Improvement of EEG Processing System "BBFFT2ANOVA" - To Generate Detailed Graph Data Corresponding to ANOVA Results -

Takashi Ajiro[†], Koichiro Shimomura[†], Hirobumi Yamamoto[†] and Kenichi Kamijo[†]

[†]Plant Regulation Research Center, Toyo University, 1-1-1 Izumino, Itakura, Gunma, 374-0193, Japan

Summary

At the Toyo University Plant Regulation Research Center, we have officially performed electroencephalogram (EEG) experiments a number of times. Our purpose is to investigate and analyze EEG fluctuations in individuals after they have ingested vegetables: for example, after consuming Komatsuna (also known as Japanese mustard spinach) or drinking carrot juice. To analyze EEG data derived from past experiments, we had to use two original composite methods, which were ANOVA using statistical software and fluctuation graphs using Microsoft Excel. Either "Basic Analysis" or "Detailed Analysis" was used as the latter method, and although our EEG processing system, "BBFFT2ANOVA," provided Basic Analysis, its analysis capability was not sufficient. In our past studies, we manually calculated the Detailed Analysis on Microsoft Excel. However, this is difficult for people to do if they have to operate many cells, and human errors are common. We designed and developed an improved EEG processing system called "BBFFT2ANOVA v2" that is based on the v1 system. The new system has four primary additions/improvements, the most noteworthy of which is the inclusion of Detailed Analysis instead of Basic Analysis. Furthermore, we confirmed the system's behavior is valid, comparing generated files with manually created ones. The results indicate that the operational costs as well as the amount of analysis processes required will both be considerably reduced by using this system, in EEG research project.

Key words:

ANOVA, SOC, EEG, vegetable ingestion, algorithm, analysis program, BBFFT2ANOVA

1. Introduction

Electroencephalogram (EEG) tests are frequently used for studying psychological influences, transforming original voltage fluctuation with the Fast Fourier Transformation (FFT) or directly deciphering it. Since EEG responses indicate fluctuations in the electrical activity of the human brain (in other words, psychological influences), there have been many studies that have measured and analyzed the effects of sensory inputs on EEG activity, such as hearing, smell, vision, and taste [1– 6]. Wave groups, such as θ , α , β , and δ defined by representative values between frequency bands, are commonly used. More specifically, in EEG research, α and β waves are frequently used to evaluate the effects of

Manuscript received October 5, 2011

relaxation. For example, these waves have been used to evaluate mental states while working [7–8]. We have also used these two waves (including sub- α waves) for evaluating "relaxing" and "stress" brain states in our own researches [9–11].

At the Toyo University Plant Regulation Research Center, we have officially performed EEG experiments eight times. Figure 1 shows sample vegetables that had been used in our EEG research project, and they have been improved and cultivated in vegetable research project (by another team in our research center). The Komatsuna (also known as Japanese mustard spinach) were cultivated with original fertilizers. And, the carrots ware an improved breed, and the right one ((b) called "Aroma Red") was designed by our research center to have a fruity flavor. The history of our official EEG experiments is as follows (the number of levels of factors "A" and "E" are contained within the brackets).

- 1) Komatsuna (A = 2), preliminary, Nov. 2008
- 2) Komatsuna (A = 3, E = 2), main, Dec. 2008
- 3) Komatsuna (A = 3, E = 2), preliminary, Oct. 2009
- 4) Komatsuna (A = 3, E = 2), main, Oct. 2009
- 5) Agar, (A=2), main, Dec. 2009
- 6) Komatsuna ((A = 4), (A = 2)), main, Feb. 2010
- 7) Carrot juice (A = 2), main, Nov. 2010
- 8) Carrot juice (A = 2), main, Jan. 2011

Fig. 1 Sample vegetables used in our EEG research project, Komatsuna (left) and carrots (right).

There has been no research on EEG measurements and analysis after vegetable ingestion, except our own past works [9–11]. To analyze EEG data measured from past experiments, we had used two original composite

Manuscript revised October 20, 2011

methods: ANOVA using statistical software and fluctuation graphs using Microsoft Excel. The former assays significant variances of defined factors and their interactions, and the latter compares the defined levels in such factors (Basic Analysis). The fluctuation graphs for interactions having significances of ANOVA represent the levels of factors related to these interactions (Detailed Analysis).

For our earlier work, we developed an original EEG processing system called "BBFFT2ANOVA" to shorten the operational time and reduce the number of processes. The system provides to generate level tables for ANOVA and to generate graph data as Basic Analysis, but the latter analysis capability is not sufficient. In our past works, we had to manually calculate the Detailed Analysis on Microsoft Excel [10–11]. However, this was difficult to do if there were a lot of cells to operate, and human errors were common. We therefore developed an improved version, called "BBFFT2ANOVA v2" based on "v1" This new system features four main system. additions/improvements, the most noteworthy of which is the implementation of Detailed Analysis instead of Basic Analysis. Furthermore, we confirmed the system's behavior is valid, comparing generated files with manually created ones. The results indicate that the operational costs as well as the number of analysis processes required can be considerably reduced by using this system, in EEG research project.

The rest of this paper is organized as follows. In Section 2, we discuss the preparation of our experiment, including an EEG measurement device and an overview of ANOVA theory. In Section 3, we give an overview of our previous EEG processing system "BBFFT2ANOVA v1" and briefly discuss the ".fft" file formats used for the processing as well as the actual program structure of the system. Our improved v2 system is introduced in Section 4, and the results of our C++ source program with a detailed description of the algorithm are presented in Section 5. In Section 6, we describe a program test of the new system to determine the accuracy of the generated data. Finally, in Section 7 we conclude with a summary of our design and development results.

2. Preparation

2.1 EEG Measurements

1) Simple EEG measurement device: In our EEG research project, we used a simple EEG measurement device called a Brain Builder Unit for the EEG measurement [12] in our EEG research project. A photograph of this device, including the electrodes, is shown in Fig. 2. The two electrodes on the headband adhere to the skin of the forehead, and the other electrode

on the clips with electric wire adheres to the left ear lobe (to the right ear lobe in the case of upside-down use). The device is connected to a PC with a Windows XP operating system. EEG measurement software called Mind Sensor II controls the Brain Builder Unit [12]. The software communicates with the measurement device via a serial port, and captures and writes out the EEG data. The system measures EEG data of the left and right sides of the brain separately, and the measured data series is written to an ".fft" file that has an internal CSV format. Figure 3 shows the data visualization function of the software, which displays real-time electric patterns during the EEG capturing process. Especially, the left-top window displays important two kinds of patterns: one is the raw voltage fluctuation (unit: μV) (upside), and the other is the spectrum that indicates each power of frequency using Fast Fourier Transformation (FFT) (downside).

Fig. 2 The Brain Builder Unit with three electrodes.

Fig. 3 Display of Mind Sensor II (in Japanese).

2) Definitions of EEG frequency groups: A categorized spectrum defined in an EEG frequency grouping is generally used in EEG analysis instead of the raw electrical fluctuation or its spectrum, even though

definitions of EEG frequency groupings vary according to the researcher. For example, some EEG works [13–14] introduce their own definitions of EEG frequency groupings. We used the definitions in the Mind Sensor II software manual (see Table 1) since they are conformed to our research and are a useful EEG grouping.

The δ wave group (hereafter, a wave group is called a "wave") appears in deep sleep, but we could not use this wave since the EEG measurement device mixes electrical noise. We could use the θ wave as only sub-information since the participants in our study are awake. The area of the α wave is separated into three groupings (α -type waves), since these frequencies are the most important in terms of examining relaxation effects. In addition, fluctuations in these frequencies are active only in awake humans. The β wave appears in the attention state, and we compared it with α -type waves. Although the general boundary of the β wave is considered to be 40 Hz, our definition is 23 Hz due to the limitation of the measurement device.

EEG Type		Frequency	Mental state				
δ		1 – 3 Hz	deep sleep				
	θ	4 – 6 Hz	light sleep, medi	tation			
α	slow α	7 – 8 Hz	relaxing with depressed consciousness	relaxing, creativity			
-	mid α	9 – 11 Hz	relaxing with concentration	uplifting			
	fast α	12 – 14 Hz	concentrating with stress				
β	15 – (23 Hz) attention, concentration						

Table 1 EEG types and corresponding mental states

2.2 ANOVA Software for Variance Analysis

For the ANOVA calculations, captured EEG data in the ".fft" file is processed and input into a software application called JUSE-QCAS Version 7 [15]. This software supports many statistical operations, including the ANOVA function; Figure 4 is a snapshot of its dataediting mode. In this mode, the user can input data to cells that accept integer values, real values, and characters as text labels. The system recognizes the columns of these cells as two kinds of variables: "quality" and "quantity." The quality variables include the levels of factors, and the quantity variables include the analysis data. In Fig. 4, C3-C5 are quantity columns and N6–N7 are quality columns. The system analyzes the quality values (measurement data) in accordance with the factors and allocations of the quantity values (levels of factors). The software then uses the results to generate a table of ANOVA data (called an ANOVA table).

2.4 Basic Concept of ANOVA

The ANOVA statistical analysis method is based on the dependencies of factors related to the movement of measurement values. In this method, independent factors are called "main effects" and factors generated by mixing independent factors are called "interactions." The main factors are denoted as A, B, and C, and the interactions are denoted as $A \times B$, $B \times C$, and $A \times C$. The calculation results are called "p-values" (probability values) and are determined using a function of this method called an "assay." The result of the assay is shown as "**" if the pvalue is less than 0.01 and by "*" if it is less than 0.05. The p-value indicates the reliability of the significance. For example, a p-value of 0.5 indicates statistical singular values of 5% that are included in the numerous measured values. In other words, it indicates 95% reliability of the analysis results.

The core concept of this theory is the expression of measurement data by the sum of squares that include all factors, errors of measurement, and total accidental errors. The formulation, which is called "structure expression," is a five-way layout of analysis variance and is defined in Fig. 5. Its variance meanings are as follows: y is measurement data, a, b, c, d, and e are the level values of factors, i, j, k, l, and m are identical suffixes for factors, n is an identical suffix for iteration, ε is the total accidental error, and μ is the error of measurement. A more detailed overview of the theory of the analysis of variance can be found in other literature [16–18].

2.5 Experiment Condition (in Case of Eating)

Our EEG measurement experiment sequence is defined as "Sitting down and being silent (before phase) \rightarrow eating pieces of vegetables (during phase) \rightarrow sitting down and being silent (after phase)." Participants sit down and are silent during the "before" phase to stabilize their psychological state. The experiments are executed in accordance with a predefined order, e.g., "pair 1 male (kind 1), pair 1 female (kind 1), pair 2 male (kind 1), pair 2 female (kind 1), pair 3 male (kind 2)" Both the participants and the researchers are blinded so they can not see which vegetables are being eaten (double-blind experiment). The details of the experimental conditions are as follows.

- Participants put on the Brain Builder Unit electrodes.
- All measurements are conducted in a tent-enclosed space that includes a table for eating the samples. Participants are instructed to sit down quietly with their eyes open to avoid α -wave noise.
- The layout of the experiment table is shown in Fig. 6. An edible sample is placed on a sheet of paper resting atop a cup. An alarm timer is located at the corner of the table.
- <u>Participants are paired (5–10 pairs in general</u>), with one pair consisting of one male and one female.
- The experiment sequence is "before \rightarrow during \rightarrow after." In the "before" and "after" phases, participants sit quietly for a number of seconds (20–40). In the "during" phase, which lasts 20–40 seconds, examinees eat a vegetable sample.
- Participants masticate and swallow the vegetable sample in the "during" phase. They are instructed to masticate more than 10 times before swallowing.
- Participants are instructed to eat the samples individually since being fed by another person is a rare action that may generate an invalid EEG measurement due to the psychological effect.

Fig. 6 Layout of experimental table.

3. Overview of the Previous EEG Processing System (BBFFT2ANOVA v1)

3.1 Basic Concept of Analysis Flow

In our analysis environment, we primarily used an EEG measurement device and the four software programs previously introduced (including Mind Sensor II and JUSE-QCAS). Figure 7 shows the analysis flow of our research project, and the rectangles with round corners indicate software used on different analysis phases. BBFT2ANOVA v1 was used in an early phase of the analysis flow and output two kinds of data files. (Note: This system was not named until 2011; in our previous papers, we refer to it as the no-name system [9-11].) The hexagonal shapes indicate final analysis results for a particular research focus of the EEG experiments. Both ANOVA Results and Graph Results are Excel data in the ".xls" format created by individuals, most of whom were students at our university.

The main purpose of v1 was to reduce the expense of and the duration of human work as well as the number of operations necessary to analyze the ".fft" data. In most of our studies, the system was mainly used to support the generation of formatted data for ANOVA because our graph data was insufficient and only included "Absolute Values" and "Basic Analysis." In these cases, we had to manually create Excel graphs for the "Relative Values" and "Detailed Analysis" data. In the next section we will introduce our new version of BBFFT2ANOVA, and will explain this illustrated analysis flow is completely implemented by the improved system.

We used JUSE-QCAS for the analysis to ensure the reliability of the statistical calculations and to take advantage of the more advanced analysis method the software has, and we made the graphs by hand because it easy to process graph data with spreadsheet software and because we wanted to use our original graphs, in which the x-axis was three (or two) phases and the y-axis was the EEG voltages.

3.1 The Format of the ".fft" File and the Meanings of Cells as ".csv" Format

The structure of a ".fft" file is compatible with the CSV format, which separates items with commas. One exception is the second item (number as measuring time), which is enclosed by double quote marks and includes a pre-space. Figure 8 shows how the ".fft" file data appears on a text editor. The first item on a line means the channel from which that line's data was obtained. In this study, we treated channel 1 as a level of the left brain and channel 2 as a level of the right brain.

Fig. 7 Analysis flow of our research project.

1,"	1",1,1,1,2,5,6,5,5,5,2,9,4,6,4,2,0,2,0,4,2,6,5,3,2,13,0,0,2
2,"	2",2,2,2,5,5,6,12,2,2,4,7,11,6,4,4,8,4,2,6,8,4,4,4,3,14,0,0,3
1,″	3″,1,2,2,4,2,8,5,10,5,7,9,7,2,8,0,4,2,2,2,2,0,2,3,1,14,0,0,3
2,″	4″,1,2,2,5,2,2,12,0,2,2,9,2,2,4,2,4,4,2,4,6,2,0,1,1,14,0,0,3
1,″	5″,1,2,2,2,3,6,2,5,7,2,4,9,2,6,4,4,2,4,4,6,4,9,3,2,14,0,0,3
2,″	6″,2,2,2,4,5,10,5,2,7,9,4,7,10,4,2,2,2,2,2,4,4,4,1,1,13,0,0,3
1,″	7″,2,2,1,5,5,4,2,5,5,2,4,4,2,4,0,4,4,4,2,4,2,4,1,1,13,0,0,3
2, <u>"</u>	8″,1,3,1,1,3,2,5,10,7,4,4,9,6,6,2,4,2,2,2,2,4,4,1,3,13,0,0,3
1,	9~,1,2,2,2,10,2,7,5,2,2,7,9,4,8,8,0,6,2,6,2,2,9,3,2,14,0,0,3
2,	10,1,1,2,1,0,6,2,5,7,7,9,9,6,2,4,6,2,2,4,2,2,4,3,1,13,0,0,3
<u>]</u>],″	12,2,4,6,14,18,6,22,12,5,15,9,7,8,6,6,8,4,6,2,10,6,7,4,1,13,0
2, .	13,,2,5,7,2,6,6,10,7,5,7,9,11,2,2,14,8,6,6,8,2,0,4,1,0,13,0,0
<u>]</u>], "	14, 2, 4, 3, 2, 6, 16, 10, 7, 5, 4, 9, 7, 8, 2, 4, 8, 0, 2, 2, 2, 2, 7, 1, 4, 13, 0, 0, 3
Z,	15,1,3,2,4,2,2,5,2,5,9,7,0,4,2,4,2,2,6,2,4,2,5,3,0,13,0,0,3
	Fig. 8 Appearance of "fff" file data on a text editor

Table 2 shows the meanings of items of EEG data in the ".fft" file on Excel. "Cell labels" corresponds to columns on a spreadsheet area, and "meanings of data" explains the meaning of each cell's value. For example, on the values of cell A, the item explains the correspondence relationship of values of the different brain sides. "Wave type" refers to the different waves in EEG. These waves generally have each frequency band as a number of electric voltages.

The B cells include the values of measurement time as the unit s, and generally speaking, these cells have a non-redundant value each other. Cells C–Z include integer voltage values as the unit uV, but the data of C–F could not be used, mainly because of noise (according to the instruction manual). Cells AA–AD include meaningful data—for instance, myoelectric potential—but these cells are not necessary for the purposes of our research and our developed system discards them. The bands of θ waves are ignored in v1 of the system but their data are calculated in the improved system.

3.2 Program Structure and Flow of the System

The program source of BBFFT2ANOVA v1 is a normal procedural structure in the style of C language but using the C++ programming language. This structure is what makes the program flow tractable. We have

previously devised and proposed a fundamental algorithm for this system [9]. Thus, the program source was written on the basis of the algorithm, and the flow was also procedural and had no object-oriented basis. Figure 9 shows the structure of the program source (left) and illustrates its program flow (right). The representation of structure shows meaningful groupings of the source program, for instance, the definition part of constant numbers (as defined macros), the declaration part of types and function prototypes, and the definition part of functions. The diagram of the program flow illustrates the execution sequence of the entire program. A rectangle means routine (called "function") and arrowed vertical lines attached to it mean its program flows. In particular, an attached line to the bottom of the rectangle is the main flow of the routine, and horizontal line(s) from the main flow are subroutine call(s).

Table 2 Item meanings of EEG data in ".fft" file on Excel

Cell Labels	Meanings of Data	Wave Type
Α	left brain (ch1) = 1,	
	right brain (ch2) = 2	
В	measurement time from start up (s)	
C – F	voltages of 0 – 3Hz (μ V)	noise mainly
G – I	voltages of 4 – 6Hz (μ V)	θ
J–K	voltages of 7 – 8Hz (μ V)	slow α
L – N	voltages of 9 – 11Hz (μ V)	mid α
0 – Q	voltages of 12 – 14Hz (μ V)	fast α
R – Z	voltages of 15 – 23Hz (μ V)	β
AA – AD	etc.	

In C language, the main routine determines the main flow of operations in the entire program. The main routine of BBFFT2ANOVA v1 controls key input from a user, by means of an overall nesting loop structure. The subroutine "Proc_eeg" calculates data from one ".fft" file and stores it in the array variable "db" as a seven-dimensional array. In the subroutine, "average_ddata" and "selmax_freq" are called sequentially, and the former routine averages data per phase and per brain side. The latter routine invariably selects the maximum value in EEG frequency bands, since this version supports only the ave-max method.

A subroutine "write_db" writes the data in a "db" array to a file, "data.csv," creating and opening the file with writing mode. The subroutine consists of a whole nesting loop to write the data in a specified order so as to correspond to our conventional manual method. The "write_gr" routine also writes data to a "gr.csv" file, but this data is processed as graph data and stored in the "grdata" array variable as a three-dimensional array by the "gen grdata" routine, which calculates the Basic Analysis named in our previous paper [11]. This method is a simple calculation implemented by averaging all the factors except "kind" and "phase." The resulting data has applicable forms to the Excel graph drawing function.

Fig. 9 Structure of program source (left) and program flow (right).

3.3 Generating Files and Their Formats

The internal analyzed data of BBFFT2ANOVA v1 stores the variable "db" as a seven-dimensional array on the returned state to the main routine from "proc eeg." The system writes out level tables in a specified format for simple pasting to statistical software such as JUSE-QCAS. These formatted data can be used to execute the analysis command simply. Figure 10 shows a combination sequence of levels on a level table, including the calculation results on a slow α wave. The left part of the table shows the sequence of all combinations of levels on factors, with the level values changing cyclically (1, 2, 3, 1, 2, 3, 1 ...). And, the right part shows the sequence of all the calculated values, which are placed in a suitable position corresponding to combinations of level values. These calculated values belonging to different pairs are put alongside each other: for example, "20.6, 26.2, ..." correspond to the labels "<pair 1>, <pair 2>, ... <pair n>." This version of the system writes out level tables that only include calculated absolute values for slow α , mid α , fast α , and β waves by spacing a row.

The cyclic order of the combination sequence is as follows: sex \rightarrow brain \rightarrow phase \rightarrow iteration \rightarrow kind. At first, the level value of the "sex" factor is incremented by one per data line. When the level value arrives at 2, the next level value of the data line arrives at 1 cyclically and the level value of the "brain" factor is incremented by one. Briefly, the level value of a factor that is ordered later (tail of the right arrow) is increased by one when the level value of a factor that was ordered earlier (head of the left arrow) is cyclically reset to 1. This cyclic order was conventionally determined prior to our past work [9]; however, it is not a rational order. The improved system,

as we explain in the next	section,	writes	out level	tables	by
a refined cyclic order.					

1		-			1		1	-	-
slowα									
kind	sex	brain	phase	iteration	<pair1></pair1>	<pair 2=""></pair>	<pair 3=""></pair>	<pair 4=""></pair>	<pair 5=""></pair>
1	1	1	1	1	20.6	26.2	19.2	19.5	9.2
1	2	1	1	1	18.3	16.8	7.5	14.2	9.111111
1	1	2	1	1	26.11111	23.77778	23.66667	30.11111	11.11111
1	2	2	1	1	21.33333	14.11111	7.444444	20.33333	11.25
1	1	1	2	1	36.9	35.6	33.2	38.5	24.9
1	2	1	2	1	34.2	25.6	18.9	26.2	18.1
1	1	2	2	1	42.5	31.3	31.1	23.8	22.5
1	2	2	2	1	31.1	25.8	14.1	20.7	19.4
1	1	1	3	1	25.55556	27.77778	27.11111	28.33333	10.77778
1	2	1	3	1	27.55556	11.88889	15.22222	18.66667	13.125
1	1	2	3	1	23.9	34.2	27.9	25.7	17.5
1	2	2	3	1	26.2	18.6	7.8	20	12.77778
1	1	1	1	2	10	15.4	12	18.1	11.2
1	2	1	1	2	18.4	14.1	11.9	15.3	14.6
1	1	2	1	2	6.111111	12.33333	12.88889	14.33333	8.888889
1	2	2	1	2	16	8	11.44444	12.88889	16.22222
1	1	1	2	2	38	40.1	33.7	12.3	19.5
1	2	1	2	2	24.5	36.1	22.1	25.3	18.5
1	1	2	2	2	27.6	37.8	31.6	19.1	23.5
1	2	2	2	2	29.9	31.5	14	36	20.9
1	1	1	3	2	11.33333	26.44444	22.55556	20.88889	9.888889
1	2	1	3	2	23.88889	17.33333	11.44444	11.55556	10.44444
1	1	2	3	2	8.888889	26.1	28.7	14.3	8.8
1	2	2	3	2	19.9	17.5	9.5	21	20.4
2	1	1	1	1	7.888889	13.6	22.3	17.7	20.2
2	2	1	1	1	14.2	10.8	9.8	9.6	16.5
2	1	2	1	1	7 222222	8 000000	1077778	23 66667	177778

Fig. 10 Combination sequence of levels on a level table

Figure 11 shows generated graph data that is included in a "gr.csv" file. These data are separated by commas and line feed codes according to CSV format. The first table (top-left) shows the graph data composed of absolute values for a slow α wave, and the top-right table shows the graph data composed of relative values. The bottom tables show the graph data for a mid α wave. Graph data for other EEG waves are sequentially listed in the file by spacing a row. BBFFT2ANOVA v1 can output the graph data of slow α , mid α , fast α , and β waves as well as write out level tables. In this system, relative values are generated by absolute data, subtracting the "before" phase values from any values. In the table used with this version, the x-axis is electric voltage, y-axis is "phase," and the type of series is "kind." Basic Analysis only calculates the differences between "kind" and "phase" levels, meaning that these generated graphs cannot indicate the differences between the levels of other factors.

slowα							
	kind 1	kind 2	kind 3		kind 1	kind 2	kind 3
before	15.24931	15.1925	16.04475	before	0	0	0
during	27.41	25.50556	24.655	during	12.16069	10.31306	8.610248
after	19.03646	17.25472	18.37528	after	3.787153	2.062222	2.330526
mida							
	kind 1	kind 2	kind 3		kind 1	kind 2	kind 3
before	12.13326	11.24222	11.60281	before	0	0	0
ali nda a	10 5005	47.645	47555	at contra as	e nenone	6 070770	E 0E0100

Fig. 11 Generated graph data .

4. Improved System: BBFFT2ANOVA v2

4.1 Improvements over the v1 System

In this section, we introduce our new EEG analysis (supporting) system, BBFFT2ANOVA v2, which is based on the algorithm and program source of BBFFT2ANOVA v1. The main improvements to the system are:

- Supports a new type of calculation method, "aveave," in addition to the previous method, "avemax."
- 2) Provides additional functions to calculate θ and α waves, and writes out six kinds of EEG waves, including these two.
- 3) Completely calculates and writes out relative values from individual absolute values (per participant).
- 4) Executes Detailed Analysis and writes out the results for all sufficient combinations of factors and levels as graph data.

As for the first point, the "ave-ave" method averages original data per frequency and subsequently averages these data per EEG band. It has been used in many studies and is less influenced by abnormal values than other methods. The difference between the "ave-ave" and "avemax" methods is in the second calculation only: "avemax" selects maximum values from data that have already been calculated. As for the second point, the calculation of new kinds of waves enables us to investigate more facets of the psychological state of a human being. For example, the θ wave indicates whether a participant is in a meditation state, and the α wave can comprehensively reflect the relaxing state of a human as the averaged (or maximum) values of three sub- α waves. As for the third point, the v1 system could only calculate relative values of graph data from the absolute values of graph data, but the v2 system calculates both relative values of level tables and graph data. Since these data are generated from individual absolute values, the new system can write out both kinds of data files (two each, for a total of four files) by absolute and by relative values. Finally, as for the last point, the addition of the Detailed Analysis function is the largest feature in the v2 system. This function calculates and writes out graph data for all sufficient combinations of levels of factors, but only graph data corresponding to significant factors (including interactions) of the ANOVA results are used for graph analysis. We will explain how these combinations of factors work in detail in a later section.

4.2 Program Structure and Flow of the System

The program structure of BBFFT2ANOVA v2 is quite similar to the previous system since, as stated before, we modified the program source of the v1 system and added new programs for the new features. Figure 12 shows the structure of the program source (left) and its program flow (right). In the structure of the program source, we added a routine to calculate relational values and modified the routine to generate graph data for providing the Detailed Analysis. The program flow has been changed on many points: the routines of writing out data are executed twice for absolute data and relative data, and a "makerel" routine is executed to generate relative data before the second writing process. In the figure, rectangles with broken lines indicate executions (calls) of routines that are already represented in other flows. Since "write db" and "write_gr" are given by file pointer, they execute calculations for absolute and relative data in the same way.

"Calculate_freq" is a routine that calculates values with the "ave-ave" or "ave-max" method. It integrates the "average_ddata" and "selmax_freq" routines of v1, enabling us to eliminate the two dimensional array-type "DData." "Gen_grpredata" is a new routine in the v2 system that averages pair data before the main calculation process by "gen_grdata." The "makerel" routine is also new, and it calculates relative data from absolute data and stores it in the same array by a reverse loop that decreases the counter variable for the "phase" factor. "Gen_grdata" is an improved routine, and it calculates a part of the Detailed Analysis using processed data from "gen_grpredata" instead of the Basic Analysis used in v1 system.

Fig. 12 Structure of program source (left) and program flow (right).

4.3 Graph Data Generation for Detailed Analysis

The "gen_grdata" routine calculates averages specified by the argument "avecode," which has a pointer to a string. For example, a pointer to "BCE" means that the routine first averages factor B, then moves on to C, and finally finishes with E. Briefly, the averaging function is coded by a string to be interpreted with "gen_grdata," and the Detailed Analysis is implemented by an iterative call of "gen_grdata" from "write_gr."

In our program, the averaging codes are defined by an array of strings (a two dimensional array of "char"). The defined codes and their corresponding analysis meanings are as follows.

BCE: AD, CE: AD-B, BE: AD-C, BC: AD-E(ED-A), E: AD-BC, C: AD-BE(ED-BA), B: AD-CE(ED-CA)

The meaning of a description item is "<averaging code>: <series type><factor of x-axis>-<combination of factors>(<another item generated by this averaging code>)," and multiple items are separated by a comma. For example, "BCE: AD" means that the given data are sequentially averaged by factors B, C, and E, and the generating graph consists of A-series and an x-axis allocated for "phase." As another example, "C: AD-BE(ED-BA)" means that the given data are averaged by the C factor, and the generating graphs consist of either Aseries and an x-axis allocated for "phase" or E-series and an x-axis allocated for "phase." Parts of -BE and -BA generate individual graphs for combinations of these levels of factors. For example, -BE generates graphs for B×E: (male, attribute 1), (female, attribute 1), (male, attribute 2), (female, attribute 2), ..., (female, attribute n). Briefly, the above codes are an example of the definition of specifications in the Detailed Analysis.

4.4 Generating Files and Their Formats

The improved system writes out level tables differently than the previous system: concretely, in a combination sequence. The cyclic order of the combination sequence is "phase \rightarrow brain \rightarrow attribute \rightarrow kind \rightarrow sex." This changed formatting optimizes the act of placing data from the same file close to each other, the main advantage of which is that it is easy to manually locate and obtain a particular file's data. Figure 13 shows a level table (whole), including its combination sequence (left). BBFFTANOVA v2 generates and writes out a total of six level tables for θ , slow α , mid α , fast α , β , and α waves.

										_
theta										
kind	sex	brain	phase	attribute	<pair1></pair1>	<pair 2=""></pair>	<pair 3=""></pair>	<pair 4=""></pair>	<pair 5=""></pair>	
1	1	1	1	1	27.2	24.4	18.9	14.2	12.4	
1	1	1	2	1	23.6	26.4	20.8	24.2	19.4	
1	1	1	3	1	20.44444	24	21.66667	20.88889	7.3333333	
1	1	2	1	1	23.44444	16.77778	21.44444	20	13.77778	
1	1	2	2	1	19.7	30.8	23.4	18.8	13.8	
1	1	2	3	1	19.4	23.8	24.4	16	11.6	
1	1	1	1	2	5.111111	14.4	12.4	18.8	11.8	
1	1	1	2	2	13.2	28	21.8	13.4	16.2	
1	1	1	3	2	7.555556	24.88889	19.11111	18.44444	10.66667	
1	1	2	1	2	4.888889	9.555556	16.88889	10.66667	11.55556	
1	1	2	2	2	12.4	27	26	18.3	20.1	
1	1	2	3	2	5.555556	29.4	24.4	12.7	8.4	
2	1	1	1	1	6.777778	18.6	20.6	15.2	11.5	
2	1	1	2	1	18.9	23.8	14	23.4	20.4	
2	1	1	3	1	6.222222	14.22222	21	20.22222	8.888889	
2	1	2	1	1	8	10.22222	13.55556	17.33333	12.66667	
2	1	2	2	1	22.8	22.6	28.8	18.2	19.4	
		~			0777770		440	404	45.0	_
	Fig	g. 13	Com	oination	sequence	e of leve	els on a le	evel table	e.	

Figure 14 shows graph data in "gr.csv" generated by the v2 system. The data format of the file differs from the v1 system on three points: 1) the graph data by absolute values are put on a line, 2) both graph data of A- and Eseries are generated, and 3) graph data of sufficient combinations of factors are written out. As for the first point, the improved system generates two kinds of files— "gr_r.csv" for relative values in addition to "gr.csv" instead of two types of graph data on a line. As for the second point, the list of written graph data is strictly compliant with the Detailed Analysis instead of the Basic Analysis in v1 system. As for the last point, the graph data of the A-series consist of a number of kind series while the graph data of the E-series consist of a number of attribute series. The A-series appears before the E-series in the file.

				_
theta: AD				
	series 1	series 2	series 3	
before	14.03847	13.25278	13.47653	
during	20.1775	20.19722	19.4675	
after	15.08389	13.81583	14.74	
slow alpha:	AD			
	series 1	series 2	series 3	
before	14.91618	15.095	16.04475	
during	27 3225	25 25556	24.27	
	E' 14 C	1	1 1 /	

Fig. 14 Generated graph data.

5. Details of the Improved System

5.1 Header Part of the Program

In this section, we introduce and discuss the improved system's algorithms, releasing the program source with detailed comments. Figure 15 shows the header part of BBFFT2ANOVA v2 program. These lines are placed on the top of the source file and, via the preprocessor, prepare declarations of external functions and define constant values. These constant values are commonly used to allocate memories for arrays, since the size of the arrays is fixed at the time of compilation. The constants are defined to be of sufficient size, and "-MAX"

means the maximum size of a factor. For example, "KINDMAX" is defined as 10 while the number of levels of the factor "kind" tends to be 4 or 5 generally.

```
#include<stdio.h>
#include<stdio.h>
#include<stdlib.h>
#include<memory.h>
//constant values
#define PHNUM 3 //number of phases
#define BRNUM 2 //number of brain sides
#define BRNUM 2 //number of frequencies
#define EEGNUM 6 //number of EEG types
#define KINDMAX 10 //maximum of kinds
#define ATTMAX 10 //maximum of attributes
```

Fig. 15 The header part of BBFFT2ANOVA v2.

5.2 Definitions of Types and Declarations of Function Prototypes

In our system, the types of complicated multiple arrays are redefined by the "typeder" feature of the language, and the system's routines are declared to avoid name reference problems in function calls. Figure 16 and 17 show definitions of types and declarations of function prototypes, respectively. The type of "DBaseSub" is used as a definition of sub-arrays of the "Dbase" array, which stores regular data. An array of "TmpData" is used to store EEG data from an ".fft" file, and "GrData" is the type for graph data to write out to a ".csv" file. The "GrData"-type structure is a factual sub-array of the "DBase"-type structure. The "DBase" array averaged by pair is stored in a "GrData" array by a "gr_predata" routine.

5.3 Definition of Main Routine

A few parts of v2's main routine have been modified from v1's. The main modification, which was inputting the cyclic order of data by console, has been optimized (changed) to the same order as the cyclic order of the level tables. Figure 18 and 19 show definitions of the main routine as a "main function" of C++. The "try–catch" block composes an abnormal flow for exception solution, and an occurring error in the internal block executes a "throw" statement (depending on an "if" evaluation).

5.4 Definitions of Calculation Routines

In addition to the main routine, some parts of v2's calculation routines have also been modified. First, the

"calculate freq" routine integrates the "average ddata" and "selmax freq" routines in the previous program and adds a function to select two calculating methods ("avemax" and "ave-ave") for calculating the given data. Second, the "makerel" routine is added and implemented to generate complete relative data from individual absolute data. Finally, "write_db" is modified to write out six kinds of EEG data: θ , slow α , mid α , fast α , β , and α waves (data of 4-23 Hz are used). Figures 20-23 show definitions of four routines as the "four functions" of C++. In "calculate freq," an EEG range (from, to) is specified by the two dimensional array for simpler program flow. In "write db," the composition of the nested loop determines the cyclic order. And, in "makerel," the loop for "phase" works as the reverse loop, since the relative values are calculated by the "before" values. If the "phase" loop is an incremental loop, the "before" values will first be cleared by self-values.

5.5 Definitions of Graph Data Generation Routines

Graph data generation routines consist of added or modified parts to implement the Detailed Analysis instead of the Basic Analysis in the v1 system. Figures 24-26 show definitions of three routines as the "three functions" of C++. The "write_gr" routine sequentially calls the two subroutines, which are "gen_grpredata" and "gen_grdata." However, the sub-main routine "write gr" also executes complicated calculations and writes out processed data from the two subroutines. For example, multiple nested loops are composed in the routine, and "gen_grdata" is called whenever an interpretation flow on the loops for a new averaging code starts. "Gen grpredata" is called once on the top of the main flow, and the generated data in the "grbase" array are used as original data to be processed by "gen grdata." Additionally, in "Gen grdata," multiple nested loops average data by any factor, depending on an interpreted letter A-E from "avecode." This mechanism is simply implemented by two arrays "cnt" and "tmp" that consist of a dimension. Concretely, the specified element of "tmp" consistently holds to "0" in the nested loops, depending on an interpreted letter. Elements of "cnt" are used as counter variables for these loops, and elements of "grdata" specified by "tmp" are added to values specified by "cnt." Then, the added elements are divided by the number of the target factor after the nested loop for the target factor ends.

Fig. 16 The type definition part of BBFFT2ANOVA v2.

```
bool calculate_freq(TmpData tmpdata, DBaseSub dbsub, bool avemax);
publicatcutate_freq(implata tmpdata, UBaseSub dbsub, bool avemax);
//select maximum values of averages per frequency in EEG types from "tmpdata" (avemax==true)
//average values per frequency in EEG types from "tmpdata" (avemax==false)
bool makerel(int pair, int kind, int att, DBase db); //make the data in "db" relational data
bool write db(FILE *file, int pair, int kind, int att, DBase db);
//write "db" to a file as level tables for ANOVA
bool write_gr(FILE *file, int pair, int kind, int att, DBase db);
//write "db" to a file as graph data
bool grap graphedia(int pair, int kind, int att, DBase db);
bool gen_grpredata(int pair, int kind, int att, DBase db, GrData grbase);
//average "db" of the pair part
bool gen_grdata(int fcnum[5], char *avecode, GrData grdata);
    //generate graph data and resubstitute them to "grdata", operating the values of "grdata"
//"fcnum" means numbers of levels of factors, "avecode" is a string to average data of "grdata"
                                                Fig. 17 The function declaration part of BBFFT2ANOVA v2.
int main(int argc, char *argv[]){
    static DBase db={0}; //the database for the regular data
int kind, pair, att, //number of kinds, number of examinee pairs, number of attributes
phtime[PHNUM], //times of each phase (unit: second, suffix: O=before, 1=during, 2=after)
   opmode; //EEG operation mode
char fname[300]; //buffer to input a filename
FILE *file=NULL; //file pointer
    printf("¥"BBFFT2ANOVA v2¥" by Takashi Ajiro¥n¥n");
    do {
   try{
       phtime[2]+=(phtime[1]+=phtime[0]); //adjust to elapsed seconds from starting time
       for(int cpair=0 ; cpair<pair ; cpair++)
for(int cmf=0 ; cmf<MFNUM ; cmf++)</pre>
              for(int cmr=0 ; cmr(MFNUM ; cmr++)
for(int ckind=0 ; ckind<kind ; ckind++)
for(int catt=0 ; catt<att ; catt++){
    printf("Input a filename of <pair %d, kind %d, %s, att %d>¥n:",
    cpair+1, ckind+1, (cmf==0 ? "male" : "female"), catt+1);
    if( scanf("%s", fname)<=0 ) //input a filename
        throw "Unexpected error! This program quits.";
    if( (file=fopen(fname, "rt"))==NULL ){ //open a file
        printf("proc_eeg: Cannot open a ¥".fft¥" file by the filename!¥n");
        catt=-:</pre>
                         catt--;
                         continue;
                          //if
                      if( !proc_eeg(file, phtime, db[cpair][cmf][ckind][catt], opmode==1) ) //process EEG
                      throw "proc_eeg: Measuring times are wrong!";
write_db(stdout, pair, kind, att, db); //output the results
fclose(file); //close the file
                  } //for catt
```

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

Fig. 19 The main routine (2).

```
bool proc_eeg(FILE *file, int phtime[PHNUM], DBaseSub dbsub, bool avemax){
  static TmpData tmpdata; //initialize the data area by "0"
int num[BRNUM][PHNUM]={0}, //count numbers to average tmpdata
        br, ph, time; //brain-side, phase, a value of time-part in one line data
  memset(tmpdata, 0, sizeof(tmpdata)); //clear the elements
for(ph=0; fscanf(file, "%d,", &br)!=EOF; num[br][ph]++){ //get the brain-side in a dataline
br--; //adjust "br" to offset from 0
if( fscanf(file, "¥" %d¥",", &time)==0 ) //get a measuring time with ".fft" type CSV-format
fscanf(file, "%d,", &time); //get a measuring time with normal type CSV-format
if( phtime[ph]<=time ){ //transit to next phase if the time of current phase is over</pre>
        ph++;
         if( ph>=PHNUM )break; //escape this for-loop if current time is over
      } //if
      for(int i=0, tmp ; i<FREQNUM ; i++){ //read values from cell "C" to cell "Z"
fscanf(file, "%d,", &tmp);</pre>
        fscanf(file, "%d,", &tmp
tmpdata[br][ph][i]+=tmp;
      } //i
      while( fgetc(file)!='¥n' ); //proceed to end of line (line feed code is "¥r¥n" on Windows)
     //for fscanf
   if( ph==PHNUM || num[br][ph]>0 ){
     for(br=0; br<BRNUM; br++) //average values of "tmpdata" by "num"
for(int ph=0; ph<PHNUM; ph++)
for(int i=0; pi<FREQNUM; i++)
tmpdata[br][ph][i]/=num[br][ph];
      calculate_freq(tmpdata, dbsub, avemax); //calculate EEG values from "tmpdata"
     return true;
  } //if
  return false;
```

Fig. 20 The routine for processing EEG data.


```
Fig. 22 The routine for making relational data.
```

Fig. 23 The routine for writing tables for ANOVA.

40

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

Fig. 24 The routine for writing graph data.

Fig. 25 The routine for generating pre-data of graphs (to average pairs).

Fig. 26 The routine for generating graph data.

6. Execution of BBFFT2ANOVA v2 and Verification of Results

6.1 Level Table and Corresponding ".fft" Files for the Program Test

We executed and tested BBFFT2ANOVA v2 system with our manual processing procedure to verify accuracy of generated files by the system. The manual processing procedure is precisely defined as operations on spreadsheets to enable the same data to be made by any user. The program (including the algorithm) of the v2 system also refers to the procedure sequence. Thus, we can confirm the validity of the system's behavior, by comparing the data in result files that were generated automatically with those that were made manually, from the same test files. Table 3 shows the level table of an imaginary experiment plan used to test the validity of the v2 system, and table 4 lists the ".fft" files used in the actual program test. The naming rule of the files is based on the allocation table of the imaginary experiment plan, general form and the is "test <pair><sex><kind><attribute>.fft." The <sex> part is replaced by "m" or "f," and the other parts are replaced by their respective defined names. These ".fft" files include random numbers from 0-9999 in the section of values per frequency that were generated by Microsoft Excel's "RAND" function.

Table 3 Allocation table of an imaginary experiment plan for ANOVA

Factor		Level				
Label	Name	1	2	3		
A	kind	kind a	kind b			
В	sex	male	female			
С	brain	left	right			
D	phase	before	during	after		
E	attribute	attribute 1	attribute 2			

Table 4 ".fft" files to verify the execution results of BBFFT2ANOVA v2

Pair	Sex	Kind	Attribute	Filename
1	male	а	1	test1ma1.fft
1	male	а	2	test1ma2.fft
1	male	b	1	test1mb1.fft
1	male	b	2	test1mb2.fft
1	female	а	1	test1fa1.fft
1	female	а	2	test1fa2.fft
1	female	b	1	test1mba.fft
1	female	b	2	test1mb2.fft
2	male	а	1	test2ma1.fft
2	male	а	2	test2ma2.fft
2	male	b	1	test2mb1.fft
2	male	b	2	test2mb2.fft
2	female	а	1	test2fa1.fft
2	female	а	2	test2fa2.fft
2	female	b	1	test2fb1.fft
2	female	b	2	test2fb2.fft

BBFFT2ANOVA v2 was built as a console Win32 application with Visual Studio 2005 Professional. Figure 27 is a screen grab of the system in execution specifically, the first scene, which is the input of a calculation specification and required filenames. The execution file is named "bbfftqanova.exe" and the system starts execution simply by inputting the name on "command prompt."

Figure 28 shows Excel snapshots of four files generated by the EEG processing system. "data_r.csv" and "gr_r.csv" include relative data based on the absolute data of "data.csv" and "gr_r.csv." We compared the calculated data of these files with the manually made ones and confirmed that all their values were the same. Since the main data of the ".fft" files are generated by random numbers, there is a very low probability that all values in the generated files will be the same as the manually created ones. This result thus indicates that the system's behavior is valid and that its generating data are accurate.

mi管理者: コマンド ブロンブト - bbfft2anova.exe
Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:¥Users¥Administrator>d:
D:¥>cd test
D:¥test>bbfft2anova.exe "BBFFT2ANOVA v2" by Takashi Ajiro
Input by [pair kind att opmode(1=ave, 2=max) before during after] 2 2 2 1 20 20 20
Input a filename of spair 1, kind 1, male, att 1>:testimal.fft
Fig 27 Execution state of BBFFT2ANOVA v2 (first scene)

A B C D E F G 1 theta sex brain phase attribute (pair 1) (pair 2) 1 1 theta B C 3 1 1 1 1 1 Sci 193 Sci 193 Sci 193 Sci 11 1 1 Series 1 series 2 4 1 1 1 1 14933 Sci 41 4400.67 Sci 11 4940.452 6 1 1 2 1 4781222 4689.071 Sci 118.49.067 Sci 11.49.07776 4946.502 6 1 1 2 2 5567.367 4487.61 1 series 1 series 2 Sci 7787 4757.938 11 1 1 2 2 5567.767 4487.61 1 series 1 series 2 4969.56 Sci 447.61 11 series 1 series 2 497.789.81 11 series 1 series 2 4969.56	💾 da	a data.csv										er.csv				
1 theta 1 theta 1 theta 1 theta D series 2		A	В	С	D	E		F	G			A	В	С		
2 kind sex brain phase attribute (pair 1) (pair 2) (pair 2) 2 series 1 series 2 4 1 1 1 1 1 5 1 1 1 5 1	1	theta									1	theta: A	ND .			
3 1 1 1 1 1 1 521 933 5021 633 14 3 before 4900.602 4940.452 4 1 1 1 1 1 1 1 1 1 1 4900.602 4940.452 5 1 1 1 2 1 4963.926 4369.185 5 after 5117.828 4940.452 6 1 1 2 1 1 4963.926 4369.167 7 softer 5117.828 4948.502 6 1 1 2 1 4781.222 4669.071 6 6 6 7 softer 524.133 4937.589 10 during 5087.776 4757.938 10 1 1 2 2 5567.767 4497.61 11 after 524.133 4937.589 13 1 1 2 2 5567.767 4497.63 51 13 mid alpha: AD 14 1 2<	2	kind	sex	brain	phase	attribute	Kp	air1 >	<pair 2=""></pair>		2		series 1	series 2		
4 1 1 1 2 1 4981 733 5425 41 4 during 5018.181 4937 979 6 1 1 2 1 1 4989 26 4988 185 5 5 6 5 7 1 1 2 1 1 4949 502 4948 502 6 1 1 2 1 1 4781 222 4669 074 6 eeres 1 seres 2 7 1 1 2 2 1 55478 4686 667 8 eeres 1 seres 2 9 1 1 1 2 5567 767 44878 10 0 0 5242.132 5037 638 4937 589 13 mid spha: AD series 2 5567 767 4487 11 after 5324.133 4937 589 12 1 1 1 4937 979 13 mid spha: AD series 1 series 2 15 13 mid spha: AD 14 series 1 series 1 series 1 series 1 series 2 15 before 4668 16 5239.361 1	3	1	1	1	1	1	5	251.933	5021.633	Ш	3	before	4900.602	4940.452		
5 1 1 1 3 1 4983926 4369185 5 after 5117.828 4948.502 6 1 1 2 1 4781922 4680.071 5 after 5117.828 4948.502 7 1 1 2 2 1 478122 4680.067 7 slow alpha: AD B arrier 1 Solution alpha: AD B arrier 5 after 49759 47759 47759 47759 47759 15 bfor 4968.16 5239.361 16 4000 <th< td=""><td>4</td><td>1</td><td>1</td><td>1</td><td>2</td><td>1</td><td>4</td><td>981.733</td><td>5425.4</td><td></td><td>4</td><td>during</td><td>5018.181</td><td>4937.979</td></th<>	4	1	1	1	2	1	4	981.733	5425.4		4	during	5018.181	4937.979		
6 1 1 2 1 14781 222 4669 074 6 6 8 1 1 2 1 5541 4840 067 7 8 low alpha. AD 8 1 1 2 2 1 5541 4840 067 7 8 low alpha. AD 9 1 1 1 2 2 5561 0840 067 7 8 low alpha. AD 10 1 1 2 5563 9 4825 087 9 before 5242 132 5037 633 11 1 1 2 2 5567 767 4487 61 11 after 5324 133 4937 589 13 1 1 2 467 7633 5419 267 14 series 1 series 2 15 2 1 1 1 1 1 15 before 4969 816 5239 361 16 2 1 1 1 4794 03 4022 15 before 0 0	5	1	1	1	3	1	4	983.926	4369.185		5	after	5117.828	4948.502		
7 1 1 2 2 1 5541 4849.067 7 slow alpha: AD series 1 series 2 8 1 1 2 3 1 547.8 4859.07 8 escries 1 series 2 5037.638 9 1 1 1 2 5567.03 4139.23 9 before 5242.132 5037.638 4937.638 10 1 1 1 2 2 5567.07 4487.6 11 after 5324.133 4937.589 12 1 1 2 2 5567.767 4487.6 13 mid alpha: AD before 542.132 693.789 15 2 1 1 1 479.403 4497.633 5419.267 14 series 1 series 2 492.933.641 11 after 5324.132 4932.938.01 16 during 4969.81.6 6239.361 15 before 4969.81.6 6239.361 15 before 4969.81.6 6239.361 16 229.362 492.923 494.9502 4647.889 17 <	6	1	1	2	1	1	4	781 222	4669.074		6					
8 1 1 2 3 1 54788 4856.967 8 erries 1 serries 2 serries 2 507 507 507 507 507 507 507 507 778 4757 938 10 during 5087.778 4757 938 10 during 5087.778 4757 938 11 11 1 1 2 2 5553.91 48231 11 after 5324.13 4937.593 13 11 2 2 2 5557.767 4487.61 11 after 4937.593 13 11 after 5324.13 4937.593 13 11 after 5324.13 4937.593 13 13 after 4937.593 13 14 1 2 2 5567.767 4487.61 13 mid alpha: AD series 1 series 2 4969.816 5239.361 16 4969.816 5239.361 16 4969.816 5239.361 16 497.297 4949.502 16 498.23 <th9< td=""><td>7</td><td>1</td><td>1</td><td>2</td><td>2</td><td>1</td><td></td><td>5541</td><td>4849.067</td><td></td><td>7</td><td>slow alp</td><td>oha: AD</td><td></td></th9<>	7	1	1	2	2	1		5541	4849.067		7	slow alp	oha: AD			
9 1 1 1 2 2566 033 4139.231 9 before 5242.132 5037.638 11 1 1 1 2 2553.9 4439.231 10 0 initial 242.132 5037.638 11 1 1 2 2553.9 4679.556 5274.481 11 after 5324.133 4937.589 12 1 1 2 2 2567.767 4447.633 5419.267 13 mid alphe: AD 14 1 2 3 2 4679.563 5419.267 14 series 1 series 2 15 2 1 1 1 2794.67 4979.133 16 during 17.8776.4889 17 1 1 1 1 1 1 0 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	8	1	1	2	3	1		5478.8	4856.967		8		series 1	series 2		
10 1 1 1 2 2 5653.9 4823.1 10 during 5087.778 4757.938 11 1 1 2 4675.56 527.4481 11 after 5324.133 4937.569 13 1 2 2 5567.767 4487.6 11 after 5324.133 4937.569 14 1 2 2 2567.767 4487.6 13 mid alphe: AD 14 1 2 2 2567.767 4487.6 14 series 1 series 2 15 2 1 1 1 4794.033 40281 16 series 2 16 2 1 1 3 15527.222 4647.889 17 after 492.97 17 after 491.297 4949.502 14 series 1 series 2 492.932 2 kind sex brain phase attribute cpair 1> (pair 2) 3 1 1 1 0 0 0 1 theta 2 kind sex brain phase attribute cpair 1> cpair 2) 3 1 1	9	1	1	1	1	2	5	566.033	4139.233		9	before	5242.132	5037.638		
11 1 1 3 2 4679556 5274431 11 after 5324133 4937589 13 1 1 2 2 25567767 44876 13 mid alpha: AD 14 1 2 2 2 25567767 44876 13 mid alpha: AD 14 1 2 2 2 25567767 44876 13 mid alpha: AD 15 2 1 1 1 4794033 4097838 16 6239361 16 2 1 1 1 7579467 4979133 16 during 4998.823 4992.938 17 2 1 1 3 1 55024133 4995.02 2 441 1 1 1 6002414 6000451 16 1 1 1 1 1 7674497 4979.0133 17 16 1 1 1 1 1 1 6000451 17 16 2004567 1 1 1 1 1 1 2002667 3 before 0 0 1 1 1 2 1 6	10	1	1	1	2	2		5853.9	4823.1		10	during	5087.778	4757.938		
1 1 1 2 4553741 5356519 12 13 1 1 2 2 5567767 449763 5419267 14 1 1 2 2 5567767 449763 5419267 15 2 1 1 1 4497633 5419267 13 before 4669366 5239361 16 2 1 1 1 4794033 4028 15 before 4669366 5239361 17 2 1 1 3 1 5527222 4647889 17 after 491297 4949502 16 0 0 0 0 0 0 0 0 1 after 491297 4949502 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0	11	1	1	1	3	2	4	679.556	5274.481		11	after	5324.133	4937.589		
13 1 1 2 2 2 5567.767 4487.61 13 mid alpha: AD 14 1 1 2 3 2 4577.63 5419.763<	12	1	1	2	1	2	4	553.741	5356.519		12					
14 1 1 2 3 2 4647633 5419.267 14 series 1 series 2 15 2 1 1 1 4794033 40267 15 b b b b 523942 16 2 1 1 2 1 4794033 4027 15 b b b b 523922 17 2 1 1 3 1 5527222 4647889 17 after 4912.97 4949502 2 1 1 3 1 5527222 4647889 17 after 4912.97 4949502 2 1 1 3 1 5527222 4647889 17 after 4912.97 4949502 2 1 1 1 0 0 3 1 1 1 1 1 1 1 1 1 1 1 0 0 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 0 0 3 1 1 1 1 0 0 1 <td>13</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>5</td> <td>567.767</td> <td>4487.6</td> <td></td> <td>13</td> <td>mid alph</td> <td>na: AD</td> <td></td>	13	1	1	2	2	2	5	567.767	4487.6		13	mid alph	na: AD			
15 2 1 1 1 4794033 4028 15 before 4969816 5239361 16 2 1 1 2 1 4794033 4028 15 before 4969816 5239361 17 2 1 1 2 1 4794033 4068364 497847 17 2 1 1 2 1 5527222 4647869 17 after 491297 18 4 5527222 4647869 17 after 491297 4949502 10 1 1 1 5527222 4647869 10 10 10 2 kind sex brain phase attribute cpair 12 2007 10 2 kind sex brain phase attribute cpair 12 cpair 22 3 before 0 3 1 1 1 2 1 7007 40307667 4 during 175996 247245 4 1 1 2 2 17597778 1799266 8 before 0 0 7 1 1 2 10769778	14	1	1	2	3	2	4	647.633	5419.267		14		series 1	series 2		
16 2 1 1 2 1 4579 467 4979 133 16 during 4998 823 4992 938 17 2 1 1 3 152722 4647 869 17 after 4912 97 4949 502 10 0 - - - - 502 444 6100 045 17 11 10 0 - - - 600 045 17 18 11 10 1 1 1 1 0 0 1 11 16 0016 1 2 11 1 1 1 1 0 0 1 11 16 0 0 3 1 1 1 1 0 0 1 11 16 0 0 4 1 1 1 2 1 702 40767 4 1 175 7778 1759264 6 1 1 1 2 2 1 757778 1759264 2 16 -279706 11 1 1 2 2 1067 5778 1758264 10 0 9 5676 0 0 10 104 16 <t< td=""><td>15</td><td>2</td><td>1</td><td>1</td><td>1</td><td>1</td><td>4</td><td>794.033</td><td>4028</td><td></td><td>15</td><td>before</td><td>4969.816</td><td>5239.361</td></t<>	15	2	1	1	1	1	4	794.033	4028		15	before	4969.816	5239.361		
17 2 1 3 1 5527222 4647889 17 after 491297 4949502 A B C D E F G A B C I 1 thota B C D E F G A B C 2 kind sex brain phase stribute (pair 1) (pair 2) 3 1 1 1 1 0 O A B C 4 1 1 2 1 -2702 4037667 4 during 117 576 -247245 5 1 1 1 2 1 -20607 -0 0 6 1 2 1 7597 1798026 3 after 217229 0.05 6 1 2 1 2 10 0 0 0 0 10 1 1 2 2 278607 9380670 10 90 9 11 1 2 2 287607 9380670 11 90<0 0 10 1 2 2 2	16	2	1	1	2	1	4	579.467	4979.133		16	during	4898.823	4992.938		
A B C D E F G I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>	17	2	1	1	3	1	5	527.222	4647.889		17	after	4912.97	4949.502		
A B C D E F G 1 thota arrise 1 phase attribute (peir 1) (peir 1) (peir 2) 1 1 theta B C D E F G A B C D E F G A B C 1 1 theta A B C 1 1 theta A B C I 1 theta A B C 1 1 atrise 1 aprice 1 <t< th=""><th colspan="9"></th><th>-1</th><th>18</th><th>L</th><th></th><th></th></t<>										-1	18	L				
A B C D E F G A B C 1 theta b c b c caries	🗐 dəl	data_r.csv							1	🚰 e	_F.CSY					
1 Interta 2 kind series phase ettribute Cpair 1> Cpair 1> 1 2 1 <th1< th=""> 1 1 <th1< th=""></th1<></th1<>		A	B	C	D) E		F	G			A	В	С		
2 Mind sex brain phase attribute (pair 1) (pair 2) 2 parker	1	theta									1	theta: A	ND .			
3 1 1 1 1 0 0 3 before 0 0 4 1 1 1 1 2/02 (407)67 4 (uning 1177)576 2.47245 5 1 1 1 3 1 2/02 (407)67 4 (uning 1177)576 2.47245 5 1 1 2 1 1 0 0 0 7 1 2 2 1 759.778 175.9926 8 series 1 series 2 8 1 1 2 3 1.697.5778 107.9926 8 series 1 series 2 9 1 1 1 2 0 0 9 before 0 0 10 1 1 2 2.87.8667 183.848 11 11.07 2.0038 -0.0444 11.07 2.0038 -0.0444 12 11.01 2 2.014.026 -66.019 13 midi	2	kind	sex	brain	n phas	se attribu	te	<pair1></pair1>	<pair 2=""></pair>		2		series 1	series 2		
4 1 1 2 1 -2702 4037667 4 during 1175786 -27245 5 1 1 2 1 1 -2702 4037667 4 during 1175786 -277245 6 1 1 2 1 1 0 0 6 6 6 7 1 1 2 2 1 769778 1798926 7 9 10 1 1 1 1	3	1	1	L	1	1	1		0 0	-1	3	before	0	0		
5 1 1 3 1 -268 007 -652 448 5 after 217 2259 8.05 7 1 1 2 1 1 0 0 6 7 1 1 2 1 1759 7778 179 5926 7 skow alfwar AD 9 1 1 1 2 0 0 0 9 10 1 1 2 287 8697 683 8667 0 0 10 affer 274 750 4 273 7501 07926 8 series 1 series 2 -278 7501 178 526 11 affer 288 676 0 0 10 affer 274 3507 100 4 -278 7501 178 526 11 affer 288 676 10 12 10 0 10 11 affer 28 11 affer 28 660 819 13 mid alphe: AD 10 14 affer 18 14 series 1 series 2 15 11 1 23 1896 67 </td <td>4</td> <td>1</td> <td>1</td> <td>L</td> <td>1</td> <td>2</td> <td>1</td> <td>-270</td> <td>2 403.7667</td> <td>4</td> <td>4</td> <td>during</td> <td>117.5796</td> <td>-2.47245</td>	4	1	1	L	1	2	1	-270	2 403.7667	4	4	during	117.5796	-2.47245		
6 1 1 2 1 1 0 0 0 6 7 1 1 2 1 759.778 179926 7 stow atcha. AD 8 1 1 2 1 159.778 179926 7 stow atcha. AD 8 1 1 1 2 0 0 0 0 0 10 10 1 1 2 287.8667 683.8667 10 during -154.354 -279.70 0 0 12 11 1 1 2 287.8667 683.8667 10 during -154.354 -279.70 0 0 12 1 1 2 287.8667 663.866 10 0 12 1 1 2 2 104.026 -060.819 13 mid sigha: AD 14 14 1 2 33.88258 62.74815 14 14 14 1 2 1	5	1	1		1	3	1	-268.00	7 -652.448	-1	5	after	217 2269	8.05		
7 1 1 2 2 1 759.778 [179.9926] 7 stow atrix. AD 8 1 1 2 3 16 97.5776 [107.926] 8 series 1 series 2 9 1 1 1 2 0 0 9 before 0 0 0 10 1 1 2 287.667 98.8667 10.01ming -154.54 -279.701 11 1 2 287.667 98.8667 10.01ming -154.54 -279.701 12 1 2 287.667 98.8667 10.01ming -154.54 -279.701 13 1 2 2 0 0 12 12 10.049 12 12 10.049 12 14 series 1 series 2 13.01 14 series 1 series 2 14 14 series 1 series 2 15 10.01 15 burne -70.9931<-246.428	6	1	1	1	2	1	1		0 0	-1	6		1			
B 1 1 2 3 1 99/5/78 10/1920 6 series 1 series 2 9 1 1 1 2 0 0 9 before 0 0 10 1 1 1 2 287.8667 683.8867 10 during -154.354 -279.701 11 1 1 2 2.87.8667 683.8867 11 after 82.0035 -100.049 12 1 2 0 0 12 after 5 series 1 series 2 -100.49 13 1 2 2 1014.026 -66.919 13 mid alpha: AD - 14 1 2 3 29.89259 62.74815 14 series 1 series 2 15 2 1 1 1 -0 0 15 bafore 0 0 0 0 0 0 0 0 0	7	1	1		2	2	1	759.777	8 179.9926	-1	7	slow all	oha: AD	1.0		
9 1 1 1 2 287 867 063 8667 10 9 before 9 before <td>8</td> <td>1</td> <td>- 1</td> <td>-</td> <td>2</td> <td>3</td> <td>1</td> <td>697.577</td> <td>8 187.8926</td> <td>-1</td> <td>8</td> <td>h = 6 + -=</td> <td>series 1</td> <td>senes 2</td>	8	1	- 1	-	2	3	1	697.577	8 187.8926	-1	8	h = 6 + -=	series 1	senes 2		
10 1 1 2 287 Jbb/2 983 S067 10 mining 154 Jb4 -237 J06 11 1 1 2 287 Jbb/2 983 S067 110 mining 154 Jb4 -237 J06 12 1 1 2 2 966 478 113 S248 111 littre 82 0005 -100 049 13 1 2 2 101 4026 -666 919 13 mid alphas AD 14 1 2 3 93 S8259 67 74815 14 series 1 series 2 15 2 1 1 1 0 0 15 before 0 0 16 2 1 1 213 109 616 9009 16 -708931<-264 6423	9	1	1		1	1	2	007.000	0 0	-1	9	before	454054	070.701		
11 1 3 2 rest of 11 11 attribution bet 00003 F100048 12 1 1 2 1 2 0 0 12 1 attribution bet 00003 F100048 13 1 1 2 2 1014 (266 - 666 919) 13 mid alpha: AD series 1 series 2 14 1 1 2 3 2 93 89259 62 74815 14 series 1 series 2 15 2 1 1 1 0 0 15 before 0 0 16 2 1 1 2 124 567 951.1333 16 during -709931 -246.423 17 2 1 3 17.23 1696 615 9069 17 refer ~56.8461 -269.8561 -260.6461 -269.8561	10	1			1	2	2	287.866	/ 683.866/	-1	10	auning	-154.354	-279.701		
Image Image <th< td=""><td>10</td><td>1</td><td></td><td>-</td><td>0</td><td>3</td><td>2</td><td>-000.47</td><td>5 1135.248</td><td>-1</td><td>12</td><td>arter</td><td>62.00035</td><td>-100.048</td></th<>	10	1		-	0	3	2	-000.47	5 1135.248	-1	12	arter	62.00035	-100.048		
10 1 2 2 2 1014 UC 1016 UC 10	12	1			2	1	2	1014.00	0 000010	-1	12	mid alai	AD			
Image: 1 c o c o occursed 02/Ph013 Image: 1 settles 1 settles 2 settles 2 15 2 1 1 1 0 0 15 before 0 10 17 21 1 231.09 615.00.09 17 are -56.8461<-269.850	14	1			2	2	2	02.9025	62 74915	1	14	mid alp	coriae 1	cariae 9		
16 2 1 1 2 1 -214567 951.1333 16 during -70.9931 -246.423 17 2 1 1 3 1 7331899 619 8099 17 after -56.8461 -289.859	15	2	-		1	1	4	03.0823	0 02.74015	1	15	before	0010051	0		
17 2 1 1 3 1 7331889 6198889 17 after -56.8461 -289.859	16	2	-		1	2	÷	-21456	7 951 1333	1	16	during	-70,9931	-246 423		
	.0	6					-	214.00	0011000	-11	1.0		50000			

Fig. 28 Generated files: "data.csv" (top-left), "gr.csv" (top-right), "data_r.csv" (bottom-left), and "gr_r.csv" (bottom-right).

7. Conclusion and Future Works

We designed and developed an EEG processing system called BBFFT2ANOVA v2, which is an improvement on our previous version (v1). The improved system featured four additions/improvements: 1) a new type of calculation method, called "ave-ave," 2) additional functions to calculate and write out θ and α waves, 3) the complete function to calculate related values from absolute values, and 4) a new function to execute and write out a Detailed Analysis that calculates graph data for all sufficient combinations of factors and levels. We described the program structure and flow of the v2 system (which was written in C++ with a C-like style) with detailed comments, in Section 4 and 5. And, we tested the improved system to verify generated files by it, and confirmed the accuracy by comparing the result data in these files with result data in files made by the manual operations, from the same test files. The results of our works in this paper can improve costs of working time and quantity in our EEG analysis project and other related EEG researches that use our method, by the new system's four features.

For our future work, first, we will design and develop a more flexible system based on the v2 system. This new system will provide a feature for various experimental plans using a setting file that is CSV or another format and has a calculation specification and filename information for EEG data. And, strings for labels will be set into output data via the setting file's description. Finally, we will redesign and redevelop it as a Graphical User Interfacebased system for ease of use by general operators such as university students belonging to non-ICT departments.

References

- G. Neil Martin, "Human electroencephalographic (EEG) response to olfactory stimulation. Two experiments using the aroma of food," Int J Psychophysiol, Vol. 30, pp. 287– 302, 1998.
- [2] J. C. Hashida, A. C. de S. Silva, S. Souto, and E. José Xavier Costa, "EEG pattern discrimination between salty and sweet taste using adaptive Gabor transform," Neurocomputing, Vol. 68, pp. 251–257, Oct. 2005.
- [3] M. Nuki, K. Nagata, and H. Kawakami, "The Relations among EEG, Mood, Preference, Personality and Spectrum Power analysis in Listening to Healing music," IPSJ SIG Technical Report, Vol. 2004, No. 111, pp. 35–40, Nov. 2004. (in Japanese)
- [4] T. Sakurai and M. Nakagawa, "A Study of EEG Dynamics with Photic-Stimulation," IEICE Technical Report, Vol. 96, No. 569 (NLP96-159), pp. 1–8, Mar. 1997. (in Japanese)
- [5] M. Onoda and T. Noji, "Verification of Effect of Smell Healing by Brain Wave," Proceedings of the IEICE General Conference, Vol. 2006 Engineering Sciences, p. 225, Mar. 2006. (in Japanese)

- [6] Y. Matsuo, "EEG changes by odors of preferable drinks: the effects of coffee and whisky odors on α-wave," The Japanese journal of taste and smell research, Vol. 6, No. 2, pp. 203–210, Aug. 1999. (in Japanese)
- [7] A. Oshima, "A Five-year Study on the Relationships between α-Waves and Business Performance for a Japanese Businessman," Journal of International Society of Life Information Science, Vol. 18, No. 1, pp. 232–241, Mar. 2000.
- [8] T. A. Lin, L. R. John, "Quantifying Mental Relaxation with EEG for use in Computer Games," ICOMP 2006, pp. 409– 415, June 2006.
- [9] T. Ajiro, A. Yamanouchi, K. Shimomura, H. Yamamoto, and K. Kamijo, "A Method for Structure Analysis of EEG Data -Application to ANOVA in Vegetable Ingestion-," IJCSNS, Vol. 9, No. 9, pp. 70–82, Sep. 2009.
- [10] T. Ajiro, K. Shimomura, H. Yamamoto, and K. Kamijo, "A Method for EEG Fluctuation Processing -Application to Fertilizer Difference Analysis in Vegetable Ingestion-," IJCSNS, Vol. 10, No. 10, pp. 66–77, Oct. 2010.
- [11] T. Ajiro, K. Shimomura, H. Yamamoto, and K. Kamijo, "A Method for EEG Fluctuation Processing II -Application to Pesticide Difference Analysis in Vegetable Ingestion-," IJCSNS, Vol. 10, No. 11, pp. 99–110, Nov. 2010.
- [12] Brain Function Research Center Inc., http://www.alphacom.co.jp/.
- [13] T. Okuma, "Rinsho-Nohagaku," Igaku Shoin Co., Ltd., Tokyo, Nov. 1963. (in Japanese)
- [14] A. J. Rowan and E. Tolunsky, "Primer of EEG: With A Mini-Atras," Butterworth-Heinemann, Mar. 2003.
- [15] I-JUSE: The Institute of Japanese Union of Scientists & Engineers, http://www.i-juse.co.jp/.
- [16] K. Kamijo, K. Maekawa, and C. Nakabasami, "Introduction to Informatics by Personal Computer," Kougaku Tosho Co., Ltd., Tokyo, 1999. (in Japanese)
- [17] H. Nakazato, K. Kawasaki, N. Hirakuri, and A. Otaki, "A Text for Design of Experiments Method for Quality Control (revision and new edition)," Union of Japanese Scientists and Engineers, Tokyo, 1993. (in Japanese)
- [18] H. Scheffé Henry, "The Analysis of Variance," Wiley-Interscience, New York, Feb. 1950.

Takashi Ajiro was born in 1980. He received his Ph.D. degree in Engineering from Toyo University in 2008. He has been a research assistant at the Plant Regulation Research Center, Toyo University, since 2008. His main research interests are information science and engineering, especially models of computation, programming languages, and visual language environments and systems.

Koichiro Shimomura was born in 1951. He received his Ph.D. degree in Pharmacy in 1981 from Kyushu University. He joined National Institute of Health Sciences. He is now a professor at Faculty of Life Sciences, Toyo University from 2000. His research interest is mainly antioxidative compounds produced by plants. He is a member of Pharmaceutical Society of Japan, Japan Society for Bioscience,

Biotechnology, and Agrochemistry and Japanese Society for Plant Cell and Molecular Biology.

Hirobumi Yamamoto was born in 1960. He received his Ph.D. degree in Pharmacy in 1989 from Kyoto University. He was an assistant professor in Faculty of Pharmaceutical Sciences, Nagasaki University. He is now a professor at Faculty of Life Sciences, Toyo University from 2003. His research interests are biochemistry and metabolic engineering in plant. He

is a member of Pharmaceutical Society of Japan and Japanese Society for Plant Cell and Molecular Biology.

Kenichi Kamijo was born in 1949. He received his Ph.D. degree in Geophysics from Kyoto University in 1994. He is now a professor at Faculty of Life Sciences, Toyo University. His research interests include complex systems in informatics, geoinformatics and bioinformatics. He is a member of IEICE, JSAI, Meteorological Society of Japan and Geodetic Society of Japan.