
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

64

Manuscript received October 5, 2011

Manuscript revised October 20, 2011

The The The The Least Expectation Least Expectation Least Expectation Least Expectation FirstFirstFirstFirst (LEF) Media Caching Policy(LEF) Media Caching Policy(LEF) Media Caching Policy(LEF) Media Caching Policy

Kyungwoon Cho† and Hyokyung Bahn††,

† Clunix R&D Center, Clunix Inc., 1-1206, Ace High Tech City, Seoul, 150-972 Korea

††
 Department of Computer Science and Engineering, Ewha University, Seoul, 120-750 Korea

Summary

In this article, we present a novel media caching algorithm

adequate for real-world streaming workload. Streaming workload

is believed to exhibit very large and sequential access

characteristics, which is the main concern of a legacy media

caching policy. However, a legacy caching algorithm did not

fully utilize access pattern and also tends to overlook streaming

interactivity which can decrease the advantage of a caching

technique utilizing sequential reference. As a replaced cache is

determined based on the expected caching gain of the candidates,

cache hit ratio can be significantly improved. We develop Least

Expectation First technique which can manage very large number

of block caches as two-level grouping. Experimental results show

that the proposed media caching scheme yields better hit ratio

and I/O smoothing than legacy buffer cache replacement schemes.

Key words:
Media Caching Algorithm, Interval Caching, Streaming Server,

VCR-like operation.

1. Introduction

In this paper, we focus our efforts on developing the buffer

cache management scheme for multimedia streaming

servers. Recent advances in a mobile device and

communication technology enable users to enjoy on-line

media streaming service. Deployment of fourth generation

mobile service[1][15] and public broadband wireless

further accelerates the proliferation of on-line multimedia

service via enabling it on the mobile devices. With this

growth in service volume, multimedia server is required to

maintain larger and larger amount of data and is required

to service increased number of concurrent service sessions.

Particular care needs to be taken to elaborately capture the

characteristics of the multimedia workload and to

incorporate the findings in designing various parts of the

system components.

The speed of CPU and the capacity of RAM have been

doubling every 18 months for the last couple of decades as

indicated by Moore's Law. However, this increase

unfortunately has not been accompanied by the increase in

the disk bandwidth. Thus, the performance of the

application which requires frequent disk access, e.g. On-

Line Transaction Processing, On-Line Analytical

Processing, Web Server, and Streaming Server, greatly

depends on the performance of I/O. It is important to

minimize disk access. In this regard, the role of the buffer

cache replacement scheme is becoming increasingly

important.

Buffer cache management scheme for multimedia

workload has been the subjects of numerous works during

past several years. Most of these works assume that the

streaming workload exhibits sequential access

characteristics with bandwidth guarantee. Along with

entertainment, education is the emerging area for

multimedia application. In distance learning environment

where the user accesses the lecture materials remotely, it is

possible that the user accesses the particular segment of

video repeatedly rather than simply scans the file from

beginning to the end. Recently, a few studies examine the

user access log obtained from streaming server in service

and confirm that there are non-trivial amount of VCR-like

operation, e.g. skip, reverse, or etc. This non-sequential

access pattern may become more dominant when the user

intends to briefly examine the video recordings

particularly such as in bandwidth scarce mobile wireless

environment.

We carefully believe that buffer cache management

schemes which assume that the underlying access pattern

is sequential leave much to be desired for mobile

streaming environment mainly due to significant fraction

of VCR-like operation. In this work, we present the media

caching based on the expectation of a block cache. The

main idea is that all the media block caches are two-level

grouped and the cache block of the group which has the

least caching gain is evicted as a replacement victim.

2. Related Works

There have been a lot of works[8][16][5][12][22] on

continuous media caching in streaming system and most of

caching schemes was based on an interval between two

consecutive streams. Interval-based block caching

schemes take advantage of sequential access

characteristics of continuous media data and maintain

information about intervals of consecutive streams

accessing the same file. [8] proposed Interval Caching

algorithm, which exploits temporal locality between

streams accessing the same file by caching intervals

between successive streams. The buffer requirement of

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

65

successive streams is a function of the time-interval

between the two streams and the compression method used.

[16] presented DISTANCE method. It also caches the

blocks in distance of successive clients accessing the same

media file. Both algorithms select the victim for

replacement with respect to the interval between candidate

and its immediate successor. These interval-based

replacement schemes are grounded at the assumption that

the applications sequentially access the multimedia file.

Indeed, interval-based caching schemes show good

performance in the totally sequential workload.

The objective of media block caching is to exchange the

block I/O bandwidth with main memory space. Won et

al.[22] examine the buffer size trade-off between interval

caching and disk retrieval and propose an algorithm which

minimizes the overall buffer requirement in servicing a set

of streams. Some of the works combines the application

level caching with the traditional disk retrieval operation

for multimedia[6][21].

A number of research results have been released regarding

the workload analysis of streaming or educational media

server[19][4][17][11]. [17] analyzes the client access to

MANIC system audio content. [4][7] analyze access logs

of their educational media servers, eTeach and Classroom

2000, respectively. These works deliver insightful

information on the usage of the educational media server

and the user behavior, e.g. access frequency distribution,

file popularity, aging of file access popularity, etc. From

these works we can easily see that the data access pattern

is more than sequential. For example, [4] showed that for

short media files, interactive requests like jump backwards

are common.

3. The weakness of Interval-based Caching

In this section, we introduce interval which is used as a

basic concept in many interval-based media caching

algorithms [8][9][16] and supplement the interval idea for

our work through a systematic approach. In Fig. 1, the

small arrows marked by playback stream S1, S2 and S3

denote the current block positions in the same file and I21

represents interval formed by two consecutive streams, S2

and S1. Intuitively, interval can be thought of as a group of

block caches whose logical file positions are between a

preceding and a following stream. In the figure, I32 holds

block caches b3 and b4 which will be referenced by

following stream S2. If the following stream references

block which has not been cached in the interval, cache

miss is incurred and it should load the block into a cache

from storage.

Fig. 1 Interval between two consecutive streams

In order to minimize cache misses, interval-based caching

policy manages media block caches based on an interval

size, which is a temporal distance between a preceding

stream and a following stream. At cache replacement time,

a cache in a longer interval is preferable to a cache in a

shorter one as a replacement victim. The idea behind the

interval caching well utilizes that the cache space of a

longer interval is required more than shorter interval.

Therefore, block I/O incurred by cache misses will be

reduced more with the same cache space by caching media

blocks in a shorter interval.

However, interval-based caching has a few drawbacks

mentioned in many literatures. First, this caching policy

cannot manage the region of a media not covered by an

interval such as the head and the tail of the file. But block

caches in these areas may have a significant impact on a

caching performance. Media workload patterns show that

users tend to access the head segment of a media[1].

Second, user interactivities such as VCR-like operations

can give a bad effect to the performance of an interval-

based caching. When the reference media block of a

stream changes by the interactive playback of a user,

existing intervals may disappear or a new interval can be

introduced. Therefore effective interval management

scheme should be devised.

Finally, interval notion cannot fully utilize a media access

pattern characterized by a currently serviced stream.

Interval-based replacement algorithm selects a victim

among block caches in the longest interval believing that

they have the least reference probability. But the case that

the block cache in the longest interval has more likely to

be accessed is possible. In Fig. 2, there are 3 playback

streams, S1, S2 and S3. Each small square block represents

a media block for stream’s continuous playback. Cached

media block b1 will be referenced earlier than block cache

b2 by S1 but b2 will be accessed two times by S2 and S3. If a

replacement victim is being selected between the two

block caches, b1 and b2, choosing b2 as a victim cache is

best with only 4 look-ahead references. However, evicting

b1 instead of b2 is more desirable with additional future

references. The more future references are utilized, the

more caching gain will be achieved.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

66

Fig. 2 choosing a replacement victim

Legacy buffer caching algorithms such as interval

caching[8][9], DISTANCE[16] and dynamic grouping[20]

did not utilize information about a relationship among

caches in the same interval. But the caches within even a

single interval may have different access probabilities and

if so, taking more accurate probability into consideration

may help to improve the performance of a media block

caching. Also client does not exhibit strictly sequential

access pattern and may change the position of the playback.

This means that the later a cache is accessed, the less

likely it is actually referenced. Therefore optimal cache

replacement algorithm should choose the cache which

contains the block that would not be accessed for the

longest period of time. For example if a playback stream

will reference block b2 after accessing block b1, and no

other streams use b1 and b2 in the meantime, choosing b2

as a replacement victim instead of b1, until cache block b1

is referenced, would be a better replacement policy.

But this could lead to large overheads of maintaining an

access probability per block cache. To reduce such

overheads without losing the benefit of classifying caches

according to access probability, cache set is devised which

is extended from interval caching. An interval is formed

only between two consecutive streams but cache set may

come into being with only preceding stream or following.

Besides, there can exist a cache set even with neither

preceding nor following stream.

4. LEF Caching

4.1 Cache set and cache run

Cache run is a group of consecutive block caches which

are locally sorted by the increasing block position in a

media file. The head of a cache run is the cache which has

the smallest block position in a media file and the tail has

the largest one. If any block cache in the middle of a cache

run is replaced, the cache run will be split into two smaller

ones. All cache runs are included to exactly one cache set,

so cache set means a group of cache runs and they are

globally ordered by the smallest position of each owned

block caches. The boundary of cache set is determined by

the smallest block position and the largest one of holding

caches. Every stream has a matching cache set whose head

block position is same with its referencing position. If a

stream accesses a block cache in the middle of cache set,

then it will be split into two smaller cache sets and

possibly cache runs will be also split. Therefore the

boundary of cache set is determined by a stream and the

head position of a cache set progress gradually as a stream

accesses sequentially. But there may exist cache set which

has no stream such as a cache set on the starting media

area.

Fig. 3 shows relationship between cache set and cache run.

CS1 and CS2 are cache sets and each includes two cache

runs. The matching cache set of stream S1 is CS1 and S1 is

about to reference b1, the head of cache run CR1. Note b3

and b9 are not cached. So CR1 and CR2, or CR3 and CR4

cannot be merged.

Fig. 3 Cache Set and Cache Run

Cache set can be thought of as an interval but it is not the

same in several respects. Interval has a preceding stream

and a following stream, whereas cache set does not have a

preceding stream. To be more exact, cache set is not an

interval or a distance between two streams but just a group

of block caches as a cache management unit. Moreover,

the head cache set at the beginning of a media can have no

following stream.

4.2 Least Expectation

To achieve maximum cache hit ratio, caching policy

should maintain most accessed block caches. To this end,

our method introduces the expectation of a block cache.

Expectation is an expected benefit to improve a cache hit

ratio. It depends on how many times each block cache will

be accessed within a certain future duration. Even though

the position of a stream may change via VCR-like

operations, when each block cache will be accessed and

what times it will be, can be acquired by tracking the

positions of all streams. Let R(T, bi) be the referenced

count of bi within a duration T. Then the expectation E(T,

bi) of a block cache bi is

 ���, ��� = 	��, ���� (1)

The larger T is used, the more accurate expectation will be

obtained. But the cost of finding R(T, bi) depends on T, so

S2

b1

b2

S1

S3

current
time

S2S1

CS1

b1 b2 b4 b5 b6

CR1 CR2

Cache Set

Cache Run

CS2

b7 b8 b10

CR3 CR4

b1 b2 b4 b5 b6b3 b7 b8 b10b9 Media Blocks

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

67

it will be confined to a reasonable extent. Also calculating

the expectation of every block cache is impossible with an

online algorithm.

 Our proposed scheme, LEF(Least Expectation First)

utilizes a expectation per cache set, not block cache. The

expectation of cache set is the expectation of the largest

block cache among holding block caches. T in expectation

will be used as double the cache set length, which is the

distance from the head to the tail. Let Pos(bi) denote the

temporal position of bi in a media file, then the cache set

size, Len(CS) can be defined as

���
�� = ���������� − ���������� (2)

where btail and bhead is each the head block cache and the

tail block cache of CS. The expectation of cache set CS is

defined as

 ����
�� = ��2 ∙
���
��, ������ (3)

LEF caching policy orders all cache sets in terms of

increasing their expectations and replaces the tail of the

cache set with the lowest expectation as a victim cache.

The durations of the cache set expectations are different

from each other. In viewpoint of LEF, an interval-based

caching can be regarded as a policy just using the largest

interval size as the expectation duration. LEF utilizes 2

times more knowledge about block reference than interval

caching. As the expectation of each cache set is calculated

based on its own duration, LEF may commit a misleading

replacement that the block cache of a smaller cache set is

evicted even though its expectation with same duration

may be greater than that of a larger cache set. But such a

wrong decision by LEF is always below 50% if the inter-

arrival time of a stream obeys Poisson distribution.

Theorem: If Exp(CSs) < Exp(CSl), the probability that the

tail block cache of CSs is referenced more than reference

count of CSl within the double duration of a larger cache

set is less than 50%.

Proof: The case that Len(CSs) ≥ Len(CSl) is trivial, so

Len(CSs) < Len(CS1) is assumed. Let bs and bl be the tail

block caches of CSs and CSl each. In order to prove this

theorem, show that a following inequation is valid.

 �����	�2 ∙
���
���, ���2 ∙
���
��� < 	�2 ∙
���
���, ���2 ∙
���
��� ! < 0.5 (4)

If a stream arrives at λ rate, the probability that following

two equations are valid is over 50%.

 	�2 ∙
���
���, ��� = 2 ∙
���
�%� ∙ λ (5)

 	�2 ∙
���
���, ��� = 2 ∙
���
��� ∙ λ (6)

From equation (5) and (6), we get

 	�2 ∙
���
�%�, ���
���
��� = 	�2 ∙
���
���, ���
���
��� (7)

Given equation (7), showing that inequality (8) is always

true would be sufficient to prove inequation (4).

 	�2 ∙
���
���, ���2 ∙
���
��� < 	�2 ∙
���
���, ���2 ∙
���
���
(8)

From a precondition, we can get

 	�2 ∙
���
���, ���2 ∙
���
��� < 	�2 ∙
���
���, ���2 ∙
���
��� (9)

and by applying equation (7) to inequation (9), we have

same result with inequation (8). �

5. Experiment Result

In this chapter, we present performance analysis of

proposed LEF algorithm through the comparison with

legacy buffer cache management schemes such as Interval

Caching(IC) and LRU. In addition, we also present the

performance a modified interval caching(ICC). This

scheme collects block caches belonging to the newly

created interval from a free block cache list and assigns

them to the interval. To facilitate our simulation study, we

implemented ms2sim simulator[24] conducting various

algorithms. We use a fixed size of retrieval block as a unit

of I/O and buffer caching. The performance metric we use

is cache hit ratio. We examine the effects of varying the

size of block cache on cache misses under various caching

algorithms. In our experiments, we use the Zipf

distribution to generate accesses to 100 media files with a

0.271 skew factor. Also we simulate the session length and

the inter-seek time of each stream[3].

Fig. 4 Hit Ratios with full session length and inter-seek

time based on lognormal distribution

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

68

Fig. 5 Hit Ratios with session length based on beta

distribution and inter-seek time based on lognormal

distribution

Fig. 4 and Fig. 5 illustrate the simulation results for cache

hit ratios. When full session length is used, IC, ICC and

LEF have shown almost the same performance. However,

it is found that when a session length is based on beta

distribution, the hit ratios of IC and ICC drop. The hit ratio

of LRU is improved compared to the result in full session

length.

In Fig. 6 and Fig. 7, the cache space requirements of each

caching policy are presented as the number of concurrent

stream sessions increases. It is observed that LEF requires

much less cache space compared to other policies when

full session length is used. But we can see that when a

session length obeys beta distribution, LEF is slightly

better than LRU. Note IC and ICC require generally more

cache space than LEF and LRU even though they have

better hit ratio. This means that an interval caching has a

media block I/O fluctuated more.

Fig. 6 Required cache size with full session length

Fig. 7 Required cache size with session length based on

beta distribution and inter-seek time based on lognormal

distribution

Fig. 8 Disk bandwidth usage trace

In Fig. 8, we trace a disk usage for each caching policy

with 4MiB/sec at maximum disk bandwidth. In the figure,

the usage of IC is nearly 4MiB, so it cannot support

continuous playback. From disk usage trace, we notice that

an ICC and LEF have more bandwidth peaks than LRU.

But LEF has much lower disk usage than other policies

and shows smoothed disk usage.

6. Conclusion

Our proposed media caching policy called Least

Expectation First(LEF) can manage block caches

effectively under a real-world workload that a non-

sequential access pattern exists. Unlike previous interval

caching scheme, LEF keeps orphan block caches in cache

runs, which interval caching had put on free cache list

when a stream disappears. As all block caches are two-

level grouped by cache set and cache run and a block

cache is replaced based on its caching gain, LEF can

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

69

increase cache hit ratio. We showed through simulations

that LEF algorithm can perform better and yield more

smoothed I/O than well-known legacy algorithms.

Acknowledgement

This work was partially supported by the research fund of

Electronics and Telecommunications Research Institute

(ETRI).

References
[1] Tomazic, S. & Jakus, G. Long term evolution: Towards 4th

generation of mobile telephony and beyond Proc. 9th Int.

Conf. Telecommunication in Modern Satellite, Cable, and

Broadcasting Services TELSIKS '09, 2009, 91-96

[2] Yu, H.; Zheng, D.; Zhao, B. Y. & Zheng, W. Understanding

user behavior in large-scale video-on-demand systems

SIGOPS Oper. Syst. Rev., ACM, 2006, 40, 333-344

[3] Brampton, A.; MacQuire, A.; Fry, M.; Rai, I.; Race, N. &

Mathy, L. Characterising and exploiting workloads of highly

interactive video-on-demand Multimedia Systems, Springer

Berlin / Heidelberg, 2009, 15, 3-17

[4] Jussara M. Aimeida, Jeffrey Krueger, Derek L. Eager, and

Mary K. Vernon. Analysis of educational media server

workloads. In Proceedings of International Workshop on

Network and Operating System Support for Digital Audio

and Video, Port Jefferson, NY, USA, June 2001.

[5] Matthew Andrews and Kameshwar Munagala. Online

algorithms for caching multimedia streams. In European

Symposium on Algorithms, pages 64–75, 2000.

[6] Bradshaw, M. K.; Wang, B.; Sen, S.; Gao, L.; Kurose, J.;

Shenoy, P. & Towsley, D. Periodic broadcast and patching

services - implementation, measurement and analysis in an

internet streaming video testbed Multimedia Systems,

Springer Berlin / Heidelberg, 2003, 9, 78-93.

[7] M. Chesire, A. Wolman, G. Voelker, and H. Levy.

Measurement and analysis of a streaming media workload.

In Proceedings of 3rd USENIX Symp. on Internet

Technologies and Systems, San Francisco, CA, USA, March

2001.

[8] A. Dan, Y. Heights, and D. Sitaram. Generalized interval

caching policy for mixed interactive and long video

workloads. In Proc. of SPIE’s Conf. on Multimedia

Computing and Networking, 1996.

[9] A. Dan and D. Sitaram. Buffer management policy for a on-

demand video server. Technical Report RC 19347, IBM.

[10] Kevin W. Froese and Richard B. Bunt. Cache management

for mobile file service. The Computer Journal, 42(6):442–

454, 1999.

[11] N. Harel, V. Vellanki, A. Chervenak, G. Abowd, and U.

Ramachandran. Workload of a media-enhanced classroom

server. In Proceedings of IEEE Workshop on Workload

Characterization, Oct. 1999.

[12] M. Hofmann, E. Ng, K. Guo, S. Paul, and H. Zhang.

Caching techniques for streaming multimedia over the

internet. Technical Report BL011345-990409-04TM, Bell

Laboratories, 1999.

[13] Rainer Koster and Thorsten Kramp. Structuring qoS-

supporting services with smart proxies. In Proceedings of

the IFIP/ACM Middleware Conference (Middlware),

volume 1795, Berlin, Heidelberg, New York, Tokyo, 2000.

Springer-Verlag.

[14] Geoffrey H. Kuenning, Gerald J. Popek, and Peter L. Reiher.

An analysis of trace data for predictive file caching in

mobile computing. In USENIX Summer, pages 291–303,

1994.

[15] Nobuo Nakajima. The path to 4g mobile. IEEE

Communications, 39(3):38–41, March 2001.

[16] Banu Ozden, Rajeev Rastogi, and Abraham Silberschatz.

Buffer replacement algorithms for multimedia storage

systems. In International Conference on Multimedia

Computing and Systems, pages 172–180, 1996

[17] J. Padhye and J. Kurose. An empirical study of client

interactions with a continuous-media courseware server. In

Proceedings of International Workshop on Network and

Operating System Support for Digital Audio and Video, July

1998.

[18] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy caching

mechanism for multimedia playback streams in the internet,

1999.

[19] Lawrence A. Rowe, Diane Harley, and Peter Pletcher. Bibs:

A lecture webcasting system. Technical report, Berkeley

Multimedia Research Center, UC Berkeley, June 2001.

[20] S. Sheu, K. Hua, and W. Tavanapong. Dynamic grouping:

An efficient buffer management scheme for video-on-

demand servers. Technical Report CSTR-97-02, University

of Central Florida, Orlando, Florida, Feb 1997.

[21] Shi, W. & Ghandeharizadeh, S. Trading memory for disk

bandwidth in video-on-demand servers Proceedings of the

1998 ACM symposium on Applied Computing, ACM, 1998,

505-512

[22] Youjip Won and Jaideep Srivastava. “smdp: Minimizing

buffer requirements for continuous media servers”.

ACM/Springer Multimedia Systems Journal, 8(2):pp. 105–

117, 2000.

[23] Kun-Lung Wu, Philip S. Yu, and Joel L. Wolf. Segment-

based proxy caching of multimedia streams. In World Wide

Web, pages 36–44, 2001.

[24] https://code.google.com/p/ms2sim/

Kyungwoon Cho received the BS and MS

degrees in computer science from Seoul

National University, Korea, in 1995 and

1997, respectively. He is currently a chief

officer in the Clunix R&D Center, Seoul,

Korea. His research interests include

multimedia systems and operating systems.

Hyokyung Bahn received the BS, MS,

and PhD degrees in computer science from

Seoul National University, Korea, in 1997,

1999, and 2002, respectively. He is currently

an associate professor in the department of

computer science and engineering, Ewha

University, Seoul, Korea. His research

interests include operating systems, caching

algorithms, Web technologies, reference

behavior modeling, genetic algorithms, and distributed systems.

Dr. Bahn is a member of the IEEE Computer Society, the IEICE,

and the Korea Information Science Society.

