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Summary 

This paper describes an autonomic distributed algorithm 

which can be used to structure a group of nodes connected 

by TCP into a balanced binary tree, and an experimental 

structured P2P system which adopts this algorithm. This 

algorithm can be applied when nodes can be connected 

directly each other by TCP/IP, and IP multicast-able. 

When N nodes join group simultaneously, it takes O((log 

N)
2
) time for all nodes to become members of the group, 

provided some conditions are satisfied. When a node in the 

group fails, the tree will be rebalanced by restarting the 

algorithm at the children of the failed node. 

Key words: 
peer to peer; overlay network; autonomic; distributed 

algorithm; binary tree. 

1. Introduction 

Managers of large Information and Communication 

Technology infrastructures (ICT infrastructures) 

frequently have to distribute identical software packages 

or data to a large number of terminals quickly. Reliability 

is important in such cases. For example, modern movie 

formats, such as MPEG2 and H.264, consist of key frames 

and subsequent changes between frames. If a terminal fails 

to receive a key frame during a real-time streaming movie, 

the image at the receiver terminal becomes corrupted for 

many frames. Thus, the reliability of the communication 

channel is important for today’s digital movie 

broadcasting. 

It has been shown that organizing the TCP connections 

between nodes on a switching network into a balanced 

binary tree is an effective way to quickly and reliably send 

large amounts of identical data[3]. 

We are developing SOLAR-CATS, a teaching tool for 

large computer laboratories[5][7][10]. This tool is 

equipped with a tool capable of quickly sending the image 

from one display in the class to all other displays. In order 

to implement this functionality, we organize the nodes 

receiving the data into a balanced binary tree where leaves 

are connected via TCP. This turns the system into a 

structured P2P System. 

Previous iterations of SOLAR-CATS used a group 

manager which instructs nodes joining the group to 

connect to an existing node in such a way that the binary 

tree structure stays balanced. However, the group manager 

represents a single point of failure. It receives all requests 

from new nodes. When a node in the group fails, children 

of the failed node also must query the group manager to 

determine which node they should connect to. 

When a large number of students in a computer laboratory 

attempted to connect to previous versions of SOLAR-

CATS simultaneously, the group manager would 

sometimes fail to form a group. Furthermore, the students 

had to enter the hostname or the IP address of the group 

manager into the GUI, making SOLAR-CATS more 

difficult to use. 

In order to cope with such problems, we have created an 

algorithm that constructs a balanced binary tree from the 

nodes. We have also implemented this algorithm in 

SOLAR-CATS. 

2. Algorithm 

As mentioned in Section I, nodes in the group are 

organized into a binary tree and connected to each other 

using TCP. In the new algorithm, when a new node 

(requesting node) wants to join the group, the node 

broadcasts a request to join message (datagram) to all 

nodes in the group. Every Waiting nodes, who has less 

than 2 children in the group, send the requesting node an 

acknowledgement message. The requesting node then to 

connects to the waiting node that returns the 

acknowledgement first. If the node closest to the root node 

returns the acknowledge message faster than the other 

nodes in the group, the binary tree stays balanced. Figure 1 

illustrates the previous algorithm and the new algorithm. 

Figure 2 describes the algorithm. Figure 3 and 4 are 

pseudo code for the procedures used by the new algorithm. 

In Figure 3, InitialRequestServer is a procedure that runs 

on all nodes in the group (waiting nodes). This procedure 

receives the request to join message and returns an 

acknowledgement message if the necessary conditions are 

satisfied. When the tree is first being constructed, this 
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procedure is running on the root node only. The procedure 

outlined in Figure 4, InitialRequestClient, is running on all 

requesting nodes. This procedure will stop after the 

requesting node connects to a waiting node as a child of 

that waiting node, and thus becomes a member of the 

group. After that, the node starts to run the 

InitialRequestServer procedure. 

 

 

 
(a) Previous algorithm 

 

 
(b) New algorithm 

                 

     Figure 1. Previous algorithm and the new algorithm 

 

 

 

begin 

for each node co_begin 

if this node is the root then 

               InitialRequestServer; 

else 

begin 

              InitialRequestClient; 

              InitialRequestServer; 

end. 

co_end 

wait until there is no node  

which is running InitialRequestClient 

end. 

 

Figure 2. The Algorithm 
 

Procedure InitialRequestServer 

begin 

this_multicast_socket.join(“mcast_port”); 

repeat 

         if  my_node.left_is_not_connected then 

         begin 

message← 

this_multicast_socket.receive_a_request_message; 

wait_time( k*my_node.height);   

// In order to construct a balanced binary tree. 

the_remote_requester_address← 

message.source_address; 

                this_tcp_socket.connect_to_( 

the_remote_requester_address , “recv_port”); 

                this_tcp_socket.send( 

                        my_node.“address” ,  my_node.“left_port”); 

                ack←this_tcp_socket.receive_ack; 

               if ack== “accepted” then 

                       wait_until my_node.left_is_connected ; 

         end; 

         else 

         if  my_node.right_is_not_connected then 

         begin 

               message← 

this_multicast_socket.receive_a_request_message; 

               wait_time( k*my_node.height); 

 // In order to construct balanced binary tree. 

               the_remote_requester_address← 

message.source_address; 

               this_tcp_socket.connect_to_( 

the_remote_requester_address , “recv_port”); 

               this_tcp_socket.send(  

my_node.“address” ,  my_node.“right_port”); 

               ack←this_tcp_socket.receive_ack; 

               if ack== “accepted” then 

                      wait_until my_node.right_is_connected ; 

          end; 

else wait_time(for_a_while) 

forever; 

end 

 

Figure 3. The Pseudocode for InitihalRequestServer 

 

This algorithm terminates after all requesting nodes join 

the group. In other words, this algorithm terminates when 

there are no nodes in which InitialRequestClient is running. 

InitialRequestServer is running on all group member nodes. 

InitialRequestServer repeats the following steps in a busy-

wait loop: 

- If there is no child connected to the left side of the 

node, wait for a join request message from a 

requesting node. After receiving the message, return 

the IP address and port number for the left child to 

the requesting node using TCP after waiting for an 

amount of time proportionate to the height of the 

node in the binary tree of the group (in other words, 

proportionate to the distance from the root node). 

Then the node waits until it receives an accept 

message or a reject message from the requesting 
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node. If the node receives an accept message, the 

node waits until the requesting node connects to the 

left-side port. 

- Similarly, if there is no child connected to the right-

side node, the node executes the same steps as 

outlined above, but the requesting node connects to 

the right-side port instead of the left. 

- If there are children on both the left and right sides, 

wait. 

InitialRequestClient, which runs on requesting nodes, 

executes the following steps: 
- Start the receiving thread to receive 

acknowledgement messages from the waiting nodes. 

 
Procedure InitialRequestClient 

begin 

  (new receive_server_thread).start; 

this_multicast_socket.join(mcast_port); 

while my_node.up_node_is_not_connected  

begin 

      this_multicast_socket.send( 

“request_to_join_in_the_group”); 

    wait_time( request_term); 

end; 

end 

 

thread  receive_server_thread 

begin 

  this_server_socket. 

start_receive_connection_at_port(recv_port); 

  first_socket←this_server_socket.accept; 

  (new accept_thread(first_socket)).start; 

    while 

     enough_term_to_receive_the_message_from_all_nodes 

   begin 

rest_socket←this_server_socket.accept; 

(new reject_thread(rest_socket)).start; 

   end 

 

thread accept_thread(socket) 

begin 

    message←socket.read; 

    socket.send_ack(“accepted”); 

    my_node.connect_to_upper_node( 

message.“address”,  message.“port”); 

    socket.close; 

end 

thread reject_thread(socket) 

begin 

    message←socket.read; 

    socket.send_ack(“rejected”); 

    socket.close; 

end 

 

Figure 4. The Pseudocode for InitialRequestClient 

 

- Repeat the following until this node is connected to 

a waiting node. 

� Broadcast the join request message using IP 

multicast. 

� Wait for an enough time to receive the 

acknowledgement from an waiting node 

    

The receiving thread executes the followings steps: 

- Receive the first acknowledgement, return the 

accept message, and tell the requesting node to 

connect to the waiting node that returned the 

accepted acknowledgement. 

- Wait until all acknowledgements are received, and 

return a reject message to all other waiting nodes 

that returned acknowledgement messages. 

 

This algorithm realizes a distributed way of constructing a 

balanced binary tree. There is no single point of failure. 

When a node in the group fails, the group will reconfigure 

itself to keep the binary tree balanced if children of the 

failed node start the InitialRequestClient procedure after 

they stop their and their descendant's InitialRequestServer 

procedure. The balance will be subsequently improved by 

joining new nodes to the descendants of the failed node. 

3. Proof and Time Complexity of the 

algorithm 

We assume the following conditions for the algorithm. 

- The statement 
   message← 

this_multicast_socket.receive_a_request_message; 

which is executed when the node is waiting for 

child connections, always results in a message after 

the message was broadcasted p times. TCP 

connections and communications never fail between 

nodes, which is a reasonable assumption since TCP 

communication is quite reliable. This assumes that 

the use of network switch communication between 

two nodes over TCP does not affect any other TCP 

connections. 

- InitialRequestServer and InitialRequestClient do 

not stop except at their normal termination. 

- There are N nodes in the tree at time T. 

A. Formation of a Balanced Binary Tree 

When the number of nodes, N, is equal to 1, the only node 

in the group is the root node. This is a balanced binary tree. 

InitialRequestClient is not running at the root node and 

InitialRequestServer is running at the node. So the root 

node cannot be connected to another node. A requesting 

node can only be connected to a node in the group, the 

waiting node. A waiting node can have no children, one 

child, or two children. The graph of nodes and edges 

(connections) forms a binary tree. InitialRequestServer is 

not running on a requesting node. Therefore, the node 

cannot be connected to itself and it cannot be connected to 

another requesting node. This means that it is impossible 
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to create loops, and the requesting node can be only 

connected to a node in the group. As mentioned in Section 

II, a requesting node is connected to a node nearest to the 

root which has either no children or one child. The graph 

of nodes and edges (connections) in the group forms a 

balanced binary tree. The differences in distance between 

the root node and any two leaf nodes will be at most one. 

B. Termination of the Algorithm 

When the root node is the only node in the group, 

InitialRequestServer is running on the root node only and 

InitialRequestClient is running on all other nodes the 

algorithm will always terminate. 

If the algorithm does not terminate, there will be a node on 

which InitialRequestClient runs forever. On this node, the 

procedure InitialRequestClient repeatedly broadcasts join 

request messages. Nodes in the group are always 

connected to form a binary tree as previously mentioned, 

and the procedure InitialRequestServer is always running 

on them. Therefore, there are always nodes which have no 

children (leaf node) or only one child node. These waiting 

nodes can receive join request messages. As we have 

assumed, waiting nodes always receive a join request 

message after the message was broadcasted p times if the 

nodes have no children or only one child. 

Acknowledgements are always returned to the requesting 

node. The requesting node always receives one 

acknowledgement and it will connect to the waiting node 

which returns the first acknowledgment. The 

InitialRequestClient will always stop after that because the 

loop terminates when the node is connected to the waiting 

node. The procedure can only continue to run the loop 

when there are no waiting nodes which have less than two 

children except when the procedure InitialRequestServer is 

not running on the root node. This contradicts our initial 

condition. 

 

C. Time Complexity of the Algorithm 

This subsection shows the theoretical time it takes to go 

from the time when only the root node is in the group to 

the time when all N nodes are in the group. We assume the 

following conditions in addition to the previous 

assumptions: 

- When a join request message reaches a waiting 

node, the same message reaches all other waiting 

nodes simultaneously.  

- When multiple requesting nodes nearly 

simultaneously broadcast join request messages, 

these messages reach all waiting nodes in the order 

in which they were broadcast. 

- Communication time between two nodes is ignored. 

-  is the time between when a waiting node sends 

an acknowledgement and when the requesting node 

receives the acknowledgement and returns its 

accept or reject message. 

-  is the time between when a requesting node 

receives an acknowledgement and when the node is 

connected to a waiting node. 

-  is the interval between broadcasting a 

join request message and the next join request 

message. 

- All other times are ignored. 

A waiting node, which can be connected to a requesting 

node, waits to receive a join request message at the if 

statements for the left- and right-side connections. When a 

requesting node broadcasts a join request message and the 

available waiting node(s) at the closest available level 

from the root node receives the join request message, the 

waiting node returns the acknowledgement after waiting 

kh seconds where k is a parameter and h is the height of 

the waiting node. Then, the requesting node is connected 

to a waiting node. The waiting node may fail to receive 

some of join request messages. However, the node 

receives at least one message of the p messages which is 

broadcasted from the requesting node. So T�� , which 
shows the time between when a requesting node starts the 

procedure InitialRequestClient and when the node is 

connected to a waiting node, can be represented by the 

following inequality. 

 T�� ≤ pt��	
���_���� + kh + t�������     (1) 
When the group consists of more than two nodes, and 

when two requesting nodes broadcast a join request 

message,	T��, which shows the time between when the two 

nodes start InitialRequestClient and when the two nodes 

are connected to nodes in the group, can be represented by 

the following inequality 

T�� ≤ pt��	
���_���� + kh + t��� 																				+pt��	
���_���� + kh + t������� (2) 
In the worst case, when the second connection has to wait 

until the first connection finishes, we can use this as our 

upper bound. Two waiting nodes receive the first join 

request message from one requesting node simultaneously. 

So both nodes wait kh and return an acknowledgement. 

However, only one acknowledgement is accepted by the 

requesting node. The second waiting node can 

subsequently receive join request messages from other 

requesting nodes. 

When there are m waiting nodes, whose heights are h and 

which can be connected by a requesting node, and 2m 

requesting nodes start executing InitialRequestClient 

simultaneously, T�� , which is the time between the start 

and when all 2m requesting nodes joined to the m nodes of 

the group at the height h, can be represented by the 

following inequality. 

T�� ≤ 2pmt��	
���_���� + 2mkh + �2m − 1�t��� + t�������         (3) 
In this inequality,  ≤ 2�!". So  

T�� ≤ p2�t��	
���_���� + 2�kh + 
#2� − 1$t��� + t�������		       (4) 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011 

 

 

61 

 

 

When h is the height of the balanced binary tree with N 

nodes, the total time of the connection T, which is the time 

from the start of the connection to the time when all N 

nodes are connected, satisfies the following inequality. 

T ≤ % &p2�t��	
���_���� + 2�kh + #2� − 1$t���'
()�*+,

�-"
 

         +	t�������	   (5) 
 

In this inequality,  

N < 2�, h ≤ logN + 1                     (6) 
∑ 2�!"()�*+,
�-" ≤ 4 − 1					                (7) 

2()�*+, (logN, ≤ ∑ h2�()�*+,
�-" < 24�logN + 1�		 (8) 

So, 

T < 52�4 − 1�t��	
��_���� + 2kN �logN + 1� +
N−1tack+tconnect	            (9) 

 

The time complexity T is O�N logN� which is larger than 
O�N�. However, if a multicast message does not reach all 

waiting nodes, much of this processing can be performed 

in parallel processing, resulting in a time complexity 

potentially better than O�N�. 

4. Improvement of the Algorithm 

As mentioned in the previous section, the algorithm can 
be improved. This section shows how we improved it. 

In order to restrict the range in which multicast 
messages are propagated, a random number is added to the 
join request message of the InitialRequestClient procedure. 
A waiting node only receives messages where the (h-1) 
least significant bits of the message’s random number 
matches the (h-1) least significant bits of its ID. The ID of 
the waiting node is equal to two times its parent’s ID if the 
node is the left-side child. It is two times its parent’s ID 
plus one if the node is the right side-child. The ID of the 
root node is one. If all waiting nodes receive the join 
request message in q times of its broadcasting from a 
requesting node and if (h-1) least significant bits of any two 
random numbers of them do not match the ID of one 

waiting node, 2�!" waiting nodes can simultaneously 
accept join requests. T�, which is the time between the start 

and when all 2�requesting nodes joined to 2�!"nodes of 
the group at the height h, can be represented by the 
following inequality. 

 
 

T� ≤ q
p2�t��	
���_���� + 2�kh + #2� − 1$t���

2�!"  

+t�������         (10) 
T� ≤ 2{pqt��	
���_���� + qkh + q=1 − "

>?@ t���} +t�������      (11) 
The total time T is shown by the following inequality.  

 

T ≤ 2 % qBpt��	
���_���� + kh + C1 − 12�D t���E															

()�*+,

�-"
 

+t�������        (12) 
There are following rules. 

∑ h()�*+,
�-" = ()�*+,�()�*+,G"�

>      (13) 

∑ "
>?

()�*+,
�-" ≤ 1 − "

+	         (14) 
So,  

    T ≤ 25{H(log4,I��	
��_���� + J ()�*+,
�G()�*+,
> +

																																			�(logN, − 1 + "
+�t���} + t�������   (15) T ≤ pk(log N,> + #2pqt��	
���_���� + pk

+ 2pt����(logN,	
+2p�"+− 1�t���+t�������    (16) 

The above inequality shows that T has a time complexity of 
. For sufficiently large values of N, this 

becomes less than O(N). 

5. Experimental Implementation 

We have implemented this algorithm in SOLAR-CATS. 

We are using this for a class with about 40 students and a 

seminar class with about 8 students. It is significantly 

easier to use compared to the previous version. Stability is 

also improved considerably. We have measured the time 

between when N-1 nodes start to join the group 

simultaneously after the root node establishes the group 

and the time when all N nodes become the members of the 

group. The values of N we used were 2, 3, 7, 15, and 31. 

Figure 5 shows our results. The horizontal axis represents 

the number of nodes using a logarithmic scale. The 

vertical axis represents the time using a square root scale, 

which is the time between the start and when all N nodes 

joined to the group, in seconds. 

 

 
 

Figure 5. Time for making a group with N nodes 

 

The curve labeled T shows the result time, T. The 

curve labeled lsq shows the quadratic curve fitted to the 
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results using the least squares method. The T and lsq 

curves almost overlap and are almost linear. This means 

that T is almost quadratic. The line which is labeled with 

(log N)
2
 is placed to illustrate how the curve of  is 

nearly linear in this graph. 

 

It is clear that the curve of sqrt(T) is almost proportionate 

to log N. This means T is almost O((log N)
2
). 

We have taken k to be 1.0 second and trequest_term to be 0.5 

second. The product kh is the time between when waiting 

node at height h receives a join message and when the 

node returns the acknowledgement for the message. 

trequest_term is the interval to repeat broadcasting the join 

request message at the requesting node. The fitted curve, 

lsq, can be calculated with the following equation. 

         T = 1.063(log N)
2
 + 0.839(log N) + 1.719 

This means p, which is the number times to receive a join 

request message by a waiting node, is almost one because 

k is 1.0. 

 We used a PC with the following specifications for each 

node in our experiments. All PCs were connected to a 100 

Mbps network switch. 

- CPU: Intel Core2 Duo E7300 2.7 GHz 

- RAM: 2 GB 

- OS: Windows XP Pro 

SOLAR-CATS is written in Java. We used the Java SE 

Runtime Environment, version 1.6.0_21 to run SOLAR-

CATS. In order to start the program automatically and 

simultaneously on all stations, we wrote a program using 

the PCs system clock, which is synchronized with a NTP 

server. 

When we used the improved SOLAR-CATS in real classes, 

there were still a small number of nodes which could not 

join the group. We are currently investigating the cause of 

these problems. 

6. Related Work 

There is a wide body of research on reliable IP multicast 

which has produced such algorithms as TMTP (Tree-based 

Multicast Transport Protocol)[2], RMTP (Reliable 

Multicast Transport Protocol)[4] and the Reliable 

Multicast Tree construction algorithm[9]. These 

algorithms construct trees forming the communication 

channels between nodes. These algorithms, however, do 

not construct balanced binary trees. 

BATON[6] is a structured P2P system which has a 

balanced binary tree structure. This is a distributed version 

of AVL tree. The paper on the BATON did not mention 

the time complexity for the case of many nodes joining the 

group simultaneously.  
A P2P system proposed by one of the authors[8] is also a 

structured P2P system which has a balanced binary tree 

structure. This system does not need IP multicast. 

However, new nodes of this system have to know the 

address of the root node. When a node is going to join the 

group, it first contacts the root node before contacting any 

other nodes. So when many nodes are going to join the 

group simultaneously, the root node can potentially 

become a bottleneck. 

7. Concluding Remarks 

We have described an autonomic distributed algorithm, 
which can be used to make a group of nodes where nodes 
are connected by TCP to form a balanced binary tree. We 
have shown both theoretically and empirically that it takes 

 time for all N nodes to become members of 
the group when N nodes join the group simultaneously. We 
then implemented this algorithm in a computer-assisted 
teaching system, SOLAR-CATS, and the system has been 
used in university classes. In real classes, there are still a 
small number of nodes which cannot take part in the group. 
We intend to to fix this problem in future work. 
 

References 
[1] Adelson-Velskii, G., E. M. Landis, "An algorithm for the 

organization of information". Proceedings of the USSR 

Academy of Sciences 146: 263–266. (Russian) English 

translation by Myron J. Ricci in Soviet Math. Doklady, 

3:1259–1263, 1962. 

[2] R. Yavatkar, et. al. “A Reliable Dissemination Protocol for 

Interactive Collaborative Applications”, Proc. ACM 

Multimedia, 1995. 

[3] Takayuki Hirahara, Takashi Yamanoue, Hiroyuki Anzai and 

Itsujirou Arita, "SENDING AN IMAGE TO A LARGE 

NUMBER OF NODES IN SHORT TIME USING TCP", 

Proceedings of the ICME2000, IEEE International 

Conference on Multimedia and Expo, pp.987-990, New 

York City, USA, July 30-Aug.2 ,2000. 

[4] Paul, S., Sabnani, K.K., Lin, J.C.-H., Bhattacharyya, S., 

“Reliable Multicast Transport Protocol (RMTP)”, IEEE 

Journal on Selected Areas in Communications, Vol. 15, 

Issue 3, pp.407-421 2002. 

[5] Takashi Yamanoue, "A System which Shares the Common 

Operation on a Distributed System in Realtime Using P2P 

Technology", IPSJ JOURNAL, vol.46, No.2, pp.392-402, 

2005. 

[6] H.V. Jagadish, Beng Chin Ooi, Quang Hieu Vu, “BATON: 

A Balanced Tree Structure for Peer-to-Peer Networks”, 

Proceedings of the 31st VLDB conference, Trondheim, 

Norway, 2005. 

[7] Yamanoue, T., “Sharing the Same Operation with a Large 

Number of Users Using P2P”, The 3rd International 

Conference on Information Technology and Applications 

(ICITA'05), IEEE CS Press, pp.85-88, July 2005. 

[8] Takashi Yamanoue, Takeshi Nakamori, “A Structured P2P 

System Which Tries to Keep Its Balanced Binary Tree 

Shape by it-self”, IPSJ SIG Technical Reports, 2007-DSM-

46, pp.55-60, Jul. 2007. 

[9] Choonsung Rhee, Jungwook Song, Eujiun Kim, Sunyoung 

Han, “Reliable Multicast Tree Construction Algorithm”, 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011 

 

 

63 

 

Mobility ’08 Proceedings of the International Conference on 

Mobile Technology, Applications & Systems; 1-5, Ilan, 

Taiwan, 10-12 Sep. 2008. 

[10] Takashi Yamanoue, “A Casual Teaching Tool for Large 

Size Computer Laboratories and Small Size Seminar 

Classes”, Proceedings of the 37th annual ACM SIGUCCS 

conference on User services, pp.211-216, St.Louis, Missouri, 

US.. 11-14 Oct. 2009. 

 

 

Dr. Takashi Yamanoue received his 

B.S. M.S. and Ph.D. in computer 

science from Kyushu Institute of 

Technology, Kitakyushu, Japan, in 

1982, 1984 and 1993, respectively. He 

was a Ph.D. candidate of the 

Interdisciplinary Graduate School of 

Engineering Sciences, Kyushu 

University. He is a professor of the Computing and 

Communications Center, Kagoshima University. His 

research interests include P2P, distributed computing, 

compiler-compilers, web mining and computer assisted 

teaching systems. He is a member of IEEE, ACM, 

Information Processing Society of Japan(IPSJ), The 

Institute of Electronics, Information and Communication 

Engineers(IEICE), Japan Software Science 

Society(JSSST), the Robotics Society of Japan(JRSJ).  

 

Dr. Kentaro Oda received the M.S. and 

Ph.D. from the Department of Artificial 

Intelligence, Kyushu Institute of 

Technology, Japan, in 1999, 2008 

respectively. He is currently an assistant 

professor of Computing and 

Communications Center at Kagoshima 

University since 2009. His current research interests 

include adaptive middleware architecture, multi-agent 

systems (robotics soccer RoboCup), and distributed 

systems. He is a member of the ACM, IEEE (IEEE 

Computer Society). 
 

Koichi Shimozono received the BE and 

ME degrees from Kyushu University, 

Japan, in 1991 and 1993, respectively. 

He is currently an associate professor in 

the Computing and Communications 

Center at Kagoshima University. His 

research interests include Japanese text 

processing, distributed systems, educational technology 

and internetworking. 


