
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

57

Manuscript received October 5, 2011

Manuscript revised October 20, 2011

An Autonomic Distributed Algorithm for Forming Balanced An Autonomic Distributed Algorithm for Forming Balanced An Autonomic Distributed Algorithm for Forming Balanced An Autonomic Distributed Algorithm for Forming Balanced
Binary Trees of Nodes in a Structured P2P System in a Binary Trees of Nodes in a Structured P2P System in a Binary Trees of Nodes in a Structured P2P System in a Binary Trees of Nodes in a Structured P2P System in a

MulticastMulticastMulticastMulticast----enabled Environmentenabled Environmentenabled Environmentenabled Environment

Takashi Yamanoue
†
, Kentaro Oda

†
 and Koichi Shimozono

†
,

†Kagoshima University, Kagoshima city, Kagoshima, Japan

Summary

This paper describes an autonomic distributed algorithm

which can be used to structure a group of nodes connected

by TCP into a balanced binary tree, and an experimental

structured P2P system which adopts this algorithm. This

algorithm can be applied when nodes can be connected

directly each other by TCP/IP, and IP multicast-able.

When N nodes join group simultaneously, it takes O((log

N)
2
) time for all nodes to become members of the group,

provided some conditions are satisfied. When a node in the

group fails, the tree will be rebalanced by restarting the

algorithm at the children of the failed node.

Key words:
peer to peer; overlay network; autonomic; distributed

algorithm; binary tree.

1. Introduction

Managers of large Information and Communication

Technology infrastructures (ICT infrastructures)

frequently have to distribute identical software packages

or data to a large number of terminals quickly. Reliability

is important in such cases. For example, modern movie

formats, such as MPEG2 and H.264, consist of key frames

and subsequent changes between frames. If a terminal fails

to receive a key frame during a real-time streaming movie,

the image at the receiver terminal becomes corrupted for

many frames. Thus, the reliability of the communication

channel is important for today’s digital movie

broadcasting.

It has been shown that organizing the TCP connections

between nodes on a switching network into a balanced

binary tree is an effective way to quickly and reliably send

large amounts of identical data[3].

We are developing SOLAR-CATS, a teaching tool for

large computer laboratories[5][7][10]. This tool is

equipped with a tool capable of quickly sending the image

from one display in the class to all other displays. In order

to implement this functionality, we organize the nodes

receiving the data into a balanced binary tree where leaves

are connected via TCP. This turns the system into a

structured P2P System.

Previous iterations of SOLAR-CATS used a group

manager which instructs nodes joining the group to

connect to an existing node in such a way that the binary

tree structure stays balanced. However, the group manager

represents a single point of failure. It receives all requests

from new nodes. When a node in the group fails, children

of the failed node also must query the group manager to

determine which node they should connect to.

When a large number of students in a computer laboratory

attempted to connect to previous versions of SOLAR-

CATS simultaneously, the group manager would

sometimes fail to form a group. Furthermore, the students

had to enter the hostname or the IP address of the group

manager into the GUI, making SOLAR-CATS more

difficult to use.

In order to cope with such problems, we have created an

algorithm that constructs a balanced binary tree from the

nodes. We have also implemented this algorithm in

SOLAR-CATS.

2. Algorithm

As mentioned in Section I, nodes in the group are

organized into a binary tree and connected to each other

using TCP. In the new algorithm, when a new node

(requesting node) wants to join the group, the node

broadcasts a request to join message (datagram) to all

nodes in the group. Every Waiting nodes, who has less

than 2 children in the group, send the requesting node an

acknowledgement message. The requesting node then to

connects to the waiting node that returns the

acknowledgement first. If the node closest to the root node

returns the acknowledge message faster than the other

nodes in the group, the binary tree stays balanced. Figure 1

illustrates the previous algorithm and the new algorithm.

Figure 2 describes the algorithm. Figure 3 and 4 are

pseudo code for the procedures used by the new algorithm.

In Figure 3, InitialRequestServer is a procedure that runs

on all nodes in the group (waiting nodes). This procedure

receives the request to join message and returns an

acknowledgement message if the necessary conditions are

satisfied. When the tree is first being constructed, this

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

58

procedure is running on the root node only. The procedure

outlined in Figure 4, InitialRequestClient, is running on all

requesting nodes. This procedure will stop after the

requesting node connects to a waiting node as a child of

that waiting node, and thus becomes a member of the

group. After that, the node starts to run the

InitialRequestServer procedure.

(a) Previous algorithm

(b) New algorithm

 Figure 1. Previous algorithm and the new algorithm

begin

for each node co_begin

if this node is the root then

 InitialRequestServer;

else

begin

 InitialRequestClient;

 InitialRequestServer;

end.

co_end

wait until there is no node

which is running InitialRequestClient

end.

Figure 2. The Algorithm

Procedure InitialRequestServer

begin

this_multicast_socket.join(“mcast_port”);

repeat

 if my_node.left_is_not_connected then

 begin

message←

this_multicast_socket.receive_a_request_message;

wait_time(k*my_node.height);

// In order to construct a balanced binary tree.

the_remote_requester_address←

message.source_address;

 this_tcp_socket.connect_to_(

the_remote_requester_address , “recv_port”);

 this_tcp_socket.send(

 my_node.“address” , my_node.“left_port”);

 ack←this_tcp_socket.receive_ack;

 if ack== “accepted” then

 wait_until my_node.left_is_connected ;

 end;

 else

 if my_node.right_is_not_connected then

 begin

 message←

this_multicast_socket.receive_a_request_message;

 wait_time(k*my_node.height);

 // In order to construct balanced binary tree.

 the_remote_requester_address←

message.source_address;

 this_tcp_socket.connect_to_(

the_remote_requester_address , “recv_port”);

 this_tcp_socket.send(

my_node.“address” , my_node.“right_port”);

 ack←this_tcp_socket.receive_ack;

 if ack== “accepted” then

 wait_until my_node.right_is_connected ;

 end;

else wait_time(for_a_while)

forever;

end

Figure 3. The Pseudocode for InitihalRequestServer

This algorithm terminates after all requesting nodes join

the group. In other words, this algorithm terminates when

there are no nodes in which InitialRequestClient is running.

InitialRequestServer is running on all group member nodes.

InitialRequestServer repeats the following steps in a busy-

wait loop:

- If there is no child connected to the left side of the

node, wait for a join request message from a

requesting node. After receiving the message, return

the IP address and port number for the left child to

the requesting node using TCP after waiting for an

amount of time proportionate to the height of the

node in the binary tree of the group (in other words,

proportionate to the distance from the root node).

Then the node waits until it receives an accept

message or a reject message from the requesting

2.ack 2. ack

2. ack.

2.ack

Group

3. connect

1.Ask to join

New node

Group

3. connect

1. Ask

to

join

Group

Manager

New node

2. Answer

which

node

to connect

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

59

node. If the node receives an accept message, the

node waits until the requesting node connects to the

left-side port.

- Similarly, if there is no child connected to the right-

side node, the node executes the same steps as

outlined above, but the requesting node connects to

the right-side port instead of the left.

- If there are children on both the left and right sides,

wait.

InitialRequestClient, which runs on requesting nodes,

executes the following steps:
- Start the receiving thread to receive

acknowledgement messages from the waiting nodes.

Procedure InitialRequestClient

begin

 (new receive_server_thread).start;

this_multicast_socket.join(mcast_port);

while my_node.up_node_is_not_connected

begin

 this_multicast_socket.send(

“request_to_join_in_the_group”);

 wait_time(request_term);

end;

end

thread receive_server_thread

begin

 this_server_socket.

start_receive_connection_at_port(recv_port);

 first_socket←this_server_socket.accept;

 (new accept_thread(first_socket)).start;

 while

 enough_term_to_receive_the_message_from_all_nodes

 begin

rest_socket←this_server_socket.accept;

(new reject_thread(rest_socket)).start;

 end

thread accept_thread(socket)

begin

 message←socket.read;

 socket.send_ack(“accepted”);

 my_node.connect_to_upper_node(

message.“address”, message.“port”);

 socket.close;

end

thread reject_thread(socket)

begin

 message←socket.read;

 socket.send_ack(“rejected”);

 socket.close;

end

Figure 4. The Pseudocode for InitialRequestClient

- Repeat the following until this node is connected to

a waiting node.

� Broadcast the join request message using IP

multicast.

� Wait for an enough time to receive the

acknowledgement from an waiting node

The receiving thread executes the followings steps:

- Receive the first acknowledgement, return the

accept message, and tell the requesting node to

connect to the waiting node that returned the

accepted acknowledgement.

- Wait until all acknowledgements are received, and

return a reject message to all other waiting nodes

that returned acknowledgement messages.

This algorithm realizes a distributed way of constructing a

balanced binary tree. There is no single point of failure.

When a node in the group fails, the group will reconfigure

itself to keep the binary tree balanced if children of the

failed node start the InitialRequestClient procedure after

they stop their and their descendant's InitialRequestServer

procedure. The balance will be subsequently improved by

joining new nodes to the descendants of the failed node.

3. Proof and Time Complexity of the

algorithm

We assume the following conditions for the algorithm.

- The statement
 message←

this_multicast_socket.receive_a_request_message;

which is executed when the node is waiting for

child connections, always results in a message after

the message was broadcasted p times. TCP

connections and communications never fail between

nodes, which is a reasonable assumption since TCP

communication is quite reliable. This assumes that

the use of network switch communication between

two nodes over TCP does not affect any other TCP

connections.

- InitialRequestServer and InitialRequestClient do

not stop except at their normal termination.

- There are N nodes in the tree at time T.

A. Formation of a Balanced Binary Tree

When the number of nodes, N, is equal to 1, the only node

in the group is the root node. This is a balanced binary tree.

InitialRequestClient is not running at the root node and

InitialRequestServer is running at the node. So the root

node cannot be connected to another node. A requesting

node can only be connected to a node in the group, the

waiting node. A waiting node can have no children, one

child, or two children. The graph of nodes and edges

(connections) forms a binary tree. InitialRequestServer is

not running on a requesting node. Therefore, the node

cannot be connected to itself and it cannot be connected to

another requesting node. This means that it is impossible

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

60

to create loops, and the requesting node can be only

connected to a node in the group. As mentioned in Section

II, a requesting node is connected to a node nearest to the

root which has either no children or one child. The graph

of nodes and edges (connections) in the group forms a

balanced binary tree. The differences in distance between

the root node and any two leaf nodes will be at most one.

B. Termination of the Algorithm

When the root node is the only node in the group,

InitialRequestServer is running on the root node only and

InitialRequestClient is running on all other nodes the

algorithm will always terminate.

If the algorithm does not terminate, there will be a node on

which InitialRequestClient runs forever. On this node, the

procedure InitialRequestClient repeatedly broadcasts join

request messages. Nodes in the group are always

connected to form a binary tree as previously mentioned,

and the procedure InitialRequestServer is always running

on them. Therefore, there are always nodes which have no

children (leaf node) or only one child node. These waiting

nodes can receive join request messages. As we have

assumed, waiting nodes always receive a join request

message after the message was broadcasted p times if the

nodes have no children or only one child.

Acknowledgements are always returned to the requesting

node. The requesting node always receives one

acknowledgement and it will connect to the waiting node

which returns the first acknowledgment. The

InitialRequestClient will always stop after that because the

loop terminates when the node is connected to the waiting

node. The procedure can only continue to run the loop

when there are no waiting nodes which have less than two

children except when the procedure InitialRequestServer is

not running on the root node. This contradicts our initial

condition.

C. Time Complexity of the Algorithm

This subsection shows the theoretical time it takes to go

from the time when only the root node is in the group to

the time when all N nodes are in the group. We assume the

following conditions in addition to the previous

assumptions:

- When a join request message reaches a waiting

node, the same message reaches all other waiting

nodes simultaneously.

- When multiple requesting nodes nearly

simultaneously broadcast join request messages,

these messages reach all waiting nodes in the order

in which they were broadcast.

- Communication time between two nodes is ignored.

- is the time between when a waiting node sends

an acknowledgement and when the requesting node

receives the acknowledgement and returns its

accept or reject message.

- is the time between when a requesting node

receives an acknowledgement and when the node is

connected to a waiting node.

- is the interval between broadcasting a

join request message and the next join request

message.

- All other times are ignored.

A waiting node, which can be connected to a requesting

node, waits to receive a join request message at the if

statements for the left- and right-side connections. When a

requesting node broadcasts a join request message and the

available waiting node(s) at the closest available level

from the root node receives the join request message, the

waiting node returns the acknowledgement after waiting

kh seconds where k is a parameter and h is the height of

the waiting node. Then, the requesting node is connected

to a waiting node. The waiting node may fail to receive

some of join request messages. However, the node

receives at least one message of the p messages which is

broadcasted from the requesting node. So T�� , which
shows the time between when a requesting node starts the

procedure InitialRequestClient and when the node is

connected to a waiting node, can be represented by the

following inequality.

 T�� ≤ pt��	
���_���� + kh + t������� (1)
When the group consists of more than two nodes, and

when two requesting nodes broadcast a join request

message,	T��, which shows the time between when the two

nodes start InitialRequestClient and when the two nodes

are connected to nodes in the group, can be represented by

the following inequality

T�� ≤ pt��	
���_���� + kh + t��� 																				+pt��	
���_���� + kh + t������� (2)
In the worst case, when the second connection has to wait

until the first connection finishes, we can use this as our

upper bound. Two waiting nodes receive the first join

request message from one requesting node simultaneously.

So both nodes wait kh and return an acknowledgement.

However, only one acknowledgement is accepted by the

requesting node. The second waiting node can

subsequently receive join request messages from other

requesting nodes.

When there are m waiting nodes, whose heights are h and

which can be connected by a requesting node, and 2m

requesting nodes start executing InitialRequestClient

simultaneously, T�� , which is the time between the start

and when all 2m requesting nodes joined to the m nodes of

the group at the height h, can be represented by the

following inequality.

T�� ≤ 2pmt��	
���_���� + 2mkh + �2m − 1�t��� + t������� (3)
In this inequality, ≤ 2�!". So

T�� ≤ p2�t��	
���_���� + 2�kh +
#2� − 1$t��� + t�������		 (4)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

61

When h is the height of the balanced binary tree with N

nodes, the total time of the connection T, which is the time

from the start of the connection to the time when all N

nodes are connected, satisfies the following inequality.

T ≤ % &p2�t��	
���_���� + 2�kh + #2� − 1$t���'
()�*+,

�-"

 +	t�������	 (5)

In this inequality,

N < 2�, h ≤ logN + 1 (6)
∑ 2�!"()�*+,
�-" ≤ 4 − 1					 (7)

2()�*+, (logN, ≤ ∑ h2�()�*+,
�-" < 24�logN + 1�		 (8)

So,

T < 52�4 − 1�t��	
��_���� + 2kN �logN + 1� +
N−1tack+tconnect	 (9)

The time complexity T is O�N logN� which is larger than
O�N�. However, if a multicast message does not reach all

waiting nodes, much of this processing can be performed

in parallel processing, resulting in a time complexity

potentially better than O�N�.

4. Improvement of the Algorithm

As mentioned in the previous section, the algorithm can
be improved. This section shows how we improved it.

In order to restrict the range in which multicast
messages are propagated, a random number is added to the
join request message of the InitialRequestClient procedure.
A waiting node only receives messages where the (h-1)
least significant bits of the message’s random number
matches the (h-1) least significant bits of its ID. The ID of
the waiting node is equal to two times its parent’s ID if the
node is the left-side child. It is two times its parent’s ID
plus one if the node is the right side-child. The ID of the
root node is one. If all waiting nodes receive the join
request message in q times of its broadcasting from a
requesting node and if (h-1) least significant bits of any two
random numbers of them do not match the ID of one

waiting node, 2�!" waiting nodes can simultaneously
accept join requests. T�, which is the time between the start

and when all 2�requesting nodes joined to 2�!"nodes of
the group at the height h, can be represented by the
following inequality.

T� ≤ q
p2�t��	
���_���� + 2�kh + #2� − 1$t���

2�!"

+t������� (10)
T� ≤ 2{pqt��	
���_���� + qkh + q=1 − "

>?@ t���} +t������� (11)
The total time T is shown by the following inequality.

T ≤ 2 % qBpt��	
���_���� + kh + C1 − 12�D t���E															

()�*+,

�-"

+t������� (12)
There are following rules.

∑ h()�*+,
�-" = ()�*+,�()�*+,G"�

> (13)

∑ "
>?

()�*+,
�-" ≤ 1 − "

+	 (14)
So,

 T ≤ 25{H(log4,I��	
��_���� + J ()�*+,
�G()�*+,
> +

																																			�(logN, − 1 + "
+�t���} + t������� (15) T ≤ pk(log N,> + #2pqt��	
���_���� + pk

+ 2pt����(logN,	
+2p�"+− 1�t���+t������� (16)

The above inequality shows that T has a time complexity of
. For sufficiently large values of N, this

becomes less than O(N).

5. Experimental Implementation

We have implemented this algorithm in SOLAR-CATS.

We are using this for a class with about 40 students and a

seminar class with about 8 students. It is significantly

easier to use compared to the previous version. Stability is

also improved considerably. We have measured the time

between when N-1 nodes start to join the group

simultaneously after the root node establishes the group

and the time when all N nodes become the members of the

group. The values of N we used were 2, 3, 7, 15, and 31.

Figure 5 shows our results. The horizontal axis represents

the number of nodes using a logarithmic scale. The

vertical axis represents the time using a square root scale,

which is the time between the start and when all N nodes

joined to the group, in seconds.

Figure 5. Time for making a group with N nodes

The curve labeled T shows the result time, T. The

curve labeled lsq shows the quadratic curve fitted to the

0

1

2

3

4

5

6

0 2 4 64 16 64

4

9

16

25

36
T(sec.)

1

T

lsq

(log N)2

1 N

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

62

results using the least squares method. The T and lsq

curves almost overlap and are almost linear. This means

that T is almost quadratic. The line which is labeled with

(log N)
2
 is placed to illustrate how the curve of is

nearly linear in this graph.

It is clear that the curve of sqrt(T) is almost proportionate

to log N. This means T is almost O((log N)
2
).

We have taken k to be 1.0 second and trequest_term to be 0.5

second. The product kh is the time between when waiting

node at height h receives a join message and when the

node returns the acknowledgement for the message.

trequest_term is the interval to repeat broadcasting the join

request message at the requesting node. The fitted curve,

lsq, can be calculated with the following equation.

 T = 1.063(log N)
2
 + 0.839(log N) + 1.719

This means p, which is the number times to receive a join

request message by a waiting node, is almost one because

k is 1.0.

 We used a PC with the following specifications for each

node in our experiments. All PCs were connected to a 100

Mbps network switch.

- CPU: Intel Core2 Duo E7300 2.7 GHz

- RAM: 2 GB

- OS: Windows XP Pro

SOLAR-CATS is written in Java. We used the Java SE

Runtime Environment, version 1.6.0_21 to run SOLAR-

CATS. In order to start the program automatically and

simultaneously on all stations, we wrote a program using

the PCs system clock, which is synchronized with a NTP

server.

When we used the improved SOLAR-CATS in real classes,

there were still a small number of nodes which could not

join the group. We are currently investigating the cause of

these problems.

6. Related Work

There is a wide body of research on reliable IP multicast

which has produced such algorithms as TMTP (Tree-based

Multicast Transport Protocol)[2], RMTP (Reliable

Multicast Transport Protocol)[4] and the Reliable

Multicast Tree construction algorithm[9]. These

algorithms construct trees forming the communication

channels between nodes. These algorithms, however, do

not construct balanced binary trees.

BATON[6] is a structured P2P system which has a

balanced binary tree structure. This is a distributed version

of AVL tree. The paper on the BATON did not mention

the time complexity for the case of many nodes joining the

group simultaneously.
A P2P system proposed by one of the authors[8] is also a

structured P2P system which has a balanced binary tree

structure. This system does not need IP multicast.

However, new nodes of this system have to know the

address of the root node. When a node is going to join the

group, it first contacts the root node before contacting any

other nodes. So when many nodes are going to join the

group simultaneously, the root node can potentially

become a bottleneck.

7. Concluding Remarks

We have described an autonomic distributed algorithm,
which can be used to make a group of nodes where nodes
are connected by TCP to form a balanced binary tree. We
have shown both theoretically and empirically that it takes

 time for all N nodes to become members of
the group when N nodes join the group simultaneously. We
then implemented this algorithm in a computer-assisted
teaching system, SOLAR-CATS, and the system has been
used in university classes. In real classes, there are still a
small number of nodes which cannot take part in the group.
We intend to to fix this problem in future work.

References
[1] Adelson-Velskii, G., E. M. Landis, "An algorithm for the

organization of information". Proceedings of the USSR

Academy of Sciences 146: 263–266. (Russian) English

translation by Myron J. Ricci in Soviet Math. Doklady,

3:1259–1263, 1962.

[2] R. Yavatkar, et. al. “A Reliable Dissemination Protocol for

Interactive Collaborative Applications”, Proc. ACM

Multimedia, 1995.

[3] Takayuki Hirahara, Takashi Yamanoue, Hiroyuki Anzai and

Itsujirou Arita, "SENDING AN IMAGE TO A LARGE

NUMBER OF NODES IN SHORT TIME USING TCP",

Proceedings of the ICME2000, IEEE International

Conference on Multimedia and Expo, pp.987-990, New

York City, USA, July 30-Aug.2 ,2000.

[4] Paul, S., Sabnani, K.K., Lin, J.C.-H., Bhattacharyya, S.,

“Reliable Multicast Transport Protocol (RMTP)”, IEEE

Journal on Selected Areas in Communications, Vol. 15,

Issue 3, pp.407-421 2002.

[5] Takashi Yamanoue, "A System which Shares the Common

Operation on a Distributed System in Realtime Using P2P

Technology", IPSJ JOURNAL, vol.46, No.2, pp.392-402,

2005.

[6] H.V. Jagadish, Beng Chin Ooi, Quang Hieu Vu, “BATON:

A Balanced Tree Structure for Peer-to-Peer Networks”,

Proceedings of the 31st VLDB conference, Trondheim,

Norway, 2005.

[7] Yamanoue, T., “Sharing the Same Operation with a Large

Number of Users Using P2P”, The 3rd International

Conference on Information Technology and Applications

(ICITA'05), IEEE CS Press, pp.85-88, July 2005.

[8] Takashi Yamanoue, Takeshi Nakamori, “A Structured P2P

System Which Tries to Keep Its Balanced Binary Tree

Shape by it-self”, IPSJ SIG Technical Reports, 2007-DSM-

46, pp.55-60, Jul. 2007.

[9] Choonsung Rhee, Jungwook Song, Eujiun Kim, Sunyoung

Han, “Reliable Multicast Tree Construction Algorithm”,

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

63

Mobility ’08 Proceedings of the International Conference on

Mobile Technology, Applications & Systems; 1-5, Ilan,

Taiwan, 10-12 Sep. 2008.

[10] Takashi Yamanoue, “A Casual Teaching Tool for Large

Size Computer Laboratories and Small Size Seminar

Classes”, Proceedings of the 37th annual ACM SIGUCCS

conference on User services, pp.211-216, St.Louis, Missouri,

US.. 11-14 Oct. 2009.

Dr. Takashi Yamanoue received his

B.S. M.S. and Ph.D. in computer

science from Kyushu Institute of

Technology, Kitakyushu, Japan, in

1982, 1984 and 1993, respectively. He

was a Ph.D. candidate of the

Interdisciplinary Graduate School of

Engineering Sciences, Kyushu

University. He is a professor of the Computing and

Communications Center, Kagoshima University. His

research interests include P2P, distributed computing,

compiler-compilers, web mining and computer assisted

teaching systems. He is a member of IEEE, ACM,

Information Processing Society of Japan(IPSJ), The

Institute of Electronics, Information and Communication

Engineers(IEICE), Japan Software Science

Society(JSSST), the Robotics Society of Japan(JRSJ).

Dr. Kentaro Oda received the M.S. and

Ph.D. from the Department of Artificial

Intelligence, Kyushu Institute of

Technology, Japan, in 1999, 2008

respectively. He is currently an assistant

professor of Computing and

Communications Center at Kagoshima

University since 2009. His current research interests

include adaptive middleware architecture, multi-agent

systems (robotics soccer RoboCup), and distributed

systems. He is a member of the ACM, IEEE (IEEE

Computer Society).

Koichi Shimozono received the BE and

ME degrees from Kyushu University,

Japan, in 1991 and 1993, respectively.

He is currently an associate professor in

the Computing and Communications

Center at Kagoshima University. His

research interests include Japanese text

processing, distributed systems, educational technology

and internetworking.

