
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

96

Manuscript received October 5, 2011

Manuscript revised October 20, 2011

Spiking Neural P Systems with MemorySpiking Neural P Systems with MemorySpiking Neural P Systems with MemorySpiking Neural P Systems with Memory

Ammar Adl†, Amr Badr†, Ibrahim Farag†

†Computer Science Department, Faculty of Computers and Information, Cairo University

Summary
This paper is an attempt to discuss the idea of memory into the

area of spiking neural P Systems; we introduce a draft hybrid

model of SNP system encapsulating a dynamic arrays System

inside. In this device, we use the aspects of dynamic array

management to construct a memory sub-system inside the atomic

building block of the SNP System, which is the single neuron.

And as a computing device, the proposed machine, we will call it

the SNP A-Machine. We also try to visit broadly the learning

mechanism for the machine, through a learning model,

incorporating the time concept using some forget factor f and a

recall factor r.

Key words:
Spiking neural P System, Single neuron, Shot-term memory,

long-term memory, SNP A-Machine.

1. Introduction

A Spiking Neural P system is a class of P systems inspired

by the functioning of neural networks, and the ways they

use to exchange signals through their specialized junctions

called chemical synapses. Go to [10] for more details.

SNP System is a construction of a networked membranes

hosting a multi-set of objects and being in a certain state

according to which objects are dealt with. The

communication channels among different cells are

specified in advance and correspond to axons in neural

cells. To consider a spiking neural P system -

recalling from [10] - of degree m ≥ 1, in the form:

Π = (O, σ1, . . . , σm, syn, i0),

Where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1

≤ i ≤ m, Where:

a) ni ≥ 0 is the initial number of spikes contained by the

cell;

b) Ri is a finite set of rules of the following two forms:

(1) E/ar → a; t, where E is a regular expression over O,

r ≥ 1, and t ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction that

as ∈/ E/ar → a; t of type (1) from Ri; L(E) for any

rule.
3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) ∈/ syn for

1 ≤ i ≤ m (synapses among cells);

4. i0 ∈ {1, 2, . . . , m} indicates the output neuron.

First type of rules are the firing rules: provided that the

contents of the neuron, is introduced by the regular

expression E, and there are r spikes are consumed, the

neuron is fired, and it produces a spike which will be sent

to other neurons after t time units, considering the usage

of a global clock all across the system, identifying the time

for the whole system, hence the functioning of the system

could be set as a synchronized model.

There are two actions that take place in a single step:

firing and spiking. A neuron fires when using a rule

E/ar→ a; t, this is only if the neuron contains n spikes

and an L (E) a n d n ≥ r. T he regular expression E

represents the contents of the neuron.

Here, at the level of a single neuron computation is in

sequential mode, i.e. a single rule is to be fired at each

step. Still, the maximal parallelism is at the level of the

whole system, in the sense that in each step all neurons

which can evolve (use a rule) have to do it. For spiking,

the use of a rule E/a
r→ a; t in a step q means firing in

step q and spiking in step q + t. That is, if t = 0, then the

spike is produced immediately, in the same step when the

rule is used. If t = 1, then the spike will leave the neuron

in the next step, if we consider that t is represented by a

time interval t = {0,…tn}, then moving from 0 → tn in

time will be simulating a recalling factor (r) and moving

from tn → 0 in time will be simulating a forgetting process

by a forget factor (f). In the time between firing a rule and

producing a spike, the neuron is assumed to be building up

for next firing stage (the refractory period); so it will not

be able to accept any more incoming spikes, this much

like going into a short hibernation state.

This means that if t ≥ tn and another neuron produces a

spike in any moment, then its spike will not pass to the

hibernated neuron which has used some rule R in some

step q. In the moment when the spike is out, the neuron

can be activated once again, and accept new spikes. This

means that if t = 0, then it can be considered as a passive

gateway with no delay; the neuron can receive spikes in

the same step when using the rule. Similarly, the neuron

can receive spikes in moment t, in the case t ≥ 1. [10]

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

97

2. The SNP A-Machine

From a general perspective, SNP systems are devices

constructed by number of computational nodes, which are

considered atomically built, they are the neurons, we here

take a further closer look, to these devices. A neuron in its

basic biological structure is considered a living cell, this

leads to the idea that it encapsulates the features of a

specialized sub-system composed of a group of arrays and

a synchronizer or processor, representing some

computational model inside, a question comes up here,

what if we merge the two models; of SNP systems and the

new dynamic arrays sub-system inside? A closer look to

the neuron itself, based on the fact that if the same inputs

are fed to the neuron it produces the same outputs, so it

could be a complete computational machine. Some types

of neurons deliver different outputs while time passes,

more evidence on the neuron containing some kind of

memory, and a learning mechanism. [2]

Some premises could be considered here:

(i) There are already existing rules inside the neuron.

(Initially to be considered inside the long term memory).

(ii) Rules are set by biological evolution and genetic

structures. (Initial Configuration).

(iii) The system initial set of rules, leads to specialization

of the machine, in biology there are different specialized

neurons for different processing schemas.[4]

(iv) A neuron is preprogrammed by some initial firing

rules in biology.

(v) A sub-system of a predefined structure could be set –

just for simplicity we will use three arrays, Rules Store,

and a Synchronizer– representing the neuron soma, we

will refer to this sub-system by (Ʌ):

- The first array will be holding the rules indexes,

to be consulted at first time a sequence of objects is sent to

the neuron, to check if there is any matching results from

previous computation.

- The second array will be representing the short-

term memory.

- The third array will be representing the long-term

memory.

- Rules will be residing into some sort of storage

device; we will represent it via a RulesDB.

- A Synchronizer (inner neuron processor), that

will be responsible for firing the rules and conducts the

search and match process inside the memory.

(vi) There is a sub-system for the initial computational

steps, the inner processor or the synchronizer.

(vii) A set of presynaptic links are introduced to the

machine, as the computational input channels, carrying

the spikes incoming the system.

(viii) A set of postsynaptic links are introduced to the

machine, as the computational output channels, carrying

the outgoing spikes, forming the result.

(ix) The neuron itself is represented via an oval figure.

(The computational environment).

Fig.1. The general SNP A-Machine structure

3. Using Arrays in SNP A-Machine Memory

Using arrays to represent memory encapsulates some

aspects that will help us in this model, firstly indexing,

which will fasten search procedures, secondly storage of

the previously computed results, thirdly sorting the fired

rules, fourthly the insertion and deletion processes of the

memory. For simplicity, we will use three arrays as

mentioned, for storing rules’ indexes, short and long term

memories, which hold the results of the last successful

computations conducted, the design of the arrays will be

based on the initial configuration of the systems, to speed-

up computations, this will lead to static configurations in

some cases, also might lead to some dynamic

configuration in others, but here we will be discussing the

static type.

Each time a spike is produced by the neuron, we store that

action; rules are into the processor, and results in the

short-term memory array, with a time counter called the

recall factor (r), set to a high recalling potential n, and

decreasing by a time unit t, when this decreasing rate

crosses some certain time threshold, let’s say Th, then

results are moved over to the long-term memory array,

emptying the short-term one for the upcoming

computations results, meanwhile each time unit is

decreased from r is increased into another direction, a

forget factor (f), forgetting contrasts recalling, every time

unit passes, a single result –spike– of a previous

computation is being more forgotten, increase

(f) = {0,..,n }, tm(f) = 0 → n; n ≥ t ≥ 0, and will be

difficult to recall, in our structure, this means decrease(r)

= {0,..,n }, tm(r) = n →0; n ≥ t ≥ 0, tm is a time function.

Rules inside the processor of last computation are now

attached with the new forget factor value, and when the

recall factor r has crossed the time threshold T, it is set

once again to the value n, now the processor carries one

type of rules, that need to count down their f values to be

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

98

fired again, so the incoming spike trains will eventually -

along with their firing rules- sort these rules according to

the most fired and used, this will give some indications of

how the firing schema might be more precise by time,

which is a dynamic factor here based upon two equal

values {r, f}, but opposite in polarization, until r Th,

then it is set to its initial value.

In order to formalize the idea of rule sorting in the

framework of SN P systems and inspired by the concepts

introduced in [5], [11], we use some type of extended

rules: the memory rules, they are rules of the form:

(i) F rules: E/ak → (am , f); t

(ii) R rules: E/am → (ak , r); t

where, E is a regular expression over {a}, k and m are
natural numbers with m ≥ k ≥ 0, t ≥ 0 and

f = (f1 , f2 , . . . , fn) is a finite sequence of natural numbers

called the forgetting sequence where f1= k and fn = 0. If E

= ak, The idea behind the forgetting sequence is the

following, when the rule E/ak → (am , f); t is triggered

at t0 we look in f = (f 1 , . . . , fn) for the greatest i such

that m ≥ fi . And also r = (r1 , r2 , . . . , rn) is a finite

sequence of natural numbers called the recalling sequence,

where r1 = m and rn = 0. If E = a
k, When a new input

is inserted in the system to start a new computation, first

we access the short-term memory array, if there are any

spikes found that match the incoming ones, and before the

computation ends, then a copy of the solution is sent from

that memory array to the system - revise [5] for another

implementation schema- search is stopped, now the

processor decreases the recall factor r value for the stored

rules from type (R) above, and increases the forgetting

factor f value for the type (F) rules.

This means that if a match is found in the short-term

memory this means that last computation rules were the

correct ones to fire, so, let the system recall them faster

next time, and other stored rules are being forgotten by

time, and in order, now it is obvious that this style is

limiting the non-determinism rules firing mechanism, and

adapting the system by time, to some certain problems to

compute, which will be very useful in the learning process,

recall [11]. On the other hand, if the solution is not found

in short-term memory subsystem, then go and check the

long-term memory one, if found a result, then copy it to

the short-term memory, update this particular result’s rule

to be a recalling one, empty the long-term array, delete the

F rules, except of course the one with the result, for it is

now updated to be of the recall type R, now update the R

rules with r values, this might be described as a long recall

action.

4. General Design for the SNP A-Machine

Memory

As told above, the main idea is to define a system which

allows storing information of previously executed

computations, in order to save computation time, and

make the system more realistic by putting its rules in some

sorted manner, based on their firing frequency and timing.

Hence, the final system (we will call it the SNP A-

Machine Memory denoted by ʍ) is designed by adding an

original computation system (i.e., the processor, designed

to work on the rules, synching among rules firing, sorting,

and finding or matching input data with the previously

stored results), a short-term memory array, and a long-

term memory array.

Fig.2 A general structure of the SNP A-Machine Memory (ʍ)

The general structure of the memory system is depicted in

Fig.2. There are five main constructs in this view:

The Processor (Synchronizer)

Holds system rules, that perform computations on the

input spikes that are injected from outside. It works on the

used firing rules, synchronizing action with memory

arrays due to time units, this by updating constantly the r,

f values, or deleting the R rules.

The Indexer

A dynamic array used to store the indexes of the recently

fired rules.

The long-term Memory array

A dynamic array used to store old spiking results, whose

forget factor f is of high value.

The Short-term Memory array

A dynamic array used to store fast and latest spiking

operations concerning solutions the system is currently

computing, carrying the freshest spikes for the last action

of the system. As told above, at the end of the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

99

computation the storage device has to store the new spikes,

along with the fired rules indexes.

The Rules Repository (RDB)

A structure used to hold system rules, it is consulted every

time a process takes place by the processor, if a stored rule

is fired, then raise its index, pass it to the processor, which

in return, works on this index passing it to the indexer.

5. How it works

Using the above constructions, and modules, we tried to

lay some closure to the idea, of how the processing of the

incoming spikes might take place. We will try here to

informally describe an algorithm for the process, under

some certain constraints in the computational

environment; there are three broadly speaking stages:

(i) Configuring the SNP A-Machine, set values for

recalling and forgetting schemas, and the processing

timeline in time units, and the time threshold mentioned

above.

(ii) Processing: managing the incoming spikes train, the

match searching, and rule firing.

(iii) Output: used in search, checking for results into the

memory’s arrays.

Configuration stage:

SET .value (time threshold) =some initial non-negative

integer value.

SET r.value (recall factor value) =some initial non-

negative integer value.

SET f.value (forget factor value) = 0,

SET T.value (global machine timer value) = non-negative

integer value

SET (word) = predefined number of spikes to be searched

with, thus invokes a certain rule Ri

Output stage:

PROCEUDRE (OUTPUT)

BEGIN
READ incoming search_pattern.

DEFINE Search_Value = Search_Pattern.

// match search with all previously computed results

stored into short-term memory array first.

IF Search_Value = any result in short-term memory

array.

THEN HALT, RETURN TURE. //halt the system,

success.

ELSEIF
// if not in short-term memory then go to the long-

term one and repeat the step.

IF match_pattern = result in long-term memory

array.

THEN HALT, RETURN TRUE. // halt, success.

// if not in neither short-term nor the long–term memory

then go to the Rules store and search.

ELSE RETURN FALSE. // not in memory.

END

Processing stage:

PROCEUDRE (PROCESS_INCOMING_SPIKES_TRAIN)

BEGIN

IF SNP A-machine status = not in refactory period.

SET match_pattern = word.

READ incoming spikes train.

WHILE the whole train

//match search with all previously computed results

stored into memory arrays first.

CALL PROCEUDRE (output)

IF output = TRUE.

THEN HALT, RETURN match_pattern. // success

// if not in neither short-term nor the long–term

memory then go to the Rules store and search.

ELSEIF output = FALSE.

match_pattern = match search with all active rules in

RDB in parallel.

IF R.E (E regular expression of rule R) =

match_pattern.

THEN CALL PROCEDURE (Processer).

ELSE HALT // nothing matched, wait.

END

PROCEUDRE (PROCESS)

START global machine timer

WHILE time counter is true

BEGIN PROCESSING
CALL PROCEDURE (PROCESS_INCOMING_SPIKES_TRAIN).

FOREVERY fired rule Ri ;

BEGINLOOP on j;

IF (r) SET indexer.indexes(j) = i; //store

index of the fired rule.

ASSIGN a time_stamp to Ri = r.value; // current

value of the recall factor.

ASSIGN Ri = R type; //now it is a rule of type

(recall rule).

INSERT result xi into the short-term memory array.

DECREASE r.value by one; // now we need one

time unit to recall this rule.

INCREASE f.value by one;

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

100

// system is going to forget this rule for one time unit

in next round.

ENDLOOP

IF (r)

BEGINIF
SET time_stamp = f.value.

ASSIGNALL {Ri,…,Rn} = F type; //now all
rules fired inside the processor are of type

forget rules.

COPYALL previously computed results

{Xi,…,Xn} from short-term to long-term memory

array.

IF(r = 0) // recall factor reaches 0 time unit.

THEN
SET r.value = r.initial value. // reinitializing the

recall factor.

SET f.value = 0 // reinitializing the forget factor.

DELETE long-term memory array content. //

obsolete values.

RETURN TO BEING PROCESS.

ENDIF

END PROCESSING

In (Table.1) we notice the flipping between the R rules to

F rules, and how the Rules inside memory are moving,

towards some ranking schema that will contribute into the

rule firing selection and results mapping, from short-term

memory to the long-term one. This will speed up the

computation process and trend to a linear processing style,

deducing the non-determinism into the original system.

6. Proposing the SNP A-Machine logical

Model (Ʌ)

Theorem.1
An SNP A-Machine (Ʌ) is the atomic component of an

SNP system, the neuron, including an array based memory

sub-system.

Definition.1

Ʌ = A Single Neuron SNP System.

+

A dynamic array based memory sub-system (ʍ).

The SNP System is with a single neuron, representing the

computation container, carrying some firing and forgetting

rules. And the memory sub-system representing the

memory, might be carrying a set of rules. The system

adapts a fixed topology, memory, recall and decay [11]

(Forget) factors. It has the following features:

− There could be an initial number of the spikes

inside the (Ʌ) or not, i.e. Si ∈ S (Si); i 0.

− There is one or more presynaptic links, carries

the input into the machine.

− There is one or more postsynaptic links, carry the

output to the environment.

− There exists a memory structure inside the

machine we will refer to it by (ʍ).

− The memory is constructed in its simplest form

of a short term memory “buffer” structure, and a long term

one, depicted by two separated arrays.

− There are preset rules inside the scope of the

machine – initial configuration.

− The memory is represented a dynamic array

based sub-system.

− Rules are two types forgetting and firing.

− The decay (Forget) factor f is instantiated and

attached to each computation taking place.

− The recall factor r is also instantiated and

attached to each computation taking place.

− Computation succeeds when it halts, and output

spikes are sent to the system over the postsynaptic link, to

the computation environment.

Fig.3. A closer look on The SNP A-Machine Structure

Bearing in mind these features, we describe an SNP A-

Machine System in the following way:

Definition.2. An SNP A-Machine unit of degree m, m ≥ 1,

is a construct:

Ʌ = (O, PreSyn, ,…, ,…, , N, Ru, ʍ, PostSyn),

Where,

− O = {a} is the alphabet (the object a is called spike);

− PreSyn ⊆	 {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i)

PreSyn for 1≤ i ≤ m (input synapses); where:

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

101

− ʍ is a dynamic array based sub-system.

− N = {n}, ni ≥ 0; is the initial number of spikes

contained by the machine;

− Ru is a finite set of rules {Rs, R, F} of the following

forms:

1. Rs where:

1. E/ → a; t. E is a regular expression over O, r ≥

1, and t ≥ 0; (firing Rule).

2. → λ, for some s ≥ 1, with the restriction that

L(E) for any rule E/ → a; t of type (1) from Rsi;

(forgetting Rule).

2. R = { ,..., }, for each i ∈ {1,... , m} and j

∈ {1,... , }, where:

E/ak → (am , r); t is a rule with recalling factor, k ≥

≥ 0 and ≥ 0. The sequence f =

(, ,…,) is a finite sequence of natural numbers

called the recalling sequence where = k and ≥

0. Inspired by rules in [11].

3. F = { ,..., }, for each i ∈ {1,... , m} and

j ∈ {1,… , }, where:

E/ak → (am , f); t is a rule with forget factor, k ≥

 ≥ 0 and ≥ 0. The sequence f =

(, ,…,) is a finite sequence of natural numbers

called the decaying (forgetting) sequence where = k

and ≥ 0. Inspired by rules in [11].

− PostSyn ⊆	 {1, 2,…, m}× {1, 2,…, m} with (i, i)

PostSyn for 1≤ i ≤ m (indicates the output neuron

postsynaptic link.);

Definition.3
An input for a SNP A-Machine of degree m is a vector

x = (x1,. . . , xm) of m spikes objects xi .

An SNP A-Machine with input is a pair (Ʌ, x) whe re Ʌ

is SNP A-Machine and x is the spikes train as an input

for it.

7. The Learning Model

From the previous arguments, we come up with the idea of

rule selection, which rules are better to be chosen than the

others, and when to invoke a certain rule to be fired, given

that an input to the system x, success can be reached or

not, in other words, was there a result sent to the outer

system or not? If the choice of some certain firing path

leads to the success with a higher probability than the

choice of another path, then the device computation

process is getting better by every time unit passes.

Formally, a learning problem - extending the one shown in

[11]- could be constructed as a tuple of an SNP A-

Machine, an input vector for the machine, a learning

schema or function, a learning time interval, a threshold

for recalling and forgetting a certain set of rules, a learning

curve slope (Lr):

Definition.4
A Learning SNP A-Machine is:

ɅL= (Ʌ, Xinput, L, T, Th, Lr), where:

− Ʌ is an SNP A-Machine.

− Xinput = {x1,..., xn} is a finite set of inputs of Ʌ.

− L: Z → Z is a function from the set of integer

numbers onto the set of integer numbers. The learning function.

− T = {t1,..., tn} is a finite set of time stamps attached to

the inputs for Ʌ.

− Th = {rth, fth} is a set of two values for recall and

forget values thresholds.

− Lr is a positive value called the learning rate.

We have developed a software simulator that employs the

latter problem structure, and an SNP A-Machine, with

multiple simulation experiments, initial outputs tend to be

more closer to the realistic situation where a

computational device with memory and a learning schema,

over time, is delivering much faster results than another

device without a memory involved, also the curve of

leaning is tending to be linear rather than an exponential

one, by time, the learning function, is contributing into the

computational process positively, lessening the non-

determinism in rules firing, and shrinking the search space

for a certain halt state for the system.

8. Conclusions and Future work

From previous observations we found that including a

memory structure into the SNP system model would lead

to some more efficiency in the computation process,

focusing on the atomic building block of such systems, the

single neuron, and merging the two models of SNP

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

102

systems and the dynamic arrays systems, affected the

whole process of the device, and its speed, we also found

that the learning process is highly affected by some factors

like, the structure of the short and long term memories (ʍ),

the recall and forget factors {r, f}, the time threshold for

them, the mapping in the learning schema, the learning

rate, all affect the device performance, next steps will be

trying to study the structure of the memory subsystem in

more details, from the design view, also we will visit the

area of networks of SNP A-Machines in order to study the

effect of memory modules in larger systems. The learning

schema needs to be studied on a larger scale, in order to

see how far a network of such machines can maintain

information, and speed up the computation process; also

what are the results when trying to solve an NP-Complete

problem. The concept above leads consequently to the

idea of specialized neurons – ones that are dedicated to

solve certain problems– with learning and memory, a

neuron can evolve by time to be treated as standing alone

computation device of some purpose, even with the same

initial configurations for two similar neurons, a trained

neuron will be faster in processing than a non-trained one,

this is much like getting old, and building experience in

real life biological situations.

Table.1. Rules with their results movement into the system’s memory.

T=10

(time

units)

Th=1

Fired Rule

Rules

Indexes

Time

stamp
Processor

Type

R/F

Short-term

array

Long-Term

array
r=4 f=0 Notes

1 R1 1 4 {R1} R {Xi1} - 4 0 First Rule to fire R1

2 R2 2 3 {R2,R1} R {Xi2,Xi1} - 3 1

3 R5 5 2 {R5,R2,R1} R {Xi5,Xi2,Xi1} - 2 2

4 - - {R5,R2,R1} R {Xi5,Xi2,Xi1} - 1 3

5 - - 4 {R5,R2,R1} F - {Xi5,Xi2,Xi1} 0 4
Copy short-term to

long –term memory

6 R4 4 4
{R4}

{R5,R2,R1}
R,F {Xi4} {Xi5,Xi2,Xi1} 4 0

Delete long-term

memory content

with their

corresponding rules

7 R2 2 3 {R4,R2} R {Xi4,Xi2} - 3 1

8 - - - - - - - 2 2

9 R3 3 1 {R4,R2,R3} R {Xi4,Xi2,Xi3} - 1 3

10 - - - - - - - - -
Other incoming

trains

References
[1] Estimation of single-neuron model parameters from spike

train data Randall D. Hayes, John H. Byrnea, Steven J.

Cox,Douglas A. Baxter.

[2] Single-Neuron Responses in Humans during Execution

and Observation of Actions. Current Biology 20, 750–756,

April 27, 2010 Elsevier.

[3] Gh. P˘aun: Membrane Computing–An Introduction.

Springer-Verlag, Berlin, 2002.

[4] W. Gerstner, W Kistler: Spiking Neuron Models. Single

Neurons, Populations, Plasticity. Cambridge Univ. Press,

2002.

[5] P Systems with Memory Paolo Cazzaniga, Alberto

Leporati, Giancarlo Mauri, and Claudio Zandron.

Lecture Notes in Computer Science 3850.

[6] Gh.P˘aun: Computing with membranes – A variant: P

systems with polarized membranes. Intern. J. of

Foundations of Computer Science, (2000), 167–182.

[7] Gh.P˘aun, P systems with active membranes, Attacking

NP–complete problems. Journal of Automata,Languages

and Combinatorics, 6, 1 (2001), 75-90.

[8] P systems web page http://ppage.psystems.eu/.

[9] Computational and modelling power of P systems Tesidi

Dottorato di Daniela Besozzi. Anno Accademico 2002-

2003.

[10] M. Ionescu, Gh. P˘aun and T. Yokomori: Spiking neural

P systems. Fundamenta Informaticae, 71, 2-3, 279-308,

2006.

[11] A First Model for Hebbian Learning with Spiking

Neural P Systems. Miguel A. Guti´errez-Naranjo, Mario J.

P´erez-Jim´enez Research Group on Natural Computing.

[12] G. Paun. Computing with membranes. Journal of

Computer and System Sciences, 61, 1 (2000), and Turku

Center for Computer Science-TUCS Report No 208.

