, S-box

1. Introduction

AES named as Advance Encryption Standard (AES), is
based on the Rijmen and Daemen submitted Rijndael
algorithm in June 1998. Rijndael was announced to be
the final selection for AES in October 2000. AES is an
iterative block cipher with a variable length and a variable
key length. It is based on some very simple operations
like Exclusive OR (XOR), bits shifts and permutations of
the columns [1 & 2]. The algorithm in its original form
contained four transformations in each rounds, namely,
Byte Substitution, Shift Row, Mix Columns, Add (XOR)
Round Key. The last round does not use the Mix
Columns transformation. Chun Yen et. al. improved
Rijndael algorithm and constructed a new S-box. After the
improvement, iterative output cycle is 256, and algebraic
expression reached 254 items [3]. In this paper we
present a modification in Rijndael algorithm, by adding
one more round that increases the overall
confusion-diffusion of the bytes thereby increasing the
complexity which cryptanalysis of the algorithm. The
proposed transformations involve mathematical
opeartaions that are easy to implement in software level
especially by using MATLAB programming due to
matrix-based structure of the algorithm.

2. Theoretical Consideration

In the original Rijndael algorithm, the plaintext blocks and
keys can be arranged in variable sizes (16, 24 or 32 bytes).
The logical view of the block structure is shown in Fig 1.
Unlike the DES, the AES algorithm has a highly
mathematical structure. There are four steps (see fig. 2)
involved in the algorithm, which perform specific
transformations in the input plaintext. The algorithm can
be used with three key lengths (independent of selected
block length): 128, 192, or 256 bits. It can consist of 10,
12 or 14 rounds where each round consists of
transformations as discussed below.

 Column
 Row 1 2 3 4

1 A B C D
2 E F G H
3 I J K L
4 M N O P

Fig. 1 Initial plaintext/key block

Fig. 2: Steps in Rijndael’s algorithm

2.1 Byte Substitution

In this transformation, operation based on the secret S-box
is applied to each byte separately. The inverse of the byte
substitution are in the inverse table that has a mapping of
the inverses at the corresponding locations in the S-box.

Step 1: Byte Substitution

Step 2: Shift Rows

Step 3: Mix Columns

Step 4: Round Key Addition

Repeat these four steps
10, 12 or 14 times

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

142

2.2 Shift Row

The rows of block are cyclically shifted in this
transformation. Table 1 shows the number of byte shifts
in Row 0 is zero and in the subsequent rows; Row 1, Row
2 and Row 3 is dependent on the number of columns in the
block, say Nc.

Table 1 Shift Policy while Encryption
Nc Byte Shifts

Row 1 Row 2 Row 3
4 1 2 3
8 1 3 4

 Inverse of this transformation is simple cyclic shift in
the reverse direction or applying (Nc-Byte Shits) in the
same cyclic shift.

2.3 Mix Column

In this transformation, every column is multiplied with a
fixed polynomial say c(x), i.e. c(x) ⊕ m(x) is the resultant
value of each byte value. Inverse of this transformation
is again a mix column where multiplication is done with
the multiplicative inverse of c(x).

2.4 Round Key Addition

A round key derived using some operations on the cipher
key is XORed with the entire block state obtained till the
Mix Column transformation. The same round key is the
inverse of it and can be XORed during the decryption
round.

3. Proposed Modified Algorithm

In our modified approach to the Rijndael’s algorithm, the
plaintext blocks and keys can be arranged in any square
variable size (4X4, 4X8 etc). Instead of having four steps,
we are proposing five transformations in a round approach.
In addition to the regular four transformations, the fifth
transformation has been placed at Step 5 (see Fig. 3).
Hence the modified AES will contain following
transformations; Byte Substitution, Shift Rows, 2D Rotate
Block, Mix Column and Round Key Addition. Step 1,
Step 2, Step 3 and Step 4 as in the four step original
algorithm already discussed, and Step 5 involving our
newly introduced “2D Rotate block” transformation.

Fig. 3 Modified Rijndael’s algorithm

4. 2D Rotate Block Explained

This new kind of rotation we have introduced in the
original Rijndael algorithm has been taken from our
previous work on 3D Array Block ciphers [4]. In this
kind of rotation, the entire 2D Array block is rotated by
certain angle depending upon certain value of the key bits.
We have suggested the same approach in AES using
certain mathematical operations on the matrix structure of
the block. Its use will further increase the confusion
aspect in the information bytes when transformed to the
ciphertext.

4.1 Notations Used

We denote two operations on matrices, rCOOM(M) that
denotes reverseColumnsOrderOfMatrix M i.e. function
that arranges the columns of the matrix in reverse order
and rROOM(M) that denotes reverseRowsOrderOfMatrix
M i.e. function that arranges the rows of the matrix in
reverse order. Also we use the standard notation M’ in
our discussions to denote the transpose of a matrix M.

4.2 Encryption Phase

In this step, the entire block is rotated in clockwise
direction by an amount of 0°, 90°, 180°, 270° during
encryption depending upon the 2 bits of the key value
00,01,10,11 respectively (refer Table 2).

Table 2 Rotation Policy while Encryption

Key bit value Rotation
(Clockwise direction)

00 0°
01 90°
10 180°
11 270°

Repeat these four
steps 10, 12 or 14

times

Step 1: Byte Substitution

Step 2: Shift Rows

Step 3: Mix Columns

Step 4: Round Key Addition

Step 5: 2D Rotate block

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

143

This will change the relative positioning of the information
in the 2D array. The modified step can be implemented
by use of the mathematical operations as discussed below:
If we consider the initial array of the bytes as a 2D array M
of size say nXn, where n is the number of rows and
number of columns of the array then a rotation of 90° can
be thought of as a two step mechanism.
i.e. Rotation of 90° = rCOOM (M’) (1)
where reverseColumnsOrderOfMatrix() function only
arranges the columns of the matrix in reverse order (as
shown in Fig. 4). Consider for example that we are
having a 4X4 matrix M then the 90° rotation can be
considered as follows:

M

=

Column

 Row 1 2 3 4
1 A B C D
2 E F G H
3 I J K L
4 M N O P

M’=

Column

Row 1 2 3 4

1 A E I M
2 B F J N
3 C G K O
4 D H L P

rCOOM (M’)=

Column

Row 4 3 2 1

1 M I E A
2 N J F B
3 O K G C
4 P L H D

Fig. 4 90° Rotation of the 2D Array

 Similarly, reversing the order of the columns of the
Matrix M (as shown in Fig.5) is equivalent to a 180°
rotation. Hence a function rCOOM (M) operation can be
used in this case,

i.e. Rotation of 180° = rROOM (rCOOM (M)) (2)

Column

 Row 1 2 3 4
1 A B C D

M

=

2 E F G H
3 I J K L
4 M N O P

rCOOM (M)=

Column

 Row 4 3 2 1
1 D C B A
2 H G F E
3 L K J I
4 P O N M

rROOM (rCOOM (M))=

Column

 Row 4 3 2 1
1 P O N L
2 L K J I
3 H G F E
4 D C B A

Fig. 5 180° Rotation of the 2D Array

and lastly a rotation of 270° can be done by reversing the
row order of the transposed matrix M (as shown in Fig. 6).
Mathematically, it can be denoted by the operations as
discussed below:

i.e. Rotation of 270° = rROOM (M’) (3)

The operations defined above can be applied using
MATLAB very easily or one may use any other
programming language as it requires two basic types of
operations, transpose and reversal of order of rows /
columns only.

M

=

Column

 Row 1 2 3 4
1 A B C D
2 E F G H
3 I J K L
4 M N O P

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

144

M’=

Column

Row 1 2 3 4

1 A E I M

2 B F J N

3 C G K O

4 D H L P

rROOM (M’)=

Column

Row 1 2 3 4

4 D H L P

3 C G K O

2 B F J N

1 A E I M

Fig. 6 270° Rotation of the 2D Array

4.3 Decryption Phase

It is noteworthy that the operations during the decrypting
phase can be carried out in two different manners. In the
first approach, one may use the same bits but rotate the
elements in anti-clockwise direction at an angle that was
used while encryption (refer Table 3). But for this
approach one has to define the decryption operations
separately.

Table 3 Rotation Policy while Decryption
(anti-clockwise rotation case)

Key bit value Rotation
(anti-Clockwise direction)

00 0°
01 90°
10 180°
11 270°

 In the second approach, one may use in the
anti-clockwise direction. OR another alternative way is to
rotate the matrix in clock-wise direction but for some
different angle as specified below:

 In this approach one needs to find the 2’s complement
of the key bit values of rotation and add 1 to it. During
addition operation, carry in the 4’s place may be ignored.
The rotations in clockwise direction using computed bits,
is given in the Table 4 for the encryption process. It can
be easily verified that the rotations are obtained by adding
1 to the 2’s complement of rotation bits, ignoring last carry,
for clockwise rotation functions only. Moreover, the
operations to be carried out in these cases are same as
discussed in above discussions.

Table 4 Rotation Policy while Decryption (clockwise rotation)

Key bit
value

2’s Complement+1
(ignore carry)

Rotation
(Clockwise
direction)

00 11+1=00 0°
01 10+1=11 270°
10 01+1=10 180°
11 00+1=01 90°

5. Key Usage

Naim Ajlouni et.al. had suggested a new approach in Key
Generation and Expansion in Rijndael Algorithm. Use of
random pool of keys has been suggested that simplifies the
process of generating and expanding cipher key for the
algorithm [5].
However, for this modified form, there is no need of
increasing the length of the key. The same old round key
(Step 4 of the original AES algorithm) can be used to
generate two parity values. The column values of the
round key can be added to produce the two bit parity code
of the two bytes separately. These two bits can be used to
rotate the block as discussed in Section 4. Thus we have
introduced another step / transformation without
increasing the key length which is advantageous.
In case of a 4X4 block, the 2D Block rotation can be used
as explained in the 2D Block Rotation Explained (Section
4). However, in case of a 4X8 block, one can consider it
as a special case of two 4X4 blocks. The round key can
be used in the same way for the two 4X4 sub-blocks.

5.1 Backward Compatibility

In order to provide backward compatibility in the modified
AES implementation, one can take two parity bits after
each round as ‘00’. Since ‘00’ represents a 0° rotation
during encryption and decryption phases, the modified
algorithm will work as the original AES.

5.2 Key Transfer

As the parity bit sum is used to rotate the block cipher by
certain angle, the transfer of the key becomes very
important. We confirm the use of our 3D Parity Bit
Structure for increasing error free rate of transfer of key
bits [6].

6. Implementation

The proposed design is complex to be implemented using
hardware only. We suggest the use of software based
implementation, preferably in MATLAB due to intrinsic

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.9, September 2011

145

design of the language in line with the
operations/transformations required in the modified AES.
However, one may also implement the design discussed
above in languages like C also.

modifiedAES(byte in[4*Nc], byte out[4*Nc], word w[Nc * (Nr+1)]){
 byte state[4, Nc];
 state = in;
 AddRoundKey(state, w[0, Nc-1])

 for(roundNo=1; roundNo<Nr; roundNo++){
 SubBytes(state);
 ShiftRows(state);
 MixColumns(state);
 AddRoundKey(state, w[Nr*Nc,(Nr+1)*Nc-1]);
 2DRotateState(state, parityCode(state));
 }
 SubBytes(state);
 ShiftRows(state);
 AddRoundKey(state, w[Nr*Nc], (Nr+1)*Nc-1);
 2DRotateState(state, parityCode(state));

 out=state;
}

Fig. 7 Pseudo-code for Modified AES

7. Strength

The original AES was having the complexity of the order
of the bits used as key. The expected strength is of the
order of 2127 for 16 bytes of key and 2255 for 32 bytes of
key. With the introduction of the new round the
complexity of the intruder will increase by the order of
3NumberOfRounds. This is because at the end of each round in
the modified form of AES, the attacker needs to check for
3 possible block values that could have resulted due to 2D
Array block rotation. However, this step has made the
AES turned to a Feistel structure.
 If we denote the time taken in a single 2D Rotation as ‘t’
and ‘3t’ in case of predicting using brute-force attack.
Then the time complexity during encryption increases by
(NumberOfRounds)Xt. However, in case of decryption,
one needs go by (3t) (NumberOfRounds) time complexity.

8. Conclusions

We have provided modification of AES that can be applied
without increase in the size of the key block. Inclusion of
one more round has further increased the complexity
involved to decrypt ciphertext of AES using Brute-force
attack. Backward compatibility provided in the modified
approach will be beneficial till systems in communication
do not upgrade to the software implementation of the same.
In all, one can conclude that AES turned to a Feistel
structure might prove more complex to be attacked by
intruders with malified intensions.

9. References

[1] J.Daemen and V.Rijmen, AES Proposal: Rijndael, NIST’s
AES home page, http ://www:nist:gov/aes.

[2] Announcing the Advanced Encryption Standard (AES),
Federal Information Processing Standards Publicatrion 197,
November 2001

[3] Chun Yan,Yanxia Guo, “A Research and Improvement Based
on Rijndael Algorithm”, 2009 First International Conference
on Information Science and Engineering, Nanjing, Jiangsu
China, December 26-December 28, ISBN:
978-0-7695-3887-7

[4] Dr. (Mrs) Pushpa R. Suri, “A Cipher based on 3D Array
Block Rotation”, International Journal of Computer Science
and Network Security, VOL.10 No.2, February 2010, pp.
186-191.

[5] Naim Ajlouni et.al., “A new approach in Key Generation and
Expansion in Rijndael Algorithm”, The International Arab
Journal of Information Technology, Vol. 3, No. 1, January
2006, pp. 35-41.

[6] Dr. (Mrs) Pushpa R. Suri, “3D Parity Bit Structure: a novel
technique to correct maximal number of bits in a simpler
way”, International Journal of Computer Science and
Internet Security, VOL.9 No.8, August 2011, pp. 182-186.

Pushpa R. Suri is Associate
Professor in the Department of
Computer Science and Applications at
Kurukshetra University, Haryana,
India. She has supervised a number
of PhD students in the area of
Network Security and Cryptograhic
techniques. She has also published a
number of research papers in National
and International Journals and
Conference Proceedings. Her areas
of interest are Data Structures,

Network Security & Cryptography.

Sukhvinder Singh Deora holds the
degrees of M.C.A., M.Phil. in
Computer Science and is working as
Assistant Professor in N.C. Institute
of Computer Sciences, Israna,
Panipat, India. He is also a Research
Scholar at Department of Computer
Science and Applications,
Kurukshetra University, Kurukshetra,
India. This work is a result of his
research in the topic of Network
Security. To his credit are many
prominent papers in the area of data

security and issues related to it, published in eminent Journals of
India. He has edited Proceedings of National Level
Seminars/Conferences. He also has an industry experience of 1.5
years in the areas of Testing, Java and Database design issues.
His interest areas include Network Security, Theoretical
Computer Sciences, Data Structures, S/W Testing and Database
Designing. He is also a permanent member of Indian Society of
Information Theory and Applications (ISITA).

http://dl.acm.org/author_page.cfm?id=81456609313&coll=DL&dl=ACM&trk=0&cfid=44496238&cftoken=15915639

