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Abstract 
The traditional goal in the field Artificial Intelligence (AI) is to 
develop computer based system that can exhibit intelligence. The 
true applications of AI are precisely the Knowledge Based Systems 
(KBS). These systems possess the knowledge at an expert level in a 
specific domain such as medicine, law, engineering, etc. One of the 
most important intelligent activity of human beings is decision 
making. The term uncertainty refers to “ imprecise or insufficient 
knowledge”. The most challenging part is making decisions based 
on this uncertain data. This brings out a special domain namely, 
uncertainty handling in KBS in the field of AI . In this paper we 
consider various methods of handling Uncertanity in Knowledge 
Based systems .The paper also presents a comparative study of 
Evidence Point mechanisms with  Bayesian  Theorem ,Dempster 
Shafer model and Fuzzy Logic. 
Keywords 
KBS,Uncertanity, Evidence point mechanisams                                                 

1.  Introduction  

AI is a branch of computer science that can create intelligent 
systems,Systems that learn new concepts and tasks, systems 
that can reason and draw useful conclusions about the world 
around us. 
AI is generally associated with Computer Science, but it has 
many important links with other fields such as Mathematics, 
Psychology, Cognition, Biology and Philosophy, among 
many others.[16] Considered methods of reasoning under 
conditions of certain, complete, unchanging and consistent 
facts. It was implicitly assumed that a sufficient amount of 
reliable knowledge (facts, rules, and the like) was available 
with which to deduce confident conclusions. But strict 
classical logic formalisms do not provided realistic 
representations of the world in which we live. On the 
contrary, intelligent beings are continuously required to 
make decisions under a veil of uncertainty. 
Uncertainty can arise from a variety of sources. For one 
thing, the information we have available may be incomplete 
or highly volatile. Important facts and details which have a 
bearing on the problems at hand may be missing or may 
change rapidly. In addition, may of the ‘facts’ available may 
be impressive, vague or fuzzy. Indeed some of the available 
information may be contradictory or even unbelievable. 
However, despite these shortcomings, we humans 
miraculously deal with uncertainties on a daily basis and 
arrive at reasonable solutions. If it were otherwise, we 

would not be able to cope with the continually changing 
situations of our world. 
 
Sources of Uncertainty 

1. Data: missing data, unreliable, ambiguous, 
imprecise representation, inconsistent, subjective, 
derived from defaults, etc. 

2. Expert knowledge: inconsistency between different 
experts. 

3. Plausibility: “best guess” of expert. 
4. Knowledge Representation: restricted model of the 

real system, limited expressiveness of the 
representation mechanism. 

      5.   Unsound Reasoning Methods. 
 
Medicine is a field in which such help is critically needed. 
Our increasing expectations of the highest quality health 
care and rapid growth of ever more detailed medical 
knowledge leaves the physician without adequate time to 
devote to each case and struggles to keep up with the newest 
developments in his field. 
Continued training and recertification procedures encourage 
the physician to keep more of the relevant information 
constantly in mind, but fundamental limitations of human 
memory and recall coupled with the growth of knowledge 
assure that most of what is known cannot be known by most 
individuals. Here is the opportunity for new computer tools 
to: help organize, store, and retrieve appropriate medical 
knowledge needed by the practitioner in dealing with each 
difficult case, and to suggest appropriate diagnostic, 
prognostic and therapeutic decisions and decision making 
techniques. 
In most developing countries insufficiency of medical 
specialists has increased the mortality of patients suffering 
from various diseases. The insufficiency of medical 
specialists will not be overcome within a short period of 
time. The institutions of higher learning could however, take 
an immediate action to produce as many doctors as possible. 
However, while waiting for students to become doctors and 
doctors to become specialists many may suffer. Current 
practice for medical treatment required patients to consult 
specialists for further diagnosis and treatment. 
Relying on the knowledge of human experts to build expert 
computer programs is actually helpful for several additional 
reasons: First, the decisions and recommendations of a 
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program can be explained to its users and evaluators in 
terms which are familiar to the experts. Second, because we 
hope to duplicate the expertise of human specialists, we can 
measure the extent to which our goal is achieved by a direct 
comparison of the program’s behavior to that of the experts. 
Finally, within the collaborative group of computer 
scientists and physicians engaged Artificial Intelligence in 
Medicine (AIM) research, basing the logic of the programs 
on human modules supports each of the three somewhat 
desperate goals that the researchers may hold. 
Computer technology could be used to reduce the rate of 
mortality and reduce the waiting time to see the specialist. 
Computer program or software developed by emulating 
human intelligence could be used to assist the doctors in 
making decisions without consulting the specialist directly. 
The software was not meant to replace the specialist or 
doctor, yet it was developed to assist general practitioners 
and specialists in diagnosing and predicting patients’ 
condition from certain rules or ‘experience’. Patients with 
high-risk factors or symptoms or predicted to be highly 
affected with certain diseases or illness, could be short listed 
to see the specialist for further treatment. Employing the 
technology, especially Artificial Intelligence (AI) techniques 
in medical applications, could reduce the cost, time, human 
expertise and medical error. 

2. Knowledge-Based Systems (KBS) 

General purpose problem solvers which used a  limited 
number of laws or axioms were too weak to be effective in 
solving problems of any complexity. This led to the design 
of what is now known as Knowledge-Based Systems, 
systems that depend on a rich base of knowledge to perform 
difficult tasks.  
KBS is a computer system that is programmed to imitate 
human problem-solving by means of artificial intelligence 
and reference to a database of knowledge on a particular 
subject. 
Knowledge-based systems are systems based on the 
methods and techniques of Artificial Intelligence. Their core 
components are the knowledge base and the inference 
mechanisms. 
In general, knowledge elicited by a knowledge engineer in a 
knowledge-based system is often characterized by 
uncertainties, as the facts are beliefs and rules are the 
situation-action behavior of a human expert. When the 
knowledge engineer is unable to establish the truth of a 
proposition, he may have to resort to collecting evidences 
from multiple sources. 
Handling of uncertainty is inextricably bound up with the 
development of knowledge-based systems. Knowledge-
based systems (KBS) are complex software systems that aim 
to replicate human abilities of problem solving and decision 
making in uncertain environment. KBS have capability of 

capturing human knowledge from a variety of knowledge 
sources such as books, manuals and human experts. The 
knowledge often takes the form of facts (or valid 
propositions) and rules. In order to measure the degree of 
truth of these facts and rules, we must rely on the available 
evidence, which can be in support of or against them.  
 
Evidence Point 
If we have full (100%) positive evidence, without any (0%) 
negative evidence against a proposition P, then we call it as 
a true proposition. If it is the other way round we call it as a 
false proposition. A proposition is uncertain if it does not 
belong to either of these two categories. In essence, to each 
proposition P, we associate an ordered pair (α, β) call it as 
an evidence point (EP) of P, denoted by 
 
EP(P) =  (α, β) Є [0, 1] × [0, 1] 
 
The quantity α represents the positive evidence in support of, 
and β represents the negative evidence, disagreeing with the 
same proposition P at the same time. The notion of an 
evidence space [0, 1] × [0, 1] is shown in Figure 01, as the 
collection of these evidence points. It is firmly assumed that 
the sources of information are highly reliable. With this 
concept the algebra of evidence points for pooling of 
evidence points comprising of logical connectives ¬, ∨,  ∧. 
 
Evidence: The very idea  
These days the main reason for not applying knowledge-
based systems (KBS) in a business environment is the 
massive effort needed to build such a system, based on the 
available evidence. Knowledge acquisition is not a major 
problem to any frontline industry. The main difficulty lies in 
managing the uncertainty associated with the organizational 
development process. This uncertainty is mainly due to the 
available evidence (for and against) in the respective 
contexts. Let us consider the following situation: 
Dr Sam has recently got his Ph.D. from an Institute and 
applies for job in a research establishment. He was supposed 
to produce three letters of reference supporting his 
candidature (preferably from three professors). He goes to 
three professors and procures these as the following: 
 

1. X is the research supervisor of Dr Sam, enumerates 
some (say 70%) positive and some (say 30%) 
negative aspects about Sam gives an Evidence 
Point (EP) ass (0.7, 0.3). 

2. Y taught one graduate course to Dr Sam as part of 
his research-training program. Dr Sam got a ‘C’ 
grade in the course. The EP given by Y is (0.5, 0.0). 

3. Z attended Dr Sam’s research seminar and Dr Sam 
had some discussion with Z. on the basis of this 
information Z gives the EP (0.6, 0.0). 
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With these available EPs given by X, Y and Z the 
knowledge engineer has to derive EP for the truth of the 
statement viz., Dr Sam is suitable for the research 
establishment. 
The pooled evidence point can thus be realized (obtained) in 
several possible ways, such as: 
 

1. By considering, the minimum value among the 
positive evidences and maximum value among the 
negative evidences, which gives (0.5, 0.3), or 

2. By considering, individually the arithmetic mean of 
the positive and negative evidences, which gives 
(0.6, 0.1) 

 
We represent the evidence as a point in an evidence space as 
shown in Figure 1. We refer the axes viz. β = 0 and α = 0 as 
the Line of Confirmation and the Line of Negation, 
respectively. The line α + β = 1 is called the Line of 
Demarcation. The diagonal α = β is called as the Line of 
Contradiction. Extreme points like (1, 1), (0, 0) represents 
respectively that of total contradiction and no information 
about the proposition. For a perfectly true proposition, we 
can thus associate an evidence point (1, 0) and (1, 0) that of 
for a perfectly false proposition.  
Since these positive and negative evidences are supposed to 
be gathered from two independent sources of evidence, 
thereby their sum need not always be equal to 1. Consider 
another situation: If a political columnist A declares that 
there will be change of government in several Asian 
countries within the next six months, we have then some 
positive evidence for the proposition, P: There will be a 
change of government in several Asian countries within the 
next six months. 
 

 
 
 
 

Let another political columnist contradict the above 
proposition, and then we can say that, we have some 
negative evidence for the same proposition (P). In between 
if someone asks me, whether there will be a change of 
government in several Asian countries with in the next six 
months, my answer (among several possible answers) will 
be as follows: 
Initially, I got the evidence about the P to be (1,0) due to 
person A and later it got changed to (0,1) due to person B. 
As a result my decision about P became uncertain, which 
results: 
There (may be) a change in government in several Asian 
countries within the next six months. The possible EP for 
this uncertain proposition could be ((1+0)(/2, (0+1)/2)=(0.5, 
0.5). 
Thus, in order to resolve a conflicting situation, my response 
will be an uncertain proposition, because of the availability 
of both positive and negative evidences for the same 
proposition at the same time. As a result this will not convey 
either the truth or falsity of the original proposition. Then 
how do we go for the degree of truth-value of such an 
uncertain proposition, based on its available evidence? 
Thus, in reality, to resolve the conflicting situations, one has 
to resort on the indicators of evidence such as, IT MAY BE 
TRUE, IT MAY BE FALSE, IT IS MORE OR LESS TRUE 
(Rollinger 1983). 
Rollinger found some transformation matrices for various 
evidence indicators. Dominance nature of the positive 
evidence over the negative evidence, or vice-versa in the 
resultant evidence point, helps us in resolving conflicting 
situations. Suppose we associate “n” evidence pairs (αi, βi) 
to “n” propositions Pi, i = 1,2,…,n. Then how do we go for 
determining the EPs for the compound propositions, arising 
from logical operations such as ¬, ν, ^? This motivated us to 
consider evidence point algebra as follows: 
We consider the location of any EP (α, β) in evidence space 
at three different levels viz., (α + β <1) or (α + β = 1) or (α + 
β > 1). We observe that the status of the EPs with α +β<1 
are points that lack of evidence, the status of the EPs with 
(α+ β =1) looks similar to the probability measure of events 
in the realm of probability theory. The status of the EPs with 
(α+ β >1) are points of excess evidence. 
 
Algebra of Evidence Points 
We introduce three logical operations viz., negation ¬  , 
conjunction ν and disjunction ^ while considering the EPs as 
defined: 
 

Let EP (P) = (α, β) then, 

EP ( P) = (1 – β, 1 – α) if α + β>1 
 = (1 – α, 1 – c) otherwise. 

Let the EP (P) = (α, β) then, 
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(3.1)  EP (¬P)  = (1 - β, 1 - α) if α + β  = 1 
      = (1 - α, 1 - β) otherwise 

Let the EP (P)   = (α
1
, β
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then 
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otherwise. 
(3.3) EP (P ^ Q) = (Min (α

1
, α

2
), Min (β

1
, β

2
)) if  

   αi + βi > 1, i = 1, 2 
         = (Min(α
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2
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 )) 

otherwise. 
These operations require two segmented statements 
depending on the total evidence, denoted by m (P) = α + β. 
Let T and F respectively indicate a true and false proposition 
respectively. Then we may write: EP (T) = (1, 0) and EP (F) 
= (0, 1). Then for any arbitrary proposition P with EP (P) = 
(α β) it is easy to verify that: 
 
(3.4) EP (P ν T) = EP (T), EP (P ^ T) = EP (P), and 
        EP (P ν F) = EP (P); EP (P ^ F) = EP (F) 
(3.5) EP (T ν F) = EP (T), EP (T ^ F) = EP (F) and 
        EP (¬T) = EP (F); EP (¬F) = EP (T) 
 

These relations resemble the conjunction and disjunction 
with true (T) and false (F) including the De Morgan’s laws 
in mathematical logic. 

We say EP (P) = (α β) as evidently valid or invalid based on 
α + β>1 or otherwise. It is realized that the De Morgan’s 
laws are valid only if both the evidence points for P and Q 
are evidentially invalid. The similarity of the last two 
equations with standard results in two-valued logic is 
obvious and this way the algebra of evidence vectors 
preserves certain laws that are in-vogue in predicate logic 
(or two-valued logic).   
 
Aspects of Decision Making 
After sufficient amount of evidence has been acquired, how 
is the decision inferred, in case of sum of the evidences 
exceed one? Let EP (P) = (α, β) with α + β >1, then it can 
also be said that it has an excess evidence otherwise it is 
called lack of evidence. In either of these cases, to make a 
decision, P is normalized as 
 
EP(P0) = {α/(α + β), β/(α + β)} = {α0, β0} with α0 + β0 = 1. 
 
This is a sure point on the line of demarcation α + β = 1 as 
shown in Fig 02. A process is adopted to get the maximum 
attainable positive evidence as following: Using simple 
geometric principles, it can be realized that 

EP(P1) = {(1 + α - β)/2, (1 – α + β)/2} if α > β 
            = {1 – α + β}/2, (1 + α - β)/2} if α < β 
 
Let α > β, (even if α < β, one can easily argue) then by 
considering the convex combination of the points P0 and P1 
(as shown in Fig 02) an EP of any general point Pi is shown 
as 
EP (Pi) = (αi, βi) = q{ αi/ (αi + βi), βi/(αi + βi)} + (1 - q) {(1 + 
αi - βi)/2, (1 - αi + βi)/2} where 0<q<1. 
 
At this junction it can also be observed that 
 
ai = the success factor of q{ αi/(αi + βi), βi/(αi + βi)} + (1 - q) 
{(1 + αi - βi)/2, (1 - αi + βi)/2 > αi/ (αi + βi) 
bi = the failure factor of q{ αi/ (αi + βi), βi/(αi + βi)} + (1 - q) 
{(1 + αi - βi)/2, (1 - αi + βi)/2 < βi/(αi+βi) 
 
It can also be witnessed that  
 
Max {αi - α1} = (α1 - β1)/2(α1 + β1) {α1 + β1 - 1} and 
Min {βi - β1} = ((β1 - α1)/2(α1 + β1) {α1 + β1 - 1} 
 
This observation is very much helpful especially while we 
apply this idea to some real world situations. Foe example, 
suppose that the calculated EP of a software project "Proj" is 
provided, based on several customer/ software requirement 
specifications. Then using these results, it is possible to look 
at the maximizing success factor, and minimizing the failure 
factors of "Proj", possibly by the same amount. This 
improved success factor will give the improved reliability of 
that software project which in turn will help in identifying 
the respective parameters, that influence the software 
project's reliability. 

This method has been tested for its consistency both 
logically and mathematically. It is also observed that, the EP 
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obtained from his process (for a particular project) gives a 
clue to establish the project's technical quality and reliability. 

3. Uncertanity in Knowledge Base Systems 
(KBS) 

Uncertainty in KBS can be handled in a variety of 
approaches. Here are some of them, with brief descriptions:  

• Certainty factors  

• Dempster-Shafer theory  

• Bayesian network  

• Fuzzy logic  

Certainty Factors are used as a degree of confirmation of a 
piece of evidence. Mathematically, a certainty factor is the 
measure of belief minus the measure of disbelief. Here is an 
example:  
If the light is green 
then 
OK to cross the street cf 0.9 
The rule in the example says: I am 90% certain that it is safe 
to cross the street when the light is green.  
There are certain advantages and disadvantages to certainty 
factors. They are easy to compute and can be used to easily 
propagate uncertainty through the system. However, they 
are created partly ad hoc. Also, the certainty factor of two 
rules in an inference chain is calculated as independent 
probabilities.  
 
Dempster-Shafer Theory does not force belief to be 
assigned to ignorance or refutation of a hypothesis. For 
example, belief of 0.7 in falling asleep in class does not 
mean that the chance of not falling asleep in class is 0.3  
 
Bayesian Networks are based on Bayes Theorem:  
P(H|E) = P(E|H)P(H) 
             ---------------- 
            P(E) 
Bayes Theorem gives the probability of event H given that 
event E has occurred. Bayesian networks have their use, but 
are often not practical for large systems. There is also a 
problem with the uncertainty of user responses.  
 
Fuzzy logic is a superset of conventional (Boolean) logic 
that has been extended to handle the concept of a partial 
truth -- truth values between completely true and completely 
false. In fuzzy logic, everything is a matter of degree.  
Some people think that fuzzy logic is a contradiction of 
terms. Fuzzy logic is a logic OF fuzziness, not a logic which 
is ITSELF fuzzy. Fuzzy sets and logic are used to represent 
uncertainty, which is crucial for the management of real 

systems. A fuzzy expert system is an expert system that uses 
a collection of fuzzy membership functions and rules to 
reason about data. Every rules fires to some degree.  
The fuzzy inferencing process becomes much more 
complicated, expanding to 4 steps:  

1. Fuzzification  

2. Inference  

3. Composition  

4. Defuzzification 

Evidence Point Method vs Bayesian Approach 
In the Bayesian formalism of the theory of probability, we 
have three basic results that may indeed be adopted as 
axioms that form the corner stone of the mathematical 
theory of probability. If A and B are two events (or 
propositions), which are mutually exclusive of each other, 
then we have the following axioms: 
 

1. 0 ≤ Pr (A), Pr (B) ≤ 1. 
2. Pr(a sure event or proposition = 1 
3. Pr (A V B) = Pr (A) + Pr (B) 

 
If A and B are any two events, we have the obvious relation: 
 

4.    Pr (A) = Pr (A ^ B) + Pr (A ^ ¬B) 
5. Pr (A) + Pr (¬A) = 1 

 
If EP (P) = (0,0) (or (1,1)) says P is an unknowable (or 
highly conflicting) proposition. 
If A (B) is a true (false) proposition, then EP (A) = (1,0) and 
EP (B) = (0,1). Using the above algebra one can observe the 
following interesting results:  
EP (A V B) = (1,0), EP (A ^ B) = (0,1).  
Conversely if we have EP (A V B) = (1,0) and EP (A ^ B) = 
(0,1).  
Then we have either EP (A) = (1,0) and EP (B) = (0,1) or EP 
(A) = (0,1) and EP (B) = (1,0). 
This means the compound evidence EP (A V B) is 
absolutely true, and the compound evidence EP (A ^ B) is 
absolutely false, then one of the constituent evidence pairs is 
for an absolutely true proposition and the other is for an 
absolutely false proposition. Let P and Q are two 
propositions, then a simple fact that max (x, y) = x+ y- min 
(x,y), for any two real numbers x and y establishes the fact 
that  
 
6. EP (P V Q)= EP (P) + EP (Q) – EP (P ^ Q) 
 
This is similar to the addition law of probability. Further, in 
the realm of probabilities we also have 
Pr (A V B) ≥ Max{Pr (A), Pr (B)} and Pr (A ^ B) ≤ 
Min{Pr(A), 
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Pr (B)}. 
If EP (A) = (α, β), EP (B) = (γ, δ) then we have the 
analogous results as following: 
 
7. m(A V B) ≥ Max{m(A), m(B)} and m(A ^ B) ≤ 
Min{m(A), m(B)}, 
 
One should recall here that m(A) is the measure of A = (α + 
β) 
If A and B have both fuzzy valid, i.e., whenever α + β > 1, γ 
+ δ >1, then we define the conditional evidence pair as, 
 
8. EP (P|Q) = {{Min(α, γ), Min(β, δ)}/ {( γ + δ)/2}} = {r, s} 
(say) 
 
Then obviously we have e(P|Q) = {r + s}/2 and can have the 
result that: 
 
9. e (Q). e (P|Q) = e (P ^ Q) 
 
Likewise we can also introduce the "conditional evidence 
pair" for Q|P and arrive at the result that 
 
10. e (P).e (Q|P) = e (P ^ Q). Hence, 
11. e (P).e (Q|P) = e (Q).e (P|Q) = e (P ^ Q). 
 
If the evidence pair EP (P) = (α, β) or the evidence pair EP 
(Q) = (γ, δ) is not fuzzy or either of them is fuzzy, then the 
relevant evidence representation pairs for P ^ Q, P V Q, 
have been already stated. In such cases, the conditional 
evidences P|Q, Q|P can be defined in ways analogous to (6). 
The result (9) will of course remain valid in each of these 
cases. Further if we interpret the conditional proposition P|Q 
as equivalent to the material implication P→ Q then we can 
observe that: 
 
EP (P→Q) = {{α2+β2}/( α1+β1)} EP (Q→P). 
 
Evidence-Point Method vs Dempster-Shafer Theory 
Dempster-Shafer Theory assumes that  the answer to a  
particular question lies among finite set X  (of propositions)  
called frame. The  elements of this set  X are mutually  
exclusive annd they are also exhaustive. If  ‘ma’  is a 
mapping from the set of all subsets of  X onto the real 
interval [0,1] as: 
 
ma: 2x → [0,1] with a  condition that ma(φ) = 0, m(A) = 1 

 
where ma(A) is the weight associated  with the proposition 
A, which measures the strength of the argument in favor of  
the proposition A, called a basic probability assignment 
(bpa). If ma(A) ≠ 0, A (which is a subset of the frame X) is 
called a focal  element of X. We can define the notion of 
belief  in a proposition A subset X, is given by the equation, 
Belief(A) = Bel(A) = ∑ m(B), over all B ⊆ A. 

Then we have thhe following axioms concerning belief 
functions:  Bel(φ) = 0, Bel(X) = 1, and Bel(B1 V B2 V…..V  
Bn) ≤ ∑  (-1) ˆ {|l| +1} Bel(Ui € Ai,  where  {l ⊆ {1,2,…,n}, 
l ≠  φ} 
The plausibility of a proposition A = Pl(A) and is given by 
the relation Pl(A) = 1-Bel(¬A). 
Where ¬A = X|A is the negation (or complement of A with 
respect to frame) of A.  Clearly Pl(A) is a measure of the 
extent to  which the proposition A is believable to be  true. 
The pair [Bel(A), Pl(A)] is a real number interval, that is, it 
is a subset of [0,1]. This can be seen on considering that 
Bel(A) = ∑ m(B), and Bel(¬A) = ∑ ma(C) with {B  subset 
A} and {C ⊆ ¬A} and 
 

1. (B ⊆ A) V {C ⊆ ¬A) ⊆ X 

It therefore follows that, ∑ ma(B) + ∑ ma(¬B) ≤ ma(X) =1 
that is, Bel(A) +Bel(¬A) ≤ 1 that is, 
 
Bel(A) ≤ 1-Bel(¬A) = Pl(A). 
 
Similarly it can verify that for any proposition A, Pl(A) + 
Pl(¬A) > 1. The interval [Bel(A), Pl(A)] can be regarded as 
providing a range for the true probability of A and Bel, Pl 
may be referred to as the lower and upper bounds 
(measures) for the probability of the proposition A. 
If two belief functions Bel1 and Bel2 are based on 
independent evidences we can pool them using Dempster’s 
rule of combination and the result is again a belief function. 
In symbols we can write Bel1 ⊕ Bel2 as the resultant after 
the combination of. Thus, 
 

2. ma(C) = {∑ ma1(Ai). ma2(Bj)}/{1-∑ ma1(Ai). 

ma2(Bj)} is valid for all subsets C of X, further 

3. ∑ ma1(Ai) ma2(Bj) < 1. 

In the evidence point formalism, for any evidence pair EP(P) 
= (α, β) the first component is a measure of Belief in the 
proposition P and 1-β is a measure of plausibility in the 
proposition. This is due to the fact that plausibility of a 
proposition involves the disbelief in that proposition. Thus, 
it can be realized that for any proposition P, we can always 
have a positive evidence (α) which confirms its validity, is 
belief, and the plausibility in such a case will be 1 minus the 
negative evidence (β), which negates the same proposition. 
Here too it is observed that the pair [Bel, Pl] forms an 
ordered pair, very much useful for an intelligent decision-
making. 
 
Evidence Point Method vs Fuzzy Logic 

Any situation, which is “inexact” in nature or is incapable of 
being described by perfect notions or exact concept, is fuzzy. 
Fuzziness is a type of imprecision or inexactness stemming 
from the grouping of elements into classes that do not have 
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sharply defined boundaries. Such classes abound in all 
situations that involve ambiguity or vagueness or 
ambivalence in (mathematical) models of empirical 
phenomena. A fuzzy set is a class that permits the possibilty 
of partial membership. If X = α is a class of objects and A is 
an ordered pair 
 

1. A = { α, μA(α) }, α ∈ X. 

We may refer to X as the universe or frame and μA(α) as 
the grade of membership of α in A. the grade μA(α) is a real 
number belonging to the interval [0,1] and the extreme value 
viz., 0 and 1 connote non-membership and full membership 
respectively. Comparison is possible for the (degree of) 
truths of inexact statements α in A and β in A. The 
statements like, α ∈ A, β ∈ A, and α > β, which mean that 
α is at least as true as β. Whenever α ∈ A, β ∈ A, and , α < 
β we can conclude that α is no more true than β. Basic 
operations on fuzzy sets (which are subsets of a frame) can 
be introduced to tackle questions like: (1) Is A = B? and (2) 
Is A contained in B? 
Compounding operations like conjunction and disjunction 
over fuzzy sets can also be introduced but in such matters 
some degree of subjectivism is unavoidable. To arrange a 
comparison of evidence point theory with fuzzy set theory it 
is desirable to opt from the following rules of operation of 
conjunction ^, disjunction V, and negation ¬. If X is the 
frame and P, Q are two subsets of X, we may then define the 
membership functions as: 
 

2. µ{P V Q}(x) ≤ Min{µP(x), µQ(x)}, µ{P ^ Q}(x) ≥ 

Max{µP(x), µQ(x)} and µ{¬P}(x) = 1- µP(x) 

In evidence point theory, we have already seen earlier that 
the compounding laws for the operations of conjunction, 
disjunction and negation. If evidence pairs EP(P), EP(Q) are 
both fuzzily valid, then  
 

3. ma(P V Q) ≥ Max{ma(P), ma(Q)} and ma(P ^ Q) ≤ 

Min{ma(P), ma(Q)} 

Recalling the definitions of the estimate of the evidence 
value of an evidence pair α, β  we have statements similar to 
the above  two-statement (3) involving estimates of evidence 
values. We can identify the grade of membership of a fuzzy 
set viz., µP (x as the estimate of truth-value of the negation 
of the proposition. That is,  
 

4. µP(x) = 1 – e(P) 

We can then see the consistency, nay the parallelism of the 
relations’ (2) in a fuzzy set theory with the relations 
 

5. e (P V Q) ≥ Max{e(P), e(Q)} and e(P ^ Q) ≤ Min{e(P), 

e(Q)}. 

This can be rewritten as e{¬(P V Q)} ≤ Min {e(¬P), e(¬Q)} 
and e{¬ (P ^ Q} ≥ Max{e(¬P), e(¬Q)} 
In Fuzzy Set Theory, (2) are the basic rules of definition of 
the operations of conjunction and disjunction. In evidence 
point theory, equation (4) or (5) are merely corollaries from 
the basic rules of operations for combining evidences. The 
algebra of operations in the case of evidence points is more 
general than that in the case of fuzzy sets. 
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