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Summary 
Multi-threaded programs have many applications which are 
widely used such as operating systems. Analyzing multi-threaded 
programs differs from sequential ones; the main feature is that 
many threads execute at the same time. The effect of all other 
running threads must be taken in account. Partial redundancy 
elimination is among the most powerful compiler optimizations: 
it performs loop-invariant code motion and common 
subexpression elimination. We present a type system with 
optimization component which performs partial redundancy 
elimination for multi-threaded programs.    
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1. Introduction 

There are many methods for compiler optimizations; a 
powerful one of them is partial redundancy elimination 
(PRE). PRE eliminates redundant computations on some 
but not necessarily all paths of programs. PRE is a 
complex optimization as it consists of loop invariant code 
motion and common subexpression elimination. PRE was 
established by Morel and Renvoise [17] where they 
introduce a more general problem (as a system of Boolean 
equations).  Xue and Cai formulated a speculative PRE as 
a maximum flow problem [27]. Xue and Knoop proved 
that the classic PRE is a maximum flow problem [28]. 
Saabas and Ustaluu use the type-systems framework to 
approach this problem [22]. Some optimizations have been 
added to PRE such as strength reduction [11] and global 
value numbering [3]. All methods mentioned above are 
established to operate on sequential programs.  
In the present paper, we achieve partial redundancy 
elimination for multi-threaded programs which are widely 
used. Operating system is an example of a system software 
that depends on multi-threading. You can write your 
document in a word processor while running an audio file, 
downloading a file from the internet, and/or scanning for 
viruses (each of these tasks is considered a thread of 
computations). Web browser as an example can explore 
your e-mail, while downloading a file in the background. 
The key feature of multi-threaded programs is that many 
threads can be executed at the same time. Consequently, 

when executing a thread there is an effect that comes from 
executing other threads. In general, when analyzing multi-
threaded programs, the effect of all threads at the same 
time must be taken in account. Hence, analyzing multi-
threaded programs completely differs from sequential ones. 
Deducing and stating properties of programs can be done 
using type systems as well as program analysis. Program 
analysis has algorithmic manner while type systems are 
more declarative and easy to understand with type 
derivations that provide human-friendly format of 
justifications. We present a type system for optimizing 
multi-threaded programs. Our type system depends on a 
new analysis, namely modified analysis, and a function 
called concurrent modified, rather than on anticipability 
analysis and conditional partial availability analysis used 
for the while language.  
Organization of this paper is as follow. In section 2 we 
introduce an operational semantics for the language we 
study. Section 3 presents the concepts of modified analysis 
and concurrent modified function. Also the soundness of 
modified analysis, the anticipability analysis, and 
conditional partial availability analysis for multi-threaded 
language are discussed in this section. In section 4, we 
present the type system including the optimization 
component and prove its soundness. Section 5 and 6 
outline related and future work, respectively. 

2. Motivation  

In this section we introduce the language we study 
(FWHILE), a motivating example, and a natural semantics 
of FWHILE.  

2.1 FWHILE Language 

We assume that our reader is familiar with data flow 
analysis. We introduce a motivating example to show the 
importance and obstacles of applying PRE on multi-
threaded programs. We use a simple language which we 
call FWHILE. The basic building blocks of FWHILE are 
literals Lit,∈l statements Stmt,∈s  arithmetic 
expressions AExp,∈a and Boolean expressions 

BExp.∈b  These blocks are defined over a set of 
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program variables Var∈x  and numerals Ζ∈n   in the 
following way: 

nxl |=::  

...|*||::= 1010 llllla +  

...||=::= 1010 llllb ≤   

}.,...,,{||

|;||:=::=

21

10

nt

ft

ssssb

ssbssaxs

forkdowhile

elsethenifskip
 

 
We use the following notation +AExp  for the non-trivial 

arithmetic expressions (i.e Lit\AExpAExp =+ ). 
 
2.2 Motivating Example 
 
The following is an example that motivates our research. 
 

}};;:=;:={
};;:=2;=;:={{

;:=;:=

cazbax
cazcbay

baucav

−+
−+

+−
fork  

In this example, expressions ba +  and ca −  are 
evaluated before reaching the fork statement, hence 
we can use their values in the fork statement. But, 
one of the threads modifies the value of c  hence we 
cannot use expressions containing c; because we do 
not know when the thread contains this modification 
will be executed. After applying our analysis the 
optimized version of the program will be:  

}};;:=;:={
};;:=2;=;:={{

;:=
;:=
;:=

1

1

1

1

caztx
cazcty

tu
bat
cav

−
−

+
−

fork
 

2.3 Natural Semantics 

We use the semantics introuced by Mohamed El-Zawawy 
in [9]. We review this semantics in this section.   
a state as a function from a set of variables to integers: 

.Var:,State Ζ→∈ σσ  The state assigns a value for 
each variable. Expressions (arithmetic and boolean) are 
defined by semantic functions 

},{]][[ fftt∪Ζ→∪∈− BExpAExp  in denotational 
style. For AExp∈a and BExp∈b we write 

σσ ]][[]][[ banda to denote the evaluations of 

expressions a  and b  in a state σ , respectively. We write 
b=|σ  to denote that ttb =]][[  (i.e evaluation of b  in σ  

is true). Statements are written in the form of evaluation 
relation StateStmState ××⊆→−−> . The notation 

]]][[[ σσ bx a  denotes that the state is σ  rather than 
.]][[)( σσ bx = Inference rules of the semantics are: 
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The rule nsfork  depends on the the order of executing 

the threads. We assume that order named θ  which is a 
permutation on n  (number of threads). In this rule we 
assume that the threads will execute one by one. 

 3. Program Analysis  

In this section we will introduce the analysis of the 
multithreaded programs. We introduce type systems to 
help optimizing programs. Firstly, we introduce the 
modified analysis which tells which variables are modified. 
Secondly, we introduce a concurrent modified function. 
Also, we introduce traditional anticipability analysis and 
conditional partial availability analysis which are 
generalizations of the work of [22] (with additional rules 
for multi-threaded statements).  

3.1 Modified Analysis 

Modified analysis computes for each program point which 
variables have been modified. The type system is simple. 
It gathers the modified variables along the path to the point. 
Type Var⊆m  is a set of variables. Modified analysis is 
a must forward analysis. The subtyping is the revered set 
inclusion (i.e ⊇=≤ ).  
Definition 1 For any program point, any state σ  and a 
type Var⊆m , e m=|σ ( σ  entails m  ) iff 

).(σdomm ⊆  
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Type system is as follow :
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The type system is clear and simple. The rule =:m adds 
the assigned variable to pre type. Rules 

,mskip mifmconseq,  and mwh are direct and similar 
to operational semantics. Rule mconseq  for strengthen 
the pre-type. Rule mfork is for threading. This rule 
computes the modified variables along fork statement by 
collecting all modified variables over all threads.  
The following two lemmas state properties about modified 
analysis:-  
Lemma 1  Suppose ,: mms ′→ where 

., Var⊆′mm Then mm ′⊆ .  
Proof :  It is clear that the statement which actually 
changes the set m  is the assignment statement where 

mmeixmm ′⊆∪′ .}{= .  
Lemma 2  Suppose mms ′′→′:  and ,'σσ →−> s  
where .,, Var⊆′′′ mmm Then mmmms ∪′′→∪′: .  
Proof : We have )()( σσ ′⊆′⇒⊆ dommdomm . 
Then it is clear that :- 

          )()( σσ ′⊆′′∪′⇒⊆′′∪ dommmdommm  

3.2 Soundness of modified analysis 

 The following theorem proves the soundness of modified 
analysis.  
Theorem 1 
 Suppose mms ′→:  and '.σσ →−> s Then 
 if   m=|σ  then '|' m=σ . 
 Proof : The proof is by structure induction of type 
derivation. We will prove only main rules.   
  • Type derivation is =:m  and corresponding 
     operational semantic is ns:= : 

We have m=|σ and ]]][[[' σσσ ax a= , which 
implies 

}.{)(=)( xdomdom ∪′ σσ
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• Type derivation is mconseq and 'σσ →−> s :  
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• Type derivation is mfork  and the corresponding 

operational semantic is nsfork . We prove that :  
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n mm
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To simplify the notations we let 
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From last sequence, we conclude .11 nn M|σm|σ =⇒= +  
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3.3 Concurrent modified function  C  

In this section we will present concurrent modified 
function C . We start by defining sub-statement relation 
between statements.  

Definition 2 For any two statements s  and t , we say 
that t  is a sub-statement of s written as )( st p  iff :-  

1.   st =  or 

 2.  21;= sss  and )( 1st p  or )( 2st p   

 We mean by st = , that t is identically (syntactically) 
equivalent to s. 

Definition 3  The modified concurrent function assigns a 
set of variables for each program point, i.e. 

VarStm →:C :   

1.  For },,{ 1 nss Kfork  statement: 

        ii

iij
ji

i

stforsCtC

mmswheremsC

p

U

)(=)(

:,=)( →
≠  

 2.  otherwise   
                       ϕ=)(sC         

3.4 Anticipability analysis 

We now present anticipability analysis. For each program 
point it computes which non-trivial arithmetic expressions 
will be evaluated on all paths before any of their operands 
are modified. In the typing rule we use )(aeval  to denote 

}{a  if a  is non-trivial expression andϕ  otherwise. 

For +∈AExpa  we define :-   

)}().(|{=)(
)}(|{=)(

sCyymodaasmce
andaFVxaxmod
∈∀∈

∈

df

df  

We use s  to denote the full type derivation of 
mms ′→: .  Inference rules of the type system include:  
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The rules for other program statements (if statement, while 
statement,..) follow the same line of corresponding rules 

introduced in [22] for the while langauge. The novelty of 
our work comes from fitting the fork statement  into the 
type system of [22] and making necessary changes. We 
note that if no thread exists then for each statement s  in 
the program ϕ=)(smce . Besides the rule of fork 
statement which characterizes the multi-threaded concept. 
These rules prevent any modified expression (i.e modified 
in concurrent threads) from being used from the start of 
fork statement. As anticipability analysis is backward 
analysis, we remove modified expressions from tAn ′  of 
each statement. Also, in each assignment statement we 
remove modified expressions. All of these removals are 
guided by the set )(smce .  

3.5 Partial availability analysis 

It computes for each program point which non-trivial 
arithmetic expressions has already been evaluated and later 
not modified on some path through this program point and 
also anticipable. 
Inference rules of the type system include:  

UU
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The rules for other program statements (if statement, while 
statement,..) follow the same line of corresponding rules 
introduced in [22] for the while langauge. The novelty of 
our work comes from fitting the fork statement  into the 
type system of [22]. Here we excluded the expressions in 
concurrent modified of all threads of fork statement to 
avoid using these expressions after exiting fork statement. 

4. Optimization Component   

In this section we introduce a type system with 
optimization components for multithreaded programs. We 
mean by the notation *,,: svcpatancpavants >′′→  
that, the statement s  with complete type system antm,  

and cpav  is optimized to .*s  Inference rules of the type 
system include:  
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The rules for other program statements (if statement, while 
statement,..) follow the same line of corresponding rules 
introduced in [22] for the while langauge. The novelty of 
our work comes from fitting the fork statement  into the 
type system of [22]. Our new analysis also affects the 
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component of optimizations as in the rule prefork , which 
achieves optimizion via optimizing each thread of its 
components. 
The soundness of the above system is proved in [22] 
except of course for the fork rule which is at the heart of 
our contribution. We discuss this case here. The definition 
of the similarity relation *~ σσ cpav  is in [22].  Soundness 
of the fork statement is as follows: 
 
Suppose *~,',',: σσ cpavcpavantcpavants →  and 

.'σσ →−> s  We have to find  '
*σ  such that 

'
*

'
'~ σσ

cpav
 and '

*** σσ →−> s . The proof is by 

induction on the typing derivation. We have 
*'),('\)(\,: iiiiii scpavsmceantsmcecpavants >→ . 
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2

*
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from i and ii and choosing *
1+= nσβ   the proof is done.    

5. Related Work   

There are three aspects of work that are related to our 
work:-  
Partial Redundanc elimination (PRE) 
PRE [8,18,25] was originated by Morel and Renvoice[17]. 
They applied PRE using static analysis and presented PRE 
as a general problem of global optimization using boolean 
system of equations. [17] also presents an algorithm for 
global optimization, which does not need a control flow 
graph (CFG). Efforts have been done to improve the 
formulation of PRE [7]. The work in [28,7] formulates 
classical and commulative PRE as a maximum flow 

problem. PRE is used as a framework and is extended to 
do more optimizations as strength reduction [11] 
 
Type systems  
Analyzing a program using type systems rather than 
control flow graph was the idea of work in [14]. More 
accurately, it proves that types can describe results of an 
analysis of a program if and only if this type is a supertype 
of a result of applying the analysis. The work in 
[1,9,10,14,18,19,21,22] uses type systems to accomplish 
the program analysis in similar way of ours. The work in 
[21] introduces type systems for PRE and proves the 
correctness of optimizations. Dead code elimination was 
treated using type systems. [1] presents type systems for 
dead code elimination and constant folding. Also [22] 
introduces type systems for dead code elimination and 
common subexpression elimination and proves a relational 
soundness. 
 
Analysis of Multi-threaded Programs  
The field of program analysis has been extended to treat 
multi-threaded programs besides sequential ones. We can 
use these analyses in compiler optimizations. The main 
obstacle to apply traditional compiler optimizations is that, 
we do not know which order of threads will be executed 
[15]. Generalizing standard program presentations, 
analysis, and transformations are used to optimize multi-
threaded programs in the presence of access to shared data 
[12,13,24,26]. Another way to use analysis occurs when 
two threads access the same data without synchronization 
(one of them is write): data races[5,6,16]. Yet another 
aspect to use analysis is called dead lock detection (which 
occurs when threads are permanently blocked waiting for 
resources)[2,4]. Pointer analysis [9,20,23] of multi-
threaded programs attracts attention of researchers. None 
of works above deal with PRE. The present paper is the 
first work that uses type systems as a framework to 
implement PRE to multi-threaded programs. 

6 Conclusions and Future Work   

In this paper the main contribution is the application of 
PRE to a multi-threaded programming language. Up to our 
knowledge, this paper is the first to deal with this problem. 
We use type systems as a tool to solve the problem. We 
designed a simple type system for optimizing multi-
threaded programs. We approach the problem in a simple 
way; we use usual PRE with simple modifications. We 
look for variables that have been modified in other threads 
and exclude the expressions that contain any of the 
modified variables. For future work, we study more 
complicated optimization and consider using other tools. 
Many modifications can be applied.   
 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011 
 

 

132

 

References 
[1] Nick Benton, “Simple relational correctness proofs for static 

analyses and program transformations”, In Proceedings of 
31st ACM SIGPLAN-SIGAT symposium on Principles of 
programming languages, POPL'04, pages 14-25, New York, 
USA 2004 ACM. 

[2] Johann Blieberger, Bernd Burgstaller, and Bernhard Scholz. 
“Symbolic data flow analysis for detecting deadlocks ada 
tasking programs”, In Proceedings of the 5th Ada-Eurpe 
International Conference on Reliable Software 
Technologies, Ada-Europe '00, pages 225-237, London, UK, 
2000, Springer-Verlag.    

[3] Perston Briggs and Keith D. Cooper, “Effective partial 
redundancy elimination”, In Proceedings of the ACM 
SIGPLAN 1994 conference on Programming language 
design and implementation, PLDI '94, pages 159-170, New 
York, USA, 1994, ACM.  

[4] Eric Bruneton and Jean-Francois Pradat-Peyre, “Automatic 
verification of concurrent ada programs”, In Proceedings of 
the 1999 Ada-Europe International Conference on Reliable 
Software Technologies, Ada-Europe '99, pages 146-157, 
London, UK, 1999, Springer-Verlag.  

[5] D. Callahan, K. Kennedy, and J. Subhlok, “ Analysis of 
event synchronization in a parallel programming tool”,  In 
Proceedings of the second ACM SIGPLAN symposium on 
Principles & practice of parallel programming, PPOPP '90, 
pages 21-30, New York, NY, USA, 1990, ACM. 

[6] David Callahan and Jaspal Sublok, “Static analysis of low-
level synchronization ”,  In  Proceedings of the 1988 ACM 
SIGPLAN and SIGOPS workshop on Parallel and 
distributed debugging, PADD '88, pages 100-111, New 
York, NY, USA, 1988, ACM. 

[7] Dhananjay M. Dhamdhere, “ E-path-pre: Partial redundancy 
elimination made easy”, SIGPLAN Not.,37:53-65, August 
2002. 

[8] Karl-Heinz Drechsler and Manfred P. Stadel, “ A solution to 
a problem with morel and renvoise's global optimization by 
suppression of partial redundancies”, ACM Trans. Program. 
Lang. Syst., 10:635-640, October 1988. 

[9] Mohamed A. El-Zawawy, “ Flow sensitive-insensitive 
pointer analysis based memory safety for multithreaded 
programs”, In Beniamino Murgante, Osvaldo Gervasi, 
Andrs Iglesias, David Taniar, and Bernady Apduhan, editors, 
Computational Science and Its Applications - ICCSA 2011, 
volume 6786 of Lecture Notes in Computer Science, pages 
355-369. Springer Berlin/ Heidelberg, 2011. 

[10] Mohamed A. El-Zawawy, “Program optimization based 
pointer analysis and live-stack heap analysis”, International 
Journal of Computer Science Issues,8, March 2011. 

[11] Robert Kennedy, Fred C. Chow, Peter Dahl, Shin-Ming Liu, 
Raymond Lo, and Mark Streich, “ Strength reduction via 
ssapre”, In Kai Koskimies, editor, CC, volume 1383 of 
Lecture Notes in Computer Science, pages 144-158, 
Springer, 1998. 

[12] Jens Knoop and Bernhard Steffen, “Code motion for 
explicitly parallel programs”, In Proceedings of the seventh 
ACM SIGPLAN symposium on Principles and practice of 
parallel programming, PPoPP '99, pages 13-24, New York, 
NY, USA, 1999. ACM. 

[13] Jens Knoop, Bernhard Steffen, and Jurgen Vollmer, 
“Parallelism for free: efficient and optimal bitvector 

analyses for parallel programs”, ACM Trans. Program. 
Lang. Syst., 18:268-299, May 1996. 

[14] Peeter Laud, Tarmo Uustalu, and Varmo Vene, “Type 
systems equivalent to data-flow analyses for imperative 
languages”, Theor. Comput. Sci., 364:292-310, November 
2006. 

[15] S. Midkiff and D. Padua, “Issues in the optimization of 
parallel programs”, In Proceedings of 1990 International 
Conference on Parallel Processing, pages 105-113, 1990. 

[16] S. P. Midkiff and D. A. Padua, “Compiler algorithms for 
synchronization”, IEEE Trans. Comput., 36:1485-1495, 
December 1987. 

[17] E. Morel and C. Renvoise, “Global optimization by 
suppression of partial redundancies”, Commun. ACM, 
22:96-103, February 1979. 

[18] Rocco De Nicola, Daniele Gorla, Ren Rydhof Hansen, 
Flemming Nielson, Hanne Riis Nielson, Christian W. Probst, 
and Rosario Pugliese, “From flow logic to static type 
systems for coordination languages”, Science of Computer 
Programming, 75(6):376-397, 2010. 10th International 
Conference on Coordination Models and Languages 
COORD'08. 

[19] Hanne Riis Nielson and Flemming Nielson, “Flow logic: a 
multi-paradigmatic approach to static analysis”, pages 223-
244. Springer-Verlag New York, Inc., New York, NY, USA, 
2002. 

[20] Radu Rugina and Martin C. Rinard, “Pointer analysis for 
structured parallel programs”, ACM Trans. Program. Lang. 
Syst., 25:70-116, January 2003. 

[21] Ando Saabas and Tarmo Uustalu, “Program and proof    
optimizations with type systems”, Journal of Logic 
andAlgebraic Programming, 77(1-2):131-154, 2008. The 
16th Nordic Workshop on the Programming Theory  
(NWPT 2006). 

[22] Ando Saabas and Tarmo Uustalu, “ Proof optimization for 
partial redundancy elimination”, Journal of Logic and 
Algebraic Programming, 78(7):619-642, 2009. The 19th 
Nordic Workshop on Programming Theory (NWPT 2007). 

[23] Alexandru Salcianu and Martin Rinard, “Pointer and escape 
analysis for multithreaded programs”, In Proceedings of the 
eighth ACM SIGPLAN symposium on Principles and 
practices of parallel programming, PPoPP '01, pages 12-23, 
New York, NY, USA, 2001. ACM. 

[24] Vivek Sarkar and Barbara Simons, “Parallel program graphs 
and their classification”, In Proceedings of the 6th 
International Workshop on Languages and Compilers for 
Parallel Computing, pages 633-655, London, UK, 1994. 
Springer-Verlag. 

[25] Arthur Sorkin, “Some comments on morel and renvoise's 
global optimization by suppression of partial redundancies. 
SIGPLAN Not., 31:69-72,December 1996. 

[26] Harini Srinivasan, James Hook, and Michael Wolfe, “Static 
single assignment for explicitly parallel programs”, In 
Proceedings of the 20th ACM SIGPLAN-SIGACT 
symposium on Principles of programming languages, POPL 
'93, pages 260-272, New York, NY, USA, 1993. ACM. 

[27] Jingling Xue and Qiong Cai, “A life time optimal algorithm 
for speculative pre”, ACM Trans. Archit. Code Optim., 
3:115-155, June 2006. 

[28] Jingling Xue and Jens Knoop, “A fresh look at pre as a 
maximum flow problem”, In Alan Mycroft and Andreas 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011 
 

 

133

 

Zeller, editors, Compiler Construction, volume 3923 of 
Lecture Notes in Computer Science, pages 139-154.Springer 
Berlin / Heidelberg, 2006. 

 
 

Mohamed A. El-Zawawy received: PhD in 
Computer Science from the University of 
Birmingham in 2007, M.Sc. in 
Computational Sciences in 2002 from Cairo 
University, and a BSc. in Computer Science 
in 1999 from Cairo University. Dr El-
Zawawy is an assistant professor of 
Computer Science at Faculty of Science, 
Cairo University Since 2007. Currently, Dr. 

El-Zawawy is on a sabbatical from Cairo University to College 
of Computer and Information Sciences, Al-Imam M. I.-S. I. 
University, Riyadh, Kingdom of Saudi Arabia. During the year 
2009, Dr. El-Zawawy held the position of an extra-ordinary 
senior research at the Institute of Cybernetics, Tallinn University 
of Technology, Estonia. Dr. El-Zawawy worked as a teaching 
assistant at Cairo University from 1999 to 2003 and latter at 
Birmingham University from 2003 to 2007. Dr. El-Zawawy is 
interested in static analysis, shape analysis, type systems, and 
semantics of programming languages.  
 

Hamada A. Nayel received the B.Sc. in 
mathematics from Benha University in 2003. 
Diploma in computer science and 
information systems from Institute of 
Statistical Studies and Research (ISSR), 
Cairo University in 2005.  He worked as a 
demonstrator in faculty of Science from 
2003 to 2009. Since 2009, he works at 
faculty of Computers and Informatics, Benha 

University. Mr. Nayel is interested in semantics of programming 
languages, type systems, static analysis, and shape analysis.  


