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Summary 
This paper is an attempt to discuss the idea of memory into the 

area of spiking neural P Systems; we introduce a draft hybrid 

model of SNP system encapsulating a dynamic arrays System 

inside. In this device, we use the aspects of dynamic array 

management to construct a memory sub-system inside the atomic 

building block of the SNP System, which is the single neuron. 

And as a computing device, the proposed machine, we will call it 

the SNP A-Machine. We also try to visit broadly the learning 

mechanism for the machine, through a learning model, 

incorporating the time concept using some forget factor f and a 

recall factor r. 

Key words:  
Spiking neural P System, Single neuron, Shot-term memory, 

long-term memory, SNP A-Machine. 

1. Introduction 

A Spiking Neural P system is a class of P systems inspired 

by the functioning of neural networks, and the ways they 

use to exchange signals through their specialized junctions 

called chemical synapses. Go to [10] for more details. 

SNP System is a construction of a networked membranes 

hosting a multi-set of objects and being in a certain state 

according to which objects are dealt with. The 

communication channels among different cells are 

specified in advance and correspond to axons in neural 

cells. To consider a spiking neural P system            - 

recalling from [10] - of degree m ≥ 1, in the form: 

 

Π = (O, σ1, . . . , σm, syn, i0), 

Where: 

1. O = {a} is the singleton alphabet (a is called spike); 

2. σ1, . . . , σm  are neurons, of the form σi  = (ni, Ri),            1 

≤ i ≤ m, Where: 

a) ni ≥ 0 is the initial  number of spikes contained by the 

cell; 

b) Ri is a finite set of rules of the following two forms: 

(1) E/ar → a; t, where E is a regular expression over O, 

r ≥ 1, and t ≥ 0; 

(2) as → λ,  for some s ≥ 1, with  the restriction that  

as ∈/ E/ar → a; t of type (1) from        Ri; L(E)  for any 

rule. 
3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) ∈/ syn for      

1 ≤ i ≤ m (synapses among cells); 

4. i0 ∈ {1, 2, . . . , m} indicates the output neuron. 

 

First type of rules are the firing rules: provided that the 

contents of the neuron, is introduced by the regular 

expression E, and there are r spikes are consumed, the 

neuron is fired, and it produces a spike which will be sent 

to other neurons after t time units, considering the usage 

of a global clock all across the system, identifying the time 

for the whole system, hence the functioning of the system 

could be set as a synchronized model. 

 

There are two actions that take place in a single step: 

firing and spiking. A neuron fires when using a rule 

E/ar→ a; t, this is only if the neuron contains n spikes 

and an  L (E) a n d  n ≥ r.  T he regular expression E 

represents the contents of the neuron.  

 

Here, at the level of a single neuron computation is in 

sequential mode, i.e. a single rule is to be fired at each 

step. Still, the maximal parallelism is at the level of the 

whole system, in the sense that in each step all neurons 

which can evolve (use a rule) have to do it.  For spiking, 

the use of a rule E/a
r→ a; t in a step q means firing in 

step q and spiking in step q + t. That is, if t = 0, then the 

spike is produced immediately, in the same step when the 

rule is used. If t = 1, then the spike will leave the neuron 

in the next step, if we consider that t is represented by a 

time interval t = {0,…tn}, then moving from 0 → tn in 

time will be simulating a recalling factor (r) and moving 

from tn → 0 in time will be simulating a forgetting process 

by a forget factor (f). In the time between firing a rule and 

producing a spike, the neuron is assumed to be building up 

for next firing stage (the refractory period); so it will not 

be able to accept any more incoming spikes, this much 

like going into a short hibernation state. 

 

This means that if t ≥ tn and another neuron produces a 

spike in any moment, then its spike will not pass to the 

hibernated neuron which has used some rule R in some 

step q. In the moment when the spike is out, the neuron 

can be activated once again, and accept new spikes. This 

means that if t = 0, then it can be considered as a passive 

gateway with no delay; the neuron can receive spikes in 

the same step when using the rule. Similarly, the neuron 

can receive spikes in moment t, in the case t ≥ 1. [10] 
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2. The SNP A-Machine 

From a general perspective, SNP systems are devices 

constructed by number of computational nodes, which are 

considered atomically built, they are the neurons, we here 

take a further closer look, to these devices. A neuron in its 

basic biological structure is considered a living cell, this 

leads to the idea that it encapsulates the features of a 

specialized sub-system composed of a group of arrays and 

a synchronizer or processor, representing some 

computational model inside, a question comes up here, 

what if we merge the two models; of SNP systems and the 

new dynamic arrays sub-system inside? A closer look to 

the neuron itself, based on the fact that if the same inputs 

are fed to the neuron it produces the same outputs, so it 

could be a complete computational machine. Some types 

of neurons deliver different outputs while time passes, 

more evidence on the neuron containing some kind of 

memory, and a learning mechanism. [2] 

Some premises could be considered here: 

 

(i) There are already existing rules inside the neuron. 

(Initially to be considered inside the long term memory). 

(ii) Rules are set by biological evolution and genetic 

structures. (Initial Configuration). 

(iii) The system initial set of rules, leads to specialization 

of the machine, in biology there are different specialized 

neurons for different processing schemas.[4] 

(iv) A neuron is preprogrammed by some initial firing 

rules in biology.  

(v) A sub-system of a predefined structure could be set – 

just for simplicity we will use three arrays, Rules Store, 

and a Synchronizer– representing the neuron soma, we 

will refer to this sub-system by (Ʌ): 

- The first array will be holding the rules indexes, 

to be consulted at first time a sequence of objects is sent to 

the neuron, to check if there is any matching results from 

previous computation. 

- The second array will be representing the short-

term memory. 

- The third array will be representing the long-term 

memory. 

- Rules will be residing into some sort of storage 

device; we will represent it via a RulesDB. 

- A Synchronizer (inner neuron processor), that 

will be responsible for firing the rules and conducts the 

search and match process inside the memory. 

(vi) There is a sub-system for the initial computational 

steps, the inner processor or the synchronizer. 

(vii) A set of presynaptic links are introduced to the 

machine, as the computational input channels, carrying 

the spikes incoming the system. 

(viii) A set of postsynaptic links are introduced to the 

machine, as the computational output channels, carrying 

the outgoing spikes, forming the result. 

(ix) The neuron itself is represented via an oval figure. 

(The computational environment). 

 

 
Fig.1. The general SNP A-Machine structure 

3. Using Arrays in SNP A-Machine Memory 

Using arrays to represent memory encapsulates some 

aspects that will help us in this model, firstly indexing, 

which will fasten search procedures, secondly storage of 

the previously computed results, thirdly sorting the fired 

rules, fourthly the insertion and deletion processes of the 

memory. For simplicity, we will use three arrays as 

mentioned, for storing rules’ indexes, short and long term 

memories, which hold the results of the last successful 

computations conducted, the design of the arrays will be 

based on the initial configuration of the systems, to speed-

up computations, this will lead to static configurations in 

some cases, also might lead to some dynamic 

configuration in others, but here we will be discussing the 

static type. 

 

Each time a spike is produced by the neuron, we store that 

action; rules are into the processor, and results in the 

short-term memory array, with a time counter called the 

recall factor (r), set to a high recalling potential n, and 

decreasing by a time unit t, when this decreasing rate 

crosses some certain time threshold, let’s say Th, then 

results are moved over to the long-term memory array, 

emptying the short-term one for the upcoming 

computations results, meanwhile each time unit is 

decreased from r is increased into another direction, a 

forget factor (f), forgetting contrasts recalling, every time 

unit passes, a single result –spike– of a previous 

computation is being more forgotten, increase                 

(f) = {0,..,n }, tm(f) = 0 → n;  n ≥ t ≥ 0, and will be 

difficult to recall, in our structure, this means decrease(r) 

= {0,..,n }, tm(r) = n →0;  n ≥ t ≥ 0, tm is a time function. 

Rules inside the processor of last computation are now 

attached with the new forget factor value, and when the 

recall factor r has crossed the time threshold T, it is set 

once again to the value n, now the processor carries one 

type of rules, that need to count down their f values to be 
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fired again, so the incoming spike trains will eventually -

along with their firing rules- sort these rules according to 

the most fired and used, this will give some indications of 

how the firing schema might be more precise by time, 

which is a dynamic factor here based upon two equal 

values {r, f}, but opposite in polarization, until r Th, 

then it is set to its initial value.  

In order to formalize the idea of rule sorting in the 

framework of SN P systems and inspired by the concepts 

introduced in [5], [11], we use some type of extended 

rules: the memory rules, they are rules of the form: 

(i) F rules: E/ak → (am , f ); t 

(ii) R rules: E/am → (ak , r ); t 
 
where, E is a regular expression over {a},  k and m are 
natural  numbers with m ≥ k ≥ 0, t ≥ 0 and               

f = (f1 , f2 , . . . , fn) is a finite sequence of natural numbers 

called the forgetting sequence where f1= k and  fn = 0. If E 

= ak, The idea behind the forgetting sequence is the 

following, when the rule E/ak → ( am , f ); t is triggered 

at t0  we look in f = (f 1 , . . . , fn ) for the greatest i such 

that m ≥ fi . And also r = (r1 , r2 , . . . , rn ) is a finite 

sequence of natural numbers called the recalling sequence, 

where r1 = m and  rn = 0. If E = a
k,  When a new input 

is inserted in the system to start a new computation, first 

we access the short-term memory array, if there are any 

spikes found that match the incoming ones, and before the 

computation ends, then a copy of the solution is sent from 

that memory array to the system - revise [5] for another 

implementation schema- search is stopped, now the 

processor decreases the recall factor r value for the stored 

rules from type (R) above, and increases the forgetting 

factor f value for the type (F) rules.  

 

This means that if a match is found in the short-term 

memory this means that last computation rules were the 

correct ones to fire, so, let the system recall them faster 

next time, and other stored rules are being forgotten by 

time, and in order, now it is obvious that this style is 

limiting the non-determinism rules firing mechanism, and 

adapting the system by time, to some certain problems to 

compute, which will be very useful in the learning process, 

recall [11]. On the other hand, if the solution is not found 

in short-term memory subsystem, then go and check the 

long-term memory one, if found a result, then copy it to 

the short-term memory, update this particular result’s rule 

to be a recalling one, empty the long-term array, delete the 

F rules, except of course the one with the result, for it is 

now updated to be of the recall type R, now update the R 

rules with r values, this might be described as a long recall 

action. 

4. General Design for the SNP A-Machine 

Memory 

As told above, the main idea is to define a system which 

allows storing information of previously executed 

computations, in order to save computation time, and 

make the system more realistic by putting its rules in some 

sorted manner, based on their firing frequency and timing. 

Hence, the final system (we will call it the SNP A-

Machine Memory denoted by ʍ) is designed by adding an 

original computation system (i.e., the processor, designed 

to work on the rules, synching among rules firing, sorting, 

and finding or matching input data with the previously 

stored results), a short-term memory array, and a long-

term memory array. 

 

 
Fig.2 A general structure of the SNP A-Machine Memory (ʍ) 

 

The general structure of the memory system is depicted in 

Fig.2. There are five main constructs in this view: 

 

The Processor (Synchronizer) 

Holds system rules, that perform computations on the 

input spikes that are injected from outside. It works on the 

used firing rules, synchronizing action with memory 

arrays due to time units, this by updating constantly the r, 

f values, or deleting the R rules. 

 

The Indexer 

A dynamic array used to store the indexes of the recently 

fired rules. 

 

The long-term Memory array 

A dynamic array used to store old spiking results, whose 

forget factor f is of high value. 

 

The Short-term Memory array 

A dynamic array used to store fast and latest spiking 

operations concerning solutions the system is currently 

computing, carrying the freshest spikes for the last action 

of the system. As told above, at the end of the 
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computation the storage device has to store the new spikes, 

along with the fired rules indexes. 

 

The Rules Repository (RDB) 

A structure used to hold system rules, it is consulted every 

time a process takes place by the processor, if a stored rule 

is fired, then raise its index, pass it to the processor, which 

in return, works on this index passing it to the indexer. 

5. How it works 

Using the above constructions, and modules, we tried to 

lay some closure to the idea, of how the processing of the 

incoming spikes might take place. We will try here to 

informally describe an algorithm for the process, under 

some certain constraints in the computational 

environment; there are three broadly speaking stages: 

 

(i) Configuring the SNP A-Machine, set values for 

recalling and forgetting schemas, and the processing 

timeline in time units, and the time threshold mentioned 

above. 

(ii) Processing: managing the incoming spikes train, the 

match searching, and rule firing. 

(iii) Output: used in search, checking for results into the 

memory’s arrays. 

 

Configuration stage: 

 

SET .value (time threshold) =some initial non-negative 

integer value. 

SET r.value (recall factor value) =some initial non-

negative integer value. 

SET f.value (forget factor value) = 0, 

SET T.value (global machine timer value) = non-negative 

integer value  

SET (word) = predefined number of spikes to be searched 

with, thus invokes a certain rule Ri 

 

Output stage: 

 

PROCEUDRE (OUTPUT) 

BEGIN 
READ incoming search_pattern. 

DEFINE Search_Value = Search_Pattern. 

// match search with all previously computed results  

stored into short-term memory array first. 

IF Search_Value = any result in short-term memory  

array.  

THEN HALT, RETURN TURE. //halt the system,  

success. 

ELSEIF 
// if not in short-term memory then go to the long- 

term one and repeat the step. 

IF match_pattern = result in long-term memory  

array.  

THEN HALT, RETURN TRUE. // halt, success.  

// if not in neither short-term nor the long–term memory 

then go to the Rules store and search. 

ELSE RETURN FALSE.  // not in memory. 

END   
 

Processing stage: 

 

PROCEUDRE (PROCESS_INCOMING_SPIKES_TRAIN) 

BEGIN  

 
IF SNP A-machine status = not in refactory period. 

SET match_pattern = word. 

READ incoming spikes train. 

WHILE the whole train 

//match search with all previously computed results   

stored into memory arrays first. 

CALL PROCEUDRE (output) 

IF output = TRUE. 

THEN HALT, RETURN match_pattern. // success  

// if not in neither short-term nor the long–term  

memory then go to the Rules store and search. 

ELSEIF output = FALSE. 

match_pattern = match search with all active rules in      

RDB in parallel. 

IF R.E (E regular expression of rule R) =  

match_pattern. 

THEN CALL PROCEDURE (Processer). 

ELSE HALT // nothing matched, wait. 

 

END 
 

PROCEUDRE (PROCESS) 

 

START global machine timer 

WHILE time counter is true 

 

BEGIN PROCESSING 
CALL PROCEDURE (PROCESS_INCOMING_SPIKES_TRAIN). 

FOREVERY fired rule Ri ; 

 

BEGINLOOP on j; 

IF (r  ) SET indexer.indexes(j) = i; //store 

index of the fired rule. 

ASSIGN a time_stamp to Ri = r.value; // current  

value of the recall factor. 

ASSIGN Ri = R type; //now it is a rule of type  

(recall rule). 

INSERT result xi into the short-term memory array. 

DECREASE r.value by one; // now we need one  

time unit to recall this rule. 

INCREASE f.value by one; 
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// system is going to forget this rule for one time unit  

in next round. 

ENDLOOP 

 

IF (r )  

BEGINIF 
SET time_stamp = f.value. 

ASSIGNALL {Ri,…,Rn} = F type; //now all  
rules fired inside the processor are of type  

forget rules.  

COPYALL previously computed results  

{Xi,…,Xn} from short-term to long-term memory  

array. 

IF(r = 0) // recall factor reaches 0 time unit. 

THEN  
SET r.value = r.initial value. // reinitializing the  

recall factor. 

SET f.value = 0 // reinitializing the forget factor. 

DELETE long-term memory array content. //  

obsolete values. 

RETURN TO BEING PROCESS. 

ENDIF  

END PROCESSING 

 
In (Table.1) we notice the flipping between the R rules to 

F rules, and how the Rules inside memory are moving, 

towards some ranking schema that will contribute into the 

rule firing selection and results mapping, from short-term 

memory to the long-term one. This will speed up the 

computation process and trend to a linear processing style, 

deducing the non-determinism into the original system. 

6. Proposing the SNP A-Machine logical 

Model (Ʌ) 

Theorem.1 
An SNP A-Machine (Ʌ) is the atomic component of an 

SNP system, the neuron, including an array based memory 

sub-system. 

 

Definition.1 

Ʌ = A Single Neuron SNP System. 

+ 

A dynamic array based memory sub-system (ʍ). 

 
The SNP System is with a single neuron, representing the 

computation container, carrying some firing and forgetting 

rules. And the memory sub-system representing the 

memory, might be carrying a set of rules. The system 

adapts a fixed topology, memory, recall and decay [11] 

(Forget) factors.  It has the following features: 

 

− There could be an initial number of the spikes 

inside the (Ʌ) or not, i.e. Si ∈ S (Si); i  0. 

− There is one or more presynaptic links, carries 

the input into the machine. 

− There is one or more postsynaptic links, carry the 

output to the environment. 

− There exists a memory structure inside the 

machine we will refer to it by (ʍ). 

− The memory is constructed in its simplest form 

of a short term memory “buffer” structure, and a long term 

one, depicted by two separated arrays. 

− There are preset rules inside the scope of the 

machine – initial configuration. 

− The memory is represented a dynamic array 

based sub-system. 

− Rules are two types forgetting and firing. 

− The decay (Forget) factor f is instantiated and 

attached to each computation taking place. 

− The recall factor r is also instantiated and 

attached to each computation taking place. 

− Computation succeeds when it halts, and output 

spikes are sent to the system over the postsynaptic link, to 

the computation environment. 

 

 

Fig.3. A closer look on The SNP A-Machine Structure 

Bearing in mind these features, we describe an SNP A-

Machine System in the following way: 

 

Definition.2. An SNP A-Machine unit of degree m, m ≥ 1, 

is a construct: 

 

Ʌ = (O, PreSyn, ,…, ,…, , N, Ru, ʍ, PostSyn), 

 

Where, 

− O = {a} is the alphabet (the object a is called spike); 

− PreSyn ⊆	 {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i)  

PreSyn for 1≤ i ≤ m (input synapses); where: 
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− ʍ is a dynamic array based sub-system. 

− N = {n},  ni ≥ 0; is the initial  number of spikes 

contained by the machine; 

− Ru is a finite set of rules {Rs, R, F} of the following 

forms: 

 

1. Rs where:  

1. E/ → a; t. E is a regular expression over O,        r ≥ 

1, and t ≥ 0; (firing Rule). 

2.  → λ,  for some s ≥ 1, with  the restriction that  

L(E)  for any rule    E/  → a; t of type (1) from Rsi; 

(forgetting Rule). 

 

2. R = {    ,..., }, for each i ∈  {1,... , m} and j    

∈  {1,... , },  where: 

E/ak → (am , r ); t is a rule with recalling factor, k ≥  

≥ 0 and  ≥ 0. The sequence                       f = 

( , ,…,  ) is a finite sequence of natural numbers 

called the recalling sequence where          = k and   ≥ 

0. Inspired by rules in [11]. 

 

3. F = {  ,..., }, for each i ∈  {1,... , m} and           

j ∈ {1,… , },  where: 

E/ak → (am , f ); t is a rule with forget factor,        k ≥ 

 ≥ 0 and  ≥ 0. The sequence                       f = 

( , ,…,  ) is a finite sequence of natural numbers 

called the decaying (forgetting) sequence where  = k 

and   ≥ 0. Inspired by rules in [11]. 

 

− PostSyn ⊆	 {1, 2,…, m}× {1, 2,…, m} with (i, i) 

PostSyn  for 1≤ i ≤ m (indicates the output neuron 

postsynaptic link.); 
 

Definition.3 
An input for a SNP A-Machine of degree m is a vector      

x = (x1,. . . , xm ) of m spikes objects xi . 

An SNP A-Machine with input is a pair (Ʌ, x) whe re  Ʌ 

is SNP A-Machine and x is the spikes train as an input 

for it.  

7. The Learning Model 

From the previous arguments, we come up with the idea of 

rule selection, which rules are better to be chosen than the 

others, and when to invoke a certain rule to be fired, given 

that an input to the system x, success can be reached or 

not, in other words, was there a result sent to the outer 

system or not? If the choice of some certain firing path 

leads to the success with a higher probability than the 

choice of another path, then the device computation 

process is getting better by every time unit passes. 

Formally, a learning problem - extending the one shown in 

[11]-  could be constructed as a tuple of an SNP A-

Machine, an input vector for the machine, a learning 

schema or function, a learning time interval, a threshold 

for recalling and forgetting a certain set of rules, a learning 

curve slope (Lr): 

 

Definition.4   
A Learning SNP A-Machine is: 

 

ɅL= (Ʌ, Xinput, L, T, Th, Lr), where: 

 

− Ʌ is an SNP A-Machine. 

− Xinput = {x1,..., xn} is a finite set of inputs of  Ʌ. 

− L: Z → Z is a function from the set of integer 

numbers onto the set of integer numbers. The learning function. 

− T = {t1,..., tn} is a finite set of time stamps attached to 

the inputs for  Ʌ. 

− Th = {rth, fth} is a set of two values for recall and 

forget values thresholds. 

− Lr is a positive value called the learning rate. 

 

We have developed a software simulator that employs the 

latter problem structure, and an SNP A-Machine, with 

multiple simulation experiments, initial outputs tend to be 

more closer to the realistic situation where a 

computational device with memory and a learning schema, 

over time, is delivering much faster results than another 

device without a memory involved, also the curve of 

leaning is tending to be linear rather than an exponential 

one, by time, the learning function, is contributing into the 

computational process positively, lessening the non-

determinism in rules firing, and shrinking the search space 

for a certain halt state for the system. 

8. Conclusions and Future work 

From previous observations we found that including a 

memory structure into the SNP system model would lead 

to some more efficiency in the computation process, 

focusing on the atomic building block of such systems, the 

single neuron, and merging the two models of SNP 
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systems and the dynamic arrays systems, affected the 

whole process of the device, and its speed, we also found 

that the learning process is highly affected by some factors 

like, the structure of the short and long term memories (ʍ), 

the recall and forget factors {r, f}, the time threshold for 

them, the mapping in the learning schema, the learning 

rate, all affect the device performance, next steps will be 

trying to study the structure of the memory subsystem in 

more details, from the design view, also we will visit the 

area of networks of SNP A-Machines in order to study the 

effect of memory modules in larger systems. The learning 

schema needs to be studied on a larger scale, in order to 

see how far a network of such machines can maintain 

information, and speed up the computation process; also 

what are the results when trying to solve an NP-Complete 

problem. The concept above leads consequently to the 

idea of specialized neurons – ones that are dedicated to 

solve certain problems– with learning and memory, a 

neuron can evolve by time to be treated as standing alone 

computation device of some purpose, even with the same 

initial configurations for two similar neurons, a trained 

neuron will be faster in processing than a non-trained one, 

this is much like getting old, and building experience in 

real life biological situations. 

 

Table.1. Rules with their results movement into the system’s memory. 

T=10 

(time 

units) 

Th=1 

Fired Rule 

Rules 

Indexes 

Time 

stamp 
Processor 

Type 

R/F 

Short-term 

array 

Long-Term 

array 
r=4 f=0 Notes 

1 R1 1 4 {R1} R {Xi1} - 4 0 First Rule to fire R1 

2 R2 2 3 {R2,R1} R {Xi2,Xi1} - 3 1  

3 R5 5 2 {R5,R2,R1} R {Xi5,Xi2,Xi1} - 2 2  

4 - -  {R5,R2,R1} R {Xi5,Xi2,Xi1} - 1 3  

5 - - 4 {R5,R2,R1} F - {Xi5,Xi2,Xi1} 0 4 
Copy short-term to 

long –term memory 

6 R4 4 4 
{R4} 

{R5,R2,R1} 
R,F {Xi4} {Xi5,Xi2,Xi1} 4 0 

Delete long-term 

memory content 

with their 

corresponding rules 

7 R2 2 3 {R4,R2} R {Xi4,Xi2} - 3 1  

8 - - - - - - - 2 2  

9 R3 3 1 {R4,R2,R3} R {Xi4,Xi2,Xi3} - 1 3  

10 - - - - - - - - - 
Other incoming 

trains 
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