
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

84

Manuscript received October 5, 2011
Manuscript revised October 20, 2011

A Web Page Segmentation Method based on Page Layouts and
Title Blocks

Hiroyuki Sano†, Shun Shiramatsu†, Tadachika Ozono†, and Toramatsu Shintani†

†Dept. of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Aichi,
466–8555 Japan

Summary
In this work, we describe a new Web page segmentation method
to extract the semantic structure from a Web page. A typical
Web page consists of multiple elements with different
functionalities, such as main content, navigation panels,
copyright and privacy notices, and advertisements, and Web
page segmentation is the division of the page into visually and
semantically cohesive pieces. The proposed method is comprised
of three steps. First, it determines the layout template of a Web
page by template matching. Second, it divides the page into
minimum blocks. Third, it assembles groups of these blocks into
Web content blocks. While the minimum blocks can play many
roles, in this study we have focused on the those that are the
titles of various Web content bits. We used decision tree learning
with nine parameters for each minimum block to extract the title
blocks from Web pages. Experimental results showed that the
decision tree generated by the J48 algorithm is the most suitable
for this type of extraction.
Key words:
Web page segmentation, Page layout, Title block, Machine
learning

1. Introduction

We have developed an algorithm for dividing a Web
page into visually and semantically cohesive pieces called
“Web content blocks.” This process is known as Web
page segmentation. Web page designers appoint a headline
to each Web content on a page, which we call “title
blocks,” to make for easy reading, and it is these blocks
that the proposed algorithm focuses on. Title blocks can be
used as separators when we segment a Web page. In this
paper, we propose the use of decision tree learning to
extract the title blocks from Web pages.

A typical Web page consists of multiple elements
with different functionalities, such as main content,
navigation panels, copyright and privacy notices, and
advertisements. Figure 1 shows a screenshot of a page
from Reuters.com, a news site that brings viewers the
latest news from around the world. This page includes
four Web content blocks: the “main content block,” which
is enclosed by a solid red line, and three “noisy content
blocks,” which are enclosed by broken blue lines. Visitors
to the page are only interested in the main content and

have no use for the noisy content. Web page segmentation
clearly has a variety of benefits and potential Web
applications, but if applications such as information
retrieval or extraction treat all content on a Web page
equally—e.g., with no differentiation between main and
noisy content—there may be a decline in accuracy. It is
necessary that such applications deal only with the main
content of a Web page.

Fig. 1 A page from Reuters.com that contains both main (solid red line)
and noisy (broken blue lines) Web content.

These days, Web page segmentation is an extensively
studied topic. The methods proposed in the related works
divide a Web page into very small pieces at first and then
combine semantically cohesive pieces into Web content
blocks. We propose a method for assembling the small
pieces that focuses on pieces that function as headlines for
specific bits of Web content.

2. Related works

There are several different Web page segmentation
algorithms already in place, the most popular of which are
DOM-based [3, 6] and layout-based [4, 2, 5].

In DOM-based segmentation, tag information is used
to divide a Web page based on the Document Object

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

85

Model (DOM). The DOM has a tree structure in which
each node contains one of the components from an HTML
tag.

Buyukkokten et al. [3] split a Web page using some
relatively simple DOM nodes such as the <P>, <TABLE>,
and nodes for further conversion or summarization.

Lin and Ho [6] only consider the <TABLE> node and
its offspring to be a content block and use an entropy-
based approach to determine the informative ones. Nodes
such as <TABLE> and <P> are not only used for content
organization but also for layout presentation. For example,
consider the Web page layout in Fig. 2. In this example,
when the part marked “1” in Fig. 2(a) is a single content
block, only “<TABLE>” needs to be extracted. On the
other hand, when the part marked “2” is a single content
block, we must extract and merge the “B” and “D” nodes
of the tree. DOM-based segmentation cannot detect the
“2” part as a single content block.

Fig. 2 Problem of DOM-based segmentation.

The layout-based segmentation method uses layout
information after rendering, assuming that similar content
blocks are located close to each other and have similar
shapes.

Cai et al. [4, 2, 5] use layout information such as
“font,” “color,” and “size” to restructure a Web page in a
content block tree. Baluja [1] considers the Web page
segmentation problem from the perspective of a machine
learning framework: he re-examines the task through the
lens of entropy reduction and decision tree learning.
However, a consideration of the layout differences that
exist in the various parts of Web pages seems to be
lacking in this layout-based segmentation method. Web
pages have various layouts for various parts of themselves
(associated pages, “headers,” “footers,” etc.), so it is
difficult to adapt the same rules or parameters for all Web
pages and all parts of a Web page.

We have therefore developed a new Web page
segmentation algorithm that is a kind of layout-based
segmentation algorithm. It first detects the layout template
of a Web page and then divides the page into very small
pieces and combines the pieces to form various Web
content bits—semantically cohesive pieces—while
keeping a lookout for pieces that can function as headlines
for the content. We introduce the details of the proposed
algorithm in the next section.

3. Proposed method

The proposed segmentation algorithm is comprised of
three steps: (1) layout template detection, (2) division into
minimum blocks and detecting title blocks, and (3)
combination into Web content bits.

3.1 Layout template detection

Our segmentation method first detects the layout
template of a Web page. This step is useful in terms of
speculating where the main content of the page is located.

There are similarities and differences in the layouts of
all Web pages. For example, many sites have wide blocks
such as a logo or a search form at the top of each page. We
assume that all Web pages use some kind of layout
template, so our method classifies the templates by
considering the similarities and differences. Ideally, Web
pages are designed so that users can easily navigate the
pages and locate the desired content. For this reason, there
tends to not be much variation in terms of layout templates.
In this paper, we define the various template blocks of a
Web page as the “header (TBh),” “footer (TBf),” “left menu
(TBl),” “right menu (TBr),” and “center (TBc).” The
proposed method classifies a Web page into one of the
eight layout templates (T1–T8) (shown in Fig. 3), which are
combinations of template blocks.

Fig. 3 Eight types of layout templates.

The workflow used to detect the layout template of a
given Web page is shown in the DetectLayoutTemplate
procedure in Fig. 4. The procedure uses a DOM structure
and size after rendering because the template blocks
almost completely branch off at the depth near to the root
(BODY) node of the Web page. The DevideDOM
procedure sequentially judges whether a node should be
divided or be a block based on Dsize from the BODY node.
The rule is:

(1) If the size of the DOM node’s child nodes are all
smaller than Dsize, the DOM node is a block.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

86

(2) If the size of the DOM node is greater than Dsize,
the DOM node is divided into child nodes, and these child
nodes are judged again.

(3) If the size of the DOM node is smaller than Dsize,
the DOM node is a block.

Fig. 4 Algorithm for extracting template block.

Fig. 5 Detecting right edge of template block TBl.

The MatchingTemplates procedure judges which

template (T1–T8) the Web page corresponds to on the basis
of the divided blocks.

First, the right edge of TBl is detected by the
LeftBorder procedure (Fig. 5). This procedure calculates

the average width of some of the blocks. The blocks touch
the left edge of the Web page and their widths are
narrower than half of the page.

However, if the total of the widths is smaller than the
widths of all of the blocks that touch the left edge
multiplied by the constant rate, the LeftBorder procedure
judges that there is no TBl on the page. The left edge of
TBr is detected in the same way.

Second, the method determines if the area between
TBl and TBr or the next area is TBc. Finally, the area above
TBl, TBc, and TB is determined to be TBh, and the area
under them is determined to be TBf. If the Web page has a
T1 or T5 template then it does not have TBl or TBr. In this
case, assuming that both TBh and TBf have wide blocks,
the area above the bottom of the blocks—which is
included in the Ty pixels at the top of the Web page and
has a width wider than the Tx pixels—is detected as TBh.
TBf is detected in the same way.

These processes are repeated until Dsize is smaller
than the threshold size Tsize and the candidates for the
layout template Tcandidate are made. Next, the
DetectTemplate procedure sequentially judges the
availability of a layout template in Tcandidate from the layout
template that has many visual classes, like T8. Assuming
that TBc is the largest on a general Web page, the
availability is judged based on the height of TBh, TBc, and
TBf and the width of TBl, TBc, and TBr. For example, if the
height of TBc is lower than (or approximately the same as)
the height of TBh, the layout template is invalid. The
layout template not judged as invalid is determined to be
the layout template for the Web page.

The main content might be in the center block TBc,
but then it might not. Layout template detection is useful
to detect approximately where the main content is located.

3.2 Minimum block extraction

The methods proposed in the related works
mentioned above divide a Web page into very small pieces
at first and then assemble them into semantically cohesive
pieces of Web content. Our method also divides pages into
very small pieces and combines them. These small pieces,
which we call “minimum blocks,” are divided on the basis
of block-level elements defined by World Wide Web
Consortium (W3C)1. All elements in a page are classified
as either block-level elements or inline elements. When
rendered visually, a block-level element secures a
rectangle space and displays child nodes in the same area.
The overall Web page layout is determined by these
block-level elements, each of which fit inside another. We
define a minimum block as any block-level element that
does not contain other block-level elements within it. If a

1 http://www.w3.org/

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

87

node is an inline element that is the sibling of a minimum
block, we adopt it as a minimum block even though it is
technically an inline element. Therefore, all nodes that are
rendered in a Web page are eventually assigned to
minimum blocks.

The four rules listed below are used to determine
whether or not a node ni is a block-level element.

Rule 1. If ni is not a valid node, ni is not a block-level
element.
Rule 2. If ni has a “block” display style, ni is a block-level
element.
Rule 3. If ni is described in one of the following tags, ni is
a block-level element: p, blockquote, pre, div, noscript, hr,
address, fieldset, legend, h1, h2, h3, h4, h5, h6, ul, ol, li, dl,
dt, dd, table, caption, thead, tbody, colgroup, col, tr, th, td.
Rule 4. If ni does not match Rules 2 or 3, ni is not a block-
level element.

When a Web browser renders a Web page, some of
the nodes are not displayed. We call such nodes “invalid.”
If a DOM node has the four qualifications listed below,
however, we consider it “valid.”

(1) The size of the node is greater than one.
(2) The x and y coordinates on the lower right are over 0.
(3) The display style property of the node is not “none.”
(4) The visibility style property of the node is not
“hidden.”

To go into more detail, with (1), the size of the node

means the value after multiplying the pixel width of the
node by the pixel height. With (2), the coordinate of the
node is expressed by rectangular coordinates, which treat
the Web page as a plane. The origin is then at the upper
left of the Web page. The x-axis has values that increase
from left to right, while the y-axis has values that increase
from top to bottom. With (3), the display style property
specifies the type of box an element should generate.
Nodes that have been given “none” for the property are
not displayed on a Web browser. With (4), the visibility
style property defines whether or not the boxes generated
by an element are displayed. Nodes that have been given
“hidden” for the property are not displayed on a Web
browser. However, an invisible box is still secured, and it
affects the page layout.

Web designers can specify whether an element is
inline or block-level by giving a display style property. An
element whose tag is listed in Rule 3 can be an inline
element when it has an “inline” value for the display style.
We judge the display style in Rule 2 before we judge the
tag in Rule 3.

This is how we divide a Web page into minimum
blocks. Figure 6 shows a screenshot of a Google search

engine result. The search query was “Nagoya Institute of
Technology,” and the top three hits are shown in the
screenshot. Twelve minimum blocks, which are enclosed
by solid lines, are in the screenshot.

Fig. 6 Example of twelve minimum blocks extracted from a Google
search engine result.

3.3 Creating combined Web content blocks based on
title blocks

Our method focuses on title blocks to organize
minimum blocks into Web content blocks. As stated
earlier, title blocks are minimum blocks that function as
headlines for specific Web content. Web page designers
assign a title block to each web content on a page to make
for easy reading, and these title blocks can be used as
separators to segment the different parts of a Web page.

In this study, we focused on the four title block
characteristics listed below.

(1) A title block has few child nodes.
(2) A title block has a short text length.
(3) The width of a title block is greater than its height.
(4) The size of a title block is smaller than that of the
block underneath it.

These four characteristics, as well as characteristics

based on HTML tag names, are used to create the
parameters for machine learning. We adopted the nine
parameters listed below.

Param 1. Text node length.
Param 2. Size of text nodes/size of whole node.
Param 3. Size of image nodes/size of whole node.
Param 4. Width of the block/height of the block.
Param 5. Whether the size of a title block is smaller than
the size of the block underneath it.
Param 6. Whether the block is written by <H1>, <H2>,
<H3>, <H4>, <H5>, <H6>, or <DT>.
Param 7. Number of same HTML tags above continuity.
Param 8. Number of same HTML tags below continuity.
Param 9. Number of child nodes.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

88

We used decision tree learning to classify minimum
blocks because it has only two possible classifications—
“title block” or “not”—and because the learning algorithm
can avoid over-fitting due to branch cut. We show the
results of experiments on the classifier in Section 4.

Figure 7 shows three patterns that can be used to
assemble minimum blocks into Web content by using title
blocks. “tb” refers to a title block and “ntb” to a non-title
block. Our algorithm assembles an initial title block
followed by consecutive non-title blocks below it. For
example, in Fig. 7(a), four blocks (one title block “tb” and
three non-title blocks “ntb1,” “ntb2,” and “ntb3”) are
assembled into one Web content block. The “ntb1” shown
in Fig. 7(c) does not have a title block above it. In this
case, the “ntb1” that is above “tb1” is not assembled. “tb1,”
“ntb2,” and “ntb3” are assembled in pattern (a).

Fig. 7 Patterns to assemble smallest blocks into a Web content block by
using title blocks.

4. Experimental results

4.1 Method

As stated above, our Web page segmentation method
assembles minimum blocks into Web content based on
title blocks. The higher the accuracy of the title block
extraction, the higher the accuracy of the segmentation.
We specified three classifiers for determining whether
minimum blocks are title or non-title blocks. These
classifiers were constructed by decision tree learning using

a J48 algorithm, decision tree learning using a random tree
algorithm, and a support vector machine. We measured the
accuracy of the title block extraction by ten cross-
validations while making the classifiers.

Fifty Web pages were used in the experiments: we
did a Google search with the query word “summer” and
used the top 50 pages from the search engine results. The
minimum blocks in the Web pages were manually
classified into title or non-title blocks and were then used
as the training data for the machine learning. We
conducted four counts: (a) how many times a title block
was identified correctly, (b) how many times a non-title
block was identified correctly, (c) how many times a title
block was misjudged as a non-title block, and (d) how
many times a non-title block was misjudged as a title
block. The precision and re-call were given by the formula
below.

Ptb =
a

a + d
, Pntb =

b
b + c

, Rtb =
a

a + c
, Rntb =

b
b + d

,

where Ptb is the precision of the title block decision,

Pntb is the precision of the non-title block decision, Rtb is
the re-call of the title block decision, and Rntb is the recall
of the non-title block decision.

F-measures Ftb and Fntb are given by

Ftb =
2⋅ Ptb ⋅ Rtb

Ptb + Rtb

, Fntb =
2⋅ Pntb ⋅ Rntb

Pntb + Rntb

4.2 Results and discussion

Table 1: Precision and recall in extracting title blocks.

J48 Random tree SVM

Random
sampling

No Yes No Yes No Yes

(a) 622 696 660 710 376 756

(b) 7429 1779 7356 1747 7493 1697

(c) 243 169 205 155 489 109

(d) 141 136 214 168 77 218

Ptb 0.815 0.837 0.755 0.809 0.830 0.776

Rtb 0.719 0.805 0.763 0.821 0.435 0.874

Ftb 0.764 0.821 0.759 0.815 0.571 0.822

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

89

Pntb 0.968 0.913 0.973 0.919 0.939 0.940

Rntb 0.981 0.929 0.972 0.912 0.990 0.886

Fntb 0.974 0.921 0.972 0.915 0.964 0.912

Table 1 shows the experimental results. We used

8435 minimum blocks for learning modules as training
data. 865 were title blocks and 7570 were non-title blocks.
The best F-measure for title block decisions—76.4%—
was with the J48 algorithm, which is a poor result, and the
worst—57.1%—was with the support vector machine. The
re-call of title block decisions with the proposed algorithm
was 43.5%. All these values are very low, mostly because
there were fewer title blocks than non-title blocks. When
these blocks were used as training data, the boundary
plane was partial to non-title blocks, which meant that the
re-call of title block decisions was likely to be low.

To improve the re-call, we decided to sample non-
title blocks randomly and to set the ratio of title blocks and
non-title blocks to 1:2. We used 865 title blocks and 1915
non-title blocks as training data. After these changes were
made, the F-measures of title block decisions were over
80% with all three algorithms. This demonstrates that it is
appropriate to sample non-title blocks randomly.

Fig. 8 Examples of assembling incorrect Web content blocks due to
errors in identifying title/non-title blocks.

If a non-title block is misjudged as a title block, that

block is used to divide a Web content block. For example,
in Fig. 8 (1), the non-title block “nt1” was judged as a title
block. One Web content block was divided into two Web
content blocks as a result of this error. In the case of a title
block being misjudged as a non-title block, two Web

content blocks are assembled into one Web content block,
as shown in Fig. 8 (2). Visitors to a Web site judge
content blocks that have essentially been assembled into
one block as an incorrect segmentation. However, they do
not judge one Web content block that has essentially been
divided into various other blocks as incorrect. Neither of
the results shown in Fig. 8 (1) and (2) are perfect, but the
result in (2) is better for the reasons mentioned above.
This highlights the importance of not judging non-title
blocks as title blocks. In other words, we ought to use the
algorithm that can get a higher precision for deciding title
blocks Ptb and a higher re-call for deciding non-title blocks
Rntb.

Table 1 shows that the decision tree created by the
J48 algorithm attained an 83.7% Ptb and a 92.9% Rntb.
These were the best results of the three algorithms, which
indicates the J4.8 algorithm’s suitability for extracting title
blocks for Web page segmentation.

5. Conclusion

We proposed a Web page segmentation method that
assembles minimum blocks based on title blocks. The
proposed method is most effective when it obtains a high
precision of deciding title blocks and a high re-call of
deciding non-title blocks. We tested three algorithms, and
the decision tree created using the J48 algorithm obtained
an 83.7% Ptb and a 92.9% Rntb, indicating that it is the best
algorithm for extracting title blocks for Web page
segmentation.

Acknowledgement
Part of this work was supported by KAKENHI
(22500128) and Strategic Information and
Communications R&D Promotion Programme of the
Ministry of Internal Affairs and Communications, Japan．

References
[1] S. Baluja. Browsing on small screens: recasting web-page

segmentation into an efficient machine learning framework.
In Proceedings of the 15th international conference on
World Wide Web, WWW ’06, pages 33–42, New York, NY,
USA, 2006. ACM.

[2] P. Baudisch, X. Xie, C. Wang, and W.-Y. Ma. Collapse-to-
zoom: viewing web pages on small screen devices by
interactively removing irrelevant content. In Proceedings of
the 17th annual ACM symposium on User interface
software and technology, UIST ’04, pages 91–94, New
York, NY, USA, 2004. ACM.

[3] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke.
Accordion summarization for end-game browsing on pdas
and cellular phones, pages 213–220, 2001.

[4] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, VIPS: a vision-
based page segmentation algorithm, 2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

90

[5] Y. Chen, W.-Y. Ma, and H.-J. Zhang. Detecting web page
structure for adaptive viewing on small form factor devices.
In Proceedings of the 12th international conference on
World Wide Web, WWW ’03, pages 225–233, New York,
NY, USA, 2003. ACM.

[6] S.-H. Lin and J.-M. Ho. Discovering informative content
blocks from web documents. In Proceedings of ACM
SIGKDD ’02, pages 588–593, 2002.

