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Summary 

In this article, we present a novel media caching algorithm 

adequate for real-world streaming workload. Streaming workload 

is believed to exhibit very large and sequential access 

characteristics, which is the main concern of a legacy media 

caching policy. However, a legacy caching algorithm did not 

fully utilize access pattern and also tends to overlook streaming 

interactivity which can decrease the advantage of a caching 

technique utilizing sequential reference. As a replaced cache is 

determined based on the expected caching gain of the candidates, 

cache hit ratio can be significantly improved. We develop Least 

Expectation First technique which can manage very large number 

of block caches as two-level grouping. Experimental results show 

that the proposed media caching scheme yields better hit ratio 

and I/O smoothing than legacy buffer cache replacement schemes. 

Key words: 
Media Caching Algorithm, Interval Caching, Streaming Server,  

VCR-like operation. 

1. Introduction 

In this paper, we focus our efforts on developing the buffer 

cache management scheme for multimedia streaming 

servers. Recent advances in a mobile device and 

communication technology enable users to enjoy on-line 

media streaming service. Deployment of fourth generation 

mobile service[1][15] and public broadband wireless 

further accelerates the proliferation of on-line multimedia 

service via enabling it on the mobile devices. With this 

growth in service volume, multimedia server is required to 

maintain larger and larger amount of data and is required 

to service increased number of concurrent service sessions. 

Particular care needs to be taken to elaborately capture the 

characteristics of the multimedia workload and to 

incorporate the findings in designing various parts of the 

system components. 

The speed of CPU and the capacity of RAM have been 

doubling every 18 months for the last couple of decades as 

indicated by Moore's Law. However, this increase 

unfortunately has not been accompanied by the increase in 

the disk bandwidth. Thus, the performance of the 

application which requires frequent disk access, e.g. On-

Line Transaction Processing, On-Line Analytical 

Processing, Web Server, and Streaming Server, greatly 

depends on the performance of I/O. It is important to 

minimize disk access. In this regard, the role of the buffer 

cache replacement scheme is becoming increasingly 

important. 

Buffer cache management scheme for multimedia 

workload has been the subjects of numerous works during 

past several years. Most of these works assume that the 

streaming workload exhibits sequential access 

characteristics with bandwidth guarantee. Along with 

entertainment, education is the emerging area for 

multimedia application. In distance learning environment 

where the user accesses the lecture materials remotely, it is 

possible that the user accesses the particular segment of 

video repeatedly rather than simply scans the file from 

beginning to the end. Recently, a few studies examine the 

user access log obtained from streaming server in service 

and confirm that there are non-trivial amount of VCR-like 

operation, e.g. skip, reverse, or etc. This non-sequential 

access pattern may become more dominant when the user 

intends to briefly examine the video recordings 

particularly such as in bandwidth scarce mobile wireless 

environment. 

We carefully believe that buffer cache management 

schemes which assume that the underlying access pattern 

is sequential leave much to be desired for mobile 

streaming environment mainly due to significant fraction 

of VCR-like operation. In this work, we present the media 

caching based on the expectation of a block cache. The 

main idea is that all the media block caches are two-level 

grouped and the cache block of the group which has the 

least caching gain is evicted as a replacement victim. 

2. Related Works 

There have been a lot of works[8][16][5][12][22] on 

continuous media caching in streaming system and most of 

caching schemes was based on an interval between two 

consecutive streams. Interval-based block caching 

schemes take advantage of sequential access 

characteristics of continuous media data and maintain 

information about intervals of consecutive streams 

accessing the same file. [8] proposed Interval Caching 

algorithm, which exploits temporal locality between 

streams accessing the same file by caching intervals 

between successive streams. The buffer requirement of 
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successive streams is a function of the time-interval 

between the two streams and the compression method used. 

[16] presented DISTANCE method. It also caches the 

blocks in distance of successive clients accessing the same 

media file. Both algorithms select the victim for 

replacement with respect to the interval between candidate 

and its immediate successor. These interval-based 

replacement schemes are grounded at the assumption that 

the applications sequentially access the multimedia file. 

Indeed, interval-based caching schemes show good 

performance in the totally sequential workload. 

The objective of media block caching is to exchange the 

block I/O bandwidth with main memory space. Won et 

al.[22] examine the buffer size trade-off between interval 

caching and disk retrieval and propose an algorithm which 

minimizes the overall buffer requirement in servicing a set 

of streams. Some of the works combines the application 

level caching with the traditional disk retrieval operation 

for multimedia[6][21]. 

A number of research results have been released regarding 

the workload analysis of streaming or educational media 

server[19][4][17][11]. [17] analyzes the client access to 

MANIC system audio content. [4][7] analyze access logs 

of their educational media servers, eTeach and Classroom 

2000, respectively. These works deliver insightful 

information on the usage of the educational media server 

and the user behavior, e.g. access frequency distribution, 

file popularity, aging of file access popularity, etc. From 

these works we can easily see that the data access pattern 

is more than sequential. For example, [4] showed that for 

short media files, interactive requests like jump backwards 

are common. 

3. The weakness of Interval-based Caching 

In this section, we introduce interval which is used as a 

basic concept in many interval-based media caching 

algorithms [8][9][16] and supplement the interval idea for 

our work through a systematic approach. In Fig. 1, the 

small arrows marked by playback stream S1, S2 and S3 

denote the current block positions in the same file and I21 

represents interval formed by two consecutive streams, S2 

and S1. Intuitively, interval can be thought of as a group of 

block caches whose logical file positions are between a 

preceding and a following stream. In the figure, I32 holds 

block caches b3 and b4 which will be referenced by 

following stream S2. If the following stream references 

block which has not been cached in the interval, cache 

miss is incurred and it should load the block into a cache 

from storage. 

 

Fig. 1 Interval between two consecutive streams 

 

In order to minimize cache misses, interval-based caching 

policy manages media block caches based on an interval 

size, which is a temporal distance between a preceding 

stream and a following stream. At cache replacement time, 

a cache in a longer interval is preferable to a cache in a 

shorter one as a replacement victim. The idea behind the 

interval caching well utilizes that the cache space of a 

longer interval is required more than shorter interval. 

Therefore, block I/O incurred by cache misses will be 

reduced more with the same cache space by caching media 

blocks in a shorter interval. 

However, interval-based caching has a few drawbacks 

mentioned in many literatures. First, this caching policy 

cannot manage the region of a media not covered by an 

interval such as the head and the tail of the file. But block 

caches in these areas may have a significant impact on a 

caching performance. Media workload patterns show that 

users tend to access the head segment of a media[1]. 

Second, user interactivities such as VCR-like operations 

can give a bad effect to the performance of an interval-

based caching. When the reference media block of a 

stream changes by the interactive playback of a user, 

existing intervals may disappear or a new interval can be 

introduced. Therefore effective interval management 

scheme should be devised. 

Finally, interval notion cannot fully utilize a media access 

pattern characterized by a currently serviced stream. 

Interval-based replacement algorithm selects a victim 

among block caches in the longest interval believing that 

they have the least reference probability. But the case that 

the block cache in the longest interval has more likely to 

be accessed is possible. In Fig. 2, there are 3 playback 

streams, S1, S2 and S3. Each small square block represents 

a media block for stream’s continuous playback. Cached 

media block b1 will be referenced earlier than block cache 

b2 by S1 but b2 will be accessed two times by S2 and S3. If a 

replacement victim is being selected between the two 

block caches, b1 and b2, choosing b2 as a victim cache is 

best with only 4 look-ahead references. However, evicting 

b1 instead of b2 is more desirable with additional future 

references. The more future references are utilized, the 

more caching gain will be achieved. 
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Fig. 2 choosing a replacement victim 

 

Legacy buffer caching algorithms such as interval 

caching[8][9], DISTANCE[16] and dynamic grouping[20] 

did not utilize information about a relationship among 

caches in the same interval. But the caches within even a 

single interval may have different access probabilities and 

if so, taking more accurate probability into consideration 

may help to improve the performance of a media block 

caching. Also client does not exhibit strictly sequential 

access pattern and may change the position of the playback. 

This means that the later a cache is accessed, the less 

likely it is actually referenced. Therefore optimal cache 

replacement algorithm should choose the cache which 

contains the block that would not be accessed for the 

longest period of time. For example if a playback stream 

will reference block b2 after accessing block b1, and no 

other streams use b1 and b2 in the meantime, choosing b2 

as a replacement victim instead of b1, until cache block b1 

is referenced, would be a better replacement policy. 

But this could lead to large overheads of maintaining an 

access probability per block cache. To reduce such 

overheads without losing the benefit of classifying caches 

according to access probability, cache set is devised which 

is extended from interval caching. An interval is formed 

only between two consecutive streams but cache set may 

come into being with only preceding stream or following. 

Besides, there can exist a cache set even with neither 

preceding nor following stream. 

4. LEF Caching 

4.1 Cache set and cache run 

Cache run is a group of consecutive block caches which 

are locally sorted by the increasing block position in a 

media file. The head of a cache run is the cache which has 

the smallest block position in a media file and the tail has 

the largest one. If any block cache in the middle of a cache 

run is replaced, the cache run will be split into two smaller 

ones. All cache runs are included to exactly one cache set, 

so cache set means a group of cache runs and they are 

globally ordered by the smallest position of each owned 

block caches. The boundary of cache set is determined by 

the smallest block position and the largest one of holding 

caches. Every stream has a matching cache set whose head 

block position is same with its referencing position. If a 

stream accesses a block cache in the middle of cache set, 

then it will be split into two smaller cache sets and 

possibly cache runs will be also split. Therefore the 

boundary of cache set is determined by a stream and the 

head position of a cache set progress gradually as a stream 

accesses sequentially. But there may exist cache set which 

has no stream such as a cache set on the starting media 

area. 

Fig. 3 shows relationship between cache set and cache run. 

CS1 and CS2 are cache sets and each includes two cache 

runs. The matching cache set of stream S1 is CS1 and S1 is 

about to reference b1, the head of cache run CR1. Note b3 

and b9 are not cached. So CR1 and CR2, or CR3 and CR4 

cannot be merged. 

 

Fig. 3 Cache Set and Cache Run 

 

Cache set can be thought of as an interval but it is not the 

same in several respects. Interval has a preceding stream 

and a following stream, whereas cache set does not have a 

preceding stream. To be more exact, cache set is not an 

interval or a distance between two streams but just a group 

of block caches as a cache management unit. Moreover, 

the head cache set at the beginning of a media can have no 

following stream. 

4.2 Least Expectation 

To achieve maximum cache hit ratio, caching policy 

should maintain most accessed block caches. To this end, 

our method introduces the expectation of a block cache. 

Expectation is an expected benefit to improve a cache hit 

ratio. It depends on how many times each block cache will 

be accessed within a certain future duration. Even though 

the position of a stream may change via VCR-like 

operations, when each block cache will be accessed and 

what times it will be, can be acquired by tracking the 

positions of all streams. Let R(T, bi) be the referenced 

count of bi within a duration T. Then the expectation E(T, 

bi) of a block cache bi is 

 ���, ��� = 	��, ����  (1) 

The larger T is used, the more accurate expectation will be 

obtained. But the cost of finding R(T, bi) depends on T, so 
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it will be confined to a reasonable extent. Also calculating 

the expectation of every block cache is impossible with an 

online algorithm. 

 Our proposed scheme, LEF(Least Expectation First) 

utilizes a expectation per cache set, not block cache. The 

expectation of cache set is the expectation of the largest 

block cache among holding block caches. T in expectation 

will be used as double the cache set length, which is the 

distance from the head to the tail. Let Pos(bi) denote the 

temporal position of bi in a media file, then the cache set 

size, Len(CS) can be defined as 

 
���
�� = ���������� − ���������� (2) 

where btail and bhead is each the head block cache and the 

tail block cache of CS. The expectation of cache set CS is 

defined as 

 ����
�� = ��2 ∙ 
���
��, ������ (3) 

LEF caching policy orders all cache sets in terms of 

increasing their expectations and replaces the tail of the 

cache set with the lowest expectation as a victim cache. 

The durations of the cache set expectations are different 

from each other. In viewpoint of LEF, an interval-based 

caching can be regarded as a policy just using the largest 

interval size as the expectation duration. LEF utilizes 2 

times more knowledge about block reference than interval 

caching. As the expectation of each cache set is calculated 

based on its own duration, LEF may commit a misleading 

replacement that the block cache of a smaller cache set is 

evicted even though its expectation with same duration 

may be greater than that of a larger cache set. But such a 

wrong decision by LEF is always below 50% if the inter-

arrival time of a stream obeys Poisson distribution. 

Theorem: If Exp(CSs) < Exp(CSl), the probability that the 

tail block cache of CSs is referenced more than reference 

count of CSl within the double duration of a larger cache 

set is less than 50%. 

Proof: The case that Len(CSs) ≥ Len(CSl) is trivial, so 

Len(CSs) < Len(CS1) is assumed. Let bs and bl be the tail 

block caches of CSs and CSl each. In order to prove this 

theorem, show that a following inequation is valid. 

 �����	�2 ∙ 
���
���, ���2 ∙ 
���
��� < 	�2 ∙ 
���
���, ���2 ∙ 
���
��� ! < 0.5 (4) 

If a stream arrives at λ rate, the probability that following 

two equations are valid is over 50%. 

 	�2 ∙ 
���
���, ��� = 2 ∙ 
���
�%� ∙ λ (5) 

 	�2 ∙ 
���
���, ��� = 2 ∙ 
���
��� ∙ λ (6) 

From equation (5) and (6), we get 

 	�2 ∙ 
���
�%�, ���
���
��� = 	�2 ∙ 
���
���, ���
���
���  (7) 

Given equation (7), showing that inequality (8) is always 

true would be sufficient to prove inequation (4). 

 	�2 ∙ 
���
���, ���2 ∙ 
���
��� < 	�2 ∙ 
���
���, ���2 ∙ 
���
���  
(8) 

From a precondition, we can get 

 	�2 ∙ 
���
���, ���2 ∙ 
���
��� < 	�2 ∙ 
���
���, ���2 ∙ 
���
���  (9) 

and by applying equation (7) to inequation (9), we have 

same result with inequation (8). � 

5. Experiment Result 

In this chapter, we present performance analysis of 

proposed LEF algorithm through the comparison with 

legacy buffer cache management schemes such as Interval 

Caching(IC) and LRU. In addition, we also present the 

performance a modified interval caching(ICC). This 

scheme collects block caches belonging to the newly 

created interval from a free block cache list and assigns 

them to the interval. To facilitate our simulation study, we 

implemented ms2sim simulator[24] conducting various 

algorithms. We use a fixed size of retrieval block as a unit 

of I/O and buffer caching. The performance metric we use 

is cache hit ratio. We examine the effects of varying the 

size of block cache on cache misses under various caching 

algorithms. In our experiments, we use the Zipf 

distribution to generate accesses to 100 media files with a 

0.271 skew factor. Also we simulate the session length and 

the inter-seek time of each stream[3]. 

 

Fig. 4 Hit Ratios with full session length and inter-seek 

time based on lognormal distribution 
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Fig. 5 Hit Ratios with session length based on beta 

distribution and inter-seek time based on lognormal 

distribution 

 

Fig. 4 and Fig. 5 illustrate the simulation results for cache 

hit ratios. When full session length is used, IC, ICC and 

LEF have shown almost the same performance. However, 

it is found that when a session length is based on beta 

distribution, the hit ratios of IC and ICC drop. The hit ratio 

of LRU is improved compared to the result in full session 

length. 

In Fig. 6 and Fig. 7, the cache space requirements of each 

caching policy are presented as the number of concurrent 

stream sessions increases. It is observed that LEF requires 

much less cache space compared to other policies when 

full session length is used. But we can see that when a 

session length obeys beta distribution, LEF is slightly 

better than LRU. Note IC and ICC require generally more 

cache space than LEF and LRU even though they have 

better hit ratio. This means that an interval caching has a 

media block I/O fluctuated more. 

 

Fig. 6 Required cache size with full session length 

 

 

Fig. 7 Required cache size with session length based on 

beta distribution and inter-seek time based on lognormal 

distribution 

 

 

Fig. 8 Disk bandwidth usage trace 

 

In Fig. 8, we trace a disk usage for each caching policy 

with 4MiB/sec at maximum disk bandwidth. In the figure, 

the usage of IC is nearly 4MiB, so it cannot support 

continuous playback. From disk usage trace, we notice that 

an ICC and LEF have more bandwidth peaks than LRU. 

But LEF has much lower disk usage than other policies 

and shows smoothed disk usage. 

6. Conclusion 

Our proposed media caching policy called Least 

Expectation First(LEF) can manage block caches 

effectively under a real-world workload that a non-

sequential access pattern exists. Unlike previous interval 

caching scheme, LEF keeps orphan block caches in cache 

runs, which interval caching had put on free cache list 

when a stream disappears. As all block caches are two-

level grouped by cache set and cache run and a block 

cache is replaced based on its caching gain, LEF can 
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increase cache hit ratio. We showed through simulations 

that LEF algorithm can perform better and yield more 

smoothed I/O than well-known legacy algorithms. 
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