
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

161

Manuscript received October 5, 2011
Manuscript revised October 20, 2011

USB Key as an active device of Security System

Mohammed Nasir Uddin1, Selina Sharmin2, Abu Hasnat Shohel Ahmed3 and Emrul Hasan4,
Shahadot Hossain5 and Muniruzzaman6

Shanto Mariam University of Creative Technology1, 3 ,Uttara University4,5,6

Summary
 USB Key represents one of the smallest computing platforms
today. With the development of USB Key chips, more and more
security features will be supported by USB Key. Network
security middleware is a Java and HTTP-based development
framework on USB Key. Developers can develop and on line
load network security–related programs on this framework. End
users can use this USB Key to establish secure network
connections. In this design, USB Key became an active secure
device on network. Design and implementation of this
middleware is given in this paper. At fist, the software
architecture and security features of this middleware are
discussed in detail, which includes how to implement HTTP
server, CGI, security proxy etc. on USB Key. Secondly,
application scenarios and security analysis of mutual
authentication between Web server and client on this middleware
are given. At last, advantages of this middleware and what to do
further are given in conclusion and future work.
Key words:
Network Security, CGI Security Proxy, Security Analysis, Crypto
Server Provider, USB Key

1. Introduction

With the development of the Internet, more and more
people are using the Web for everyday tasks, from
shopping, banking and paying bills to consuming media
and entertainment. But as the value of what people do
online have increased, the Internet itself has become more
complex and dangerous. On line identity theft, fraud,
security and privacy concerns are on the rise [2].In order
to solve this problem USB Key has been used as CSP
(Crypto Service Provider) in Web service, which will store
keys, certificates and execute crypto operations. In this
application scenario, the applications of Web service (e.g.
IE, Outlook) on operating system will send commands to
USB Key and get the response from it. In other words,
USB Key is a passive device and “behind” the Web
browser. The problem is that most attacks on the client
Web applications (e.g. Trojan horse, spy ware, screen
capture) can not be prevented by this scheme because
some security–related operations except crypto operations
will be done on PC, which is not a secure computing
environment. In this paper, a new idea of network

security middleware based on USB Key is given. Web
server, security proxy, Java and HTTP based development
framework will be implemented on USB Key. More
security functions are supported on this platform:

(1) Users can visit the USB Key with the Web browser.

(2) Security proxy can be developed on this framework.
Therefore USB Key can be a security proxy to finish
mutual authentication and establishment of secure channel
between remote server and client.
(3) Client Web applications can connect further to other
Web sites by this security proxy on Key.
In other words, USB Key become an active device and
“before” the Web browser in this scenario. At the same
time, all of the security–related operations will be done on
USB Key, which is a secure computing environment. This
scheme will improve the security of client effectively.
The design and implementation of this middleware is
discussed in the following sections. The middleware
architecture and differences between this scheme and
other similar products are presented in section
2.Application scenarios and security analysis based on this
middleware is presented in section 3 and finally the
conclusion and future work.

2. Architecture of Network Security
Middleware

The goal of this design is to implement Web server,
security proxy, Java and HTTP - based development
framework on USB Key so that the third party vendors
can develop security-related programs on this middleware
and distribute it to users’ Key on line. In other words, it is
a network security middleware on client.
Recent proposals have been made to connect USB key (or
smart card) to the Internet [3], [4], [5]. There are some
differences between our scheme and those proposals:
(1) The goal of this design is to provide a security
middleware platform to support third party’s development
but those proposals emphasize to provide a Web–enabled

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

162

device. The fact is that an open security infrastructure is a
trend on the Internet [6].
(2) There is a button on our USB Key. The applets on Key
can detect this event when users press this button, which
can not be simulated by any software running outside USB
Key. Users can actually control operations of network
transaction by this button. An example will be given in
section 3.
(3) The full TCP/IP and HTTP will be supported in those
proposals. The precondition is a high Performance
hardware platform, which is 32-bit chip, 24K RAM, 64K
EEPROM and USB 2.0 Connection. But the HTTP
performance of this device is not very high [4]. A few
chips for USB Key can provide those hardware features
until now and the price is still very high. The price and
Performance is important for client device. Furthermore, it
is difficult to be ported onto other common hardware
platforms
In this paper, the hardware platform is the 8-bit 8051
architecture chip with 6K RAM, 64K EEPROM and a
FLASH memory, which is commonly used in USB Key
now. The software platform is a Java Card platform on
Key, which supports programming in Java with Java Card
2.2.1 APIs [7].
Two layers software architecture is deployed on this
platform:
(1) At first, a communication agent that gets data from
TCP/IP connection will stay in the FLASH memory on
USB Key. This agent is responsible for establishing
TCP/IP connection, encapsulate network data into APDU
and transmit to the USB Key by USB Port. It will run in
PC operating system.
(2) Secondly, a HTTP Server and security proxy
framework are implemented in Java on USB Key, which
includes request switch, HTTP server, CGI, security proxy
and program load components. All of those components
will run in USB Key. This software architecture is
depicted in figure 1. The advantages of this scheme are as
follows:
(1) The communication agent running in PC operating
system will finish TCP/IP transport. This will improve the
system performance and lower USB Key hardware
requirements because FLASH memory is much cheaper
than high performance processors.
(2) All the HTTP and security proxy procedures will be
done on USB Key with Java Card platform, which is a
secure computing environment [7]. Therefore, system
security is guaranteed.
(3) The communication agent in FLASH memory will run
automatically (auto run mechanism of USB disk) when the
USB Key is inserted on USB port. So it’s convenient to
use on mobile devices and users needn’t to install any
additional software on operating system.

The communication agent is simple in this system and
unnecessary to be described further in this paper. So the
design architecture of HTTP Server and security proxy
framework on USB Key will be further discussed in the
following sections.

Figure 2.1-Architecture of USB Key middleware

2.1 Request switch component

The first component on USB Key that will process the
HTTP data encapsulated in APDU is Request Switch. At
first this component will get the HTTP request data from
APDU and then parse the command and switch it to the
appropriate components, which include HTTP Server,
security proxy and program load component. The work
flow can be described as follows:
Request Switch()
{
Get HTTP request command from APDU buffer;
Parse the request;
switch (request)
{
Case “Request for local static data”:

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

163

Switch request to HTTP server component;
Case “Request for local CGI”:
{
Switch request to HTTP server component;
HTTP server call corresponding CGI API;
}
Case “Request for remote CGI”:
Switch request to remote CGI component;
Case “Request for remote Web Service”:
Switch request to security proxy component;
default:
throw illegal request exception;
}
}
At the same time, there is a request Info transient object in
RAM to maintain information for every request. All of
those methods managing HTTP requests are encapsulated
in a class – Request Switch Object , which can be provided
for HTTP–based application development.

2.2 HTTP Server Components

 HTTP server component will manage the Web page
data stored in USB Key, parse HTTP protocol and
construct response data. USB Key becomes a Web server
based on this component. Users can visit Key by Web
browser and browser the content on Key in Webpage. This
component consists of two sub-components:
The first sub-component is a Web data management
component. It will receive the Web page data from
personalization tools and store it in USB Key persistent
memory (e.g. EEPROM, flash). All of the Web–related
data will be store in Web Object. The relationship between
a Web page and Web Object is:
Web Page = { x | x is a Web Object }

Another component is a HTTP parser. This component
will parse HTTP data from request switch component and
finish the corresponding operations according to HTTP
method. We implement this component in a class – HTTP
parser. The USB Key can be visited by HTTP protocol
through Web browser based on this component. It means
that users can browser contents on USB Key and manage
USB Key (e.g. download Applets) by Windows IE.
Further more, more HTTP–related applets can be built on
those classes by application developers.

2.3 Program Load Component

Program load component can receive the programs code of
Java applets on line and install or update (if there is an old
version of this program) it on USB Key.

At first, the Java Card Applet code will be verified by
verifier, which may be on the key or off the key (run in
Key operating system or PC operating system), which
depends on Java Card platform provided on USB Key. If
off the key, the verifier will be stored in FLASH memory
and called by communication agent at first.
Secondly, the Applet will be installed in Java Card
Runtime Environment on USB Key. Because of security
considerations, this component is not open for application
development.

2.4 CGI Component

CGI (Common Gateway Interface) is supported on USB
Key middleware. Two approaches to implement CGI are
used in our design.
The first approach is to implement CGI in terms of APIs
(methods) in HTTP server component. In other words,
CGI programs run in the same execution context[5] as
HTTP server. The advantage of this approach is to
eliminate context switch between different applets and
improve the running speed. The disadvantage is that
HTTP server and CGI programs execute in the same
context, which is not secure. Any bug in CGI programs
coded by third party can negatively impact the entire
server, including URL requests have nothing to do with
the bug-containing programs. Therefore we only take this
approach to implement some simple, USB Key specific
CGI functions, such as verify user PIN, generate SHA-
1digest of message etc. We call it as local CGI, which is
part of HTTP server.
In the second approach, we implement CGI programs as
Java Card applets with SIO (Shareable Interface Object)
[8]. The request switch component received the CGI
request and then will call this CGI program by SIO.At the
same time, execution context will switch to CGI programs
and switch back to HTTP server after CGI execution.
There is an applet firewall to protect runtime environment
between different contexts on Java Card platform [5].
Therefore any bug in CGI programs can not impact entire
server because they run in different contexts. We think
this approach is more secure than the first approach. We
call it as remote CGI, which is a separate component.
Remote CGI principles are depicted in Fig. 2.
Any CGI programs developed by third party on our
framework in this approach are Java Card Applets with
SIO. Those can be loaded into USB Key on line at any
time and execute in different context from HTTP
server .This CGI scheme is an open, scalable and secure
architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

164

 Fig. 2.2- Remote CGI call principles

2.5 Security Proxy Component

It is not difficult to implement proxy component based on
components mentioned above. At first, the communication
agent is designed be able to establish two connections at
the same time, one is to local browser and another is to
remote server.
Secondly, the security proxy component is implemented as
a remote CGI for security considerations. The proxy CGI
applet with SIO is defined as follows:
public interface security Proxy interface extends Shareable
{
void security Process (byte[] buffer);
}
public class secrity Proxy Class extends Applet
implements securityProxyInterface
{
public Shareable
getShareableInterfaceObject(AID clientAID,
byte parameter) { return this; }
public static void install(byte[] bArray, short
bOffset, byte bLength) {…}
public void securityProcess (byte[] buffer){…}
protected final void startSecurityConnection()
{…}
protected void setDestinationURL(byte []
buffer) {…}
protected void sendDataToURL() { …}
protected void receiveDataFromURL() { …}
}
Developers can extend securityProxyClass and override
the securityProcess() method according to the specific

security scheme, for example, mutual authentication, key
exchange, SSL etc.
Another important method is:protected final void
startSecurityConnection()
We implemented this method as follows:
(1) Display a Web page in Web browser to prompt the
user to press button on USB Key.
(2) Wait for the user to press button (detect the interrupt
signal of pressing button on USB Key).If not, goto 2.
(3) Clear the signal and then end this method.
 It is proposed that startSecurityConnection() is called at
first in method securityProcess() so that only the user can
actually control the secure connection but not the Trojan
horse or spyware do it hostilely.When developers install a
security proxy applet for a Web site the install() method
will bind this URL to the applet in proxy register table.
While the end user visit this URL, the security proxy
component will look for this URL in register table and call
the corresponding applet’s securityProcess() to establish
security connection.

3. Application Scenarios and Security
Analysis

In this section, we will describe an application scenario for
simple mutual authentication between client and server
with USB Key middleware. After the authentication, the
secure channel will be established and user can login with
ID and password.
We defined:
Km - the key for mutual authentication (stored in USB
Key)
Rc – random number on client (generated in USB Key)
Rs – random number in server
Kc –random key material on client (generated in USB
Key)
Ks –random key material in server
E(x,k) – encrypt x with key k
D(x,k) – decrypt x with key k
X(x,y) – x xor y
x||y – x concatenate y
The work flow of this scenario as follows:
(1) The user inserts USB Key and input PIN for Key usage.
(2) The user visits specific Web site requiring secure
connection.
(3) When see the prompt information in browser the user
press the button on USB Key.
(4) If the USB Key detected the interrupt signal of
pressing button, goto 5. Else go to 4.
(5) The Key sends Rc to server.
(6) The server sends E(Rc||Rs||Ks, Km) to the Key.
(7) The USB Key D(Rc||Rs||Ks, Km) and compare Rc. If
failed, end this session.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

165

(8) The USB Key sends E(Rc||Rs||Kc, Km) to the server.
(9) The server D(Rc||Rs||Kc, Km) and compare Rs. If
failed, end this session.
(10) The server calculate X(Kc, Ks) as session key and
request USB Key to send user ID and password.
(11) The USB Key calculate X(Kc, Ks) as session key and
sends E(ID||password,X(Kc, Ks)) to login server.

In this scenario, users login Web site with PIN and USB
Key (hardware token). This is a multi-factor identity
authentication [9].
It is supposed that there is an eavesdropper on the user’s
PC, which can monitor the data communication on USB.
The threat from it will be analyzed as follows:
(1) It can get PIN for USB Key usage but can not start
security connection because the signal of pressing button
can not be simulated outside USB Key.
(2) It can not get Km , ID and password for server, which
are stored in Key and transferred in cipher(ID and
password).
(3) It can not attack authentication procedures, which is
done in USB Key.
In summary, users’ login with our USB Key achieved
level 3 security defined in [9]. Furthermore all
authentication procedures are done in USB Key and users
can actually control when to do those procedures by the
input device on USB Key. This scheme will effectively
prevent hostile software from doing transactions without
users’ permission and improve the security on client.

Conclusion

USB Key (smart card) represents one of the smallest
computing platforms today. With the development of
smart card chip, more and more security features will be
supported by USB Key. A new idea of network security
middleware based on USB Key is given in this paper. Web
server, HTTP proxy, Java and HTTP – based development
framework were implemented on USB Key.
 In this paper, it is given a choice of a design following
open infrastructure argument and developers can build an
open and scalable security system for Web service on our
USB Key middleware. USB Key, which is a passive
device in the past, becomes an active device depending on
this technology. Furthermore, users can actually control
operations of network transaction by input device on Key.
This scheme will improve the security of client effectively.

References
[1] Dawei Zhang,”Network Security Middleware Based On

USB Key”,IEEE spectrum 08
[2] http://www.identityblog.com/stories/2005/07/05/IdentityMe

tasystem.htm

[3] http://www.gemplus.com/smart/rd/publications/pdf/MD02g
dc c.pdf

[4] Henrich C. Pohls&Joachim Posegga,”Smartcard Firewalls
Revisited”,Tarragona Spain 2006

[5] http://research.sun.com/brazil
[6] http://www.identityblog.com/?page_id=354
[7] Sun Microsystems ,” Inc.: Java Card 2.2 Virtual Machine

Specification ”,Sun Microsystems Santa Clara,2002
[8] Zhiqun Chen, “ Java Card Technology for Smart

Cards :Architecture and rogrammer's Guide”,Addison
Wesley Boston,2000

[9] http://www.cio.gov/eauthentication/documents/P800-
63V6_3_3.pdf

Mohammed Nasir Uddin received PhD
in Computer Science from Moscow
Power Engineering Institute (Technical
University),Moscow. Russia. Masters of
Science in Computer Engineering, and
Bachelor of Engineering in Computer
Engineering from State University of
Lvivska Polytechnic, Lvov, Ukraine.
Presently Working as an Assistant

Professor, Department of Computer Science and Engineering,
Shanto Mariam University of Creative Technology, Dhaka,
Bangladesh. His areas of interest include Information &
Computer security, Microprocessor system, Bio-Informatics and
Digital Systems.

Selina Sharmin is a Lecturer of CSE &
CSIT at Shanto-Mariam University of
Creative Technology. She completed M.S
and B.Sc with concentration in Computer
Science & Enginnering, from University
of Dhaka, Dhaka, Bangladesh. She has
interest in the field of Bio-Informatics,
Programming in Critical field and Data
Mining.

Abu Hasnat Shohel Ahmed is a Lecturer
of CSE & CSIT at Shanto-Mariam
University of Creative Technology. He
completed M.S and B.Sc with
concentration in Applied Physics,
Electronics and Communication
Engineering from University of
Chittagong, Chittagong, Bangladesh. He
is the Associate Member of Bangladesh

Computer Society. He has interest in the field of Wireless &
Microwave communication, Networking and Bio-Informatics

Shahadot Hossain is a Lecturer of CSE
at Uttara University. He completed M.Sc
and B.Sc(Engg.) in Computer Science
and Engineering from Uttara
University,Dhaka, Bangladesh. He has
interest in the field of Digital System,
Virtual Networking and computer and
Network security.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

166

Emrul Hasan is a Lecturer of CSE at
Uttara University. He completed M.Sc and
B.Sc(Engg.) in Computer Science and
Engineering from Uttara University,Dhaka,
Bangladesh. He has interest in the field of
Digital System, Algorithm in critical field
of Programming, Virtual Networking and
computer data security.

Muniruzzaman is a Lecturer of CSE at
Uttara University. He completed M.Sc and
B.Sc(Engg.) in Computer Science and
Engineering from Uttara University,Dhaka,
Bangladesh. He has interest in the field of
Digital System, of Bio-Informatics,
Programming in Critical field, Computer
security and Data Mining.

