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Abstract 
Clustering and classification of data is a difficult problem 
that is related to various  fields and applications. Challenge is 
greater, as input space dimensions become larger and feature 
scales are different from each other. The term “classification” is 
frequently used as an algorithm for all data mining tasks[1]. 
Instead, it is best to use the term to refer to the category of 
supervised learning algorithms used to search interesting data 
patterns. While classification algorithms have become very 
popular and ubiquitous in DM research, it is just but one of the 
many types of algorithms available to solve a specific type of 
DM task[12]. In this paper various clustering and classification 
algorithms are going to be addressed in detail. A detailed survey 
on existing algorithms will be made and the scalability of some 
of the existing classification algorithms will be examined. 
Keywords 
DM, clustering, classification, supervised learning, scalability 

I. Introduction 

There are so many methods for data classification. 
Generally the selection of a particular method may depend 
on the application. The selection of a particular 
methodology for data classification may depend on the 
volume of data and the number of classes present in that 
data. Further, the classification algorithms are designed in 
a custom manner for a specific purpose to solve a 
particular classification scenario. 
The essence of clustering data is to identify homogeneous 
groups of objects based on the values of their attributes. It 
is a problem that is related to various scientific and applied 
fields and has been used in science and in the field of data 
mining for a long time, with applications of techniques 
ranging from artificial intelligence and pattern recognition 
to databases and statistics [13]. There are different types of 
clustering algorithms for different types of applications 
and a common distinction is between hierarchical and 
partitioning clustering algorithms. But although numerous 
related texts exist in the literature, clustering of data is still 
considered an open issue, basically because it is difficult to 
handle in the cases that the data is characterized by 
numerous measurable features. This is often referred to as 
the curse of dimensionality. Although hierarchical 
clustering methods are more flexible than their partitioning 
counterparts, in that they do not need the number of 

clusters as an input, they are less robust in some other 
ways. More specifically, errors from the initial steps of the 
algorithm tend to propagate throughout the whole 
procedure to the final output. This could be a major 
problem, with respect to the corresponding data sets, 
resulting to misleading and inappropriate conclusions. 
Moreover, the considerably higher computational 
complexity that hierarchical algorithms typically have 
makes them inapplicable in most real life situations, due to 
the large size of the data sets. Works in the field of 
classification focus in the usage of characterized data, also 
known as training data, for the automatic generation of 
systems that are able to classify (characterize) future data. 
This classification relies on the similarity of incoming data 
to the training data. The main aim is to automatically 
generate systems that are able to correctly classify 
incoming data [12]. Although the tasks of classification 
and clustering are closely related, an important difference 
exists among them. While in the task of classification the 
most important part is the distinction between classes, i.e. 
the detection of class boundaries, in the task of clustering 
the most important part is the identification of cluster 
characteristics. The latter is usually tackled via the 
selection of cluster representatives or cluster centroids). 
Typically, in order to achieve automatic classification 
systems generation, one first needs to detect the patterns 
that underlie in the data, in contrast to simply partitioning 
data samples based on available labels [17], and then study 
the way these patterns relate to meaningful classes. 
Efficient solutions have been proposed in the literature for 
both tasks, for the case in which a unique similarity or 
dissimilarity measure is defined among input data 
elements [6]. When, on the other hand, multiple 
independent features characterize data, and thus more than 
one meaningful similarity or dissimilarity measures can be 
defined, both tasks become more difficult to handle. 

II. The Role of Classification in Data Mining 

Based on the data collected, data mining algorithms are 
used to either produce a description of the data stored, or 
predict an outcome[10]. Different kinds of algorithms are 
used to achieve either one of these tasks. However, in the 
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overall KDD process, any mixture of these tasks may be 
called upon to achieve the desired results. The Steps 
involved  in KDD are: 
 

a) Description tasks: These tasks describe the 
data being mined and they are: 

i) Summarization: To extract compact 
patterns that describe subsets of data. 
The method used to achieve this task are 
Association Rule algorithms. 

ii) Segmentation or Clustering: To separate 
data items into subsets that are similar to 
each other. Partition-based clustering 
algorithms are used to achieve this task. 

iii) Change and Deviation Detection: To 
detect changes in sequential data (such 
as protein sequencing, behavioral 
sequences, etc.). 

iv) Dependency Modeling: To construct 
models of causality within the data. 

b) Prediction tasks: To predict some field(s) in a 
database based on information in other fields. 

i) Classification: To predict the most likely 
state of a categorical variable (its class). 

ii) Regression: To predict results that are 
numeric continuous variables. 

Classification  

Model Construction  

Model construction is building the model from the training 
set 
 

 Each tuple/sample is assumed to belong a 
prefined class 

 The class of a tuple/sample is determined by 
the class label attribute 

 The training set of tuples/samples is used for 
model construction 

 The model is represented as classification 
rules, decision trees or mathematical  
formulae 

Model Usage 

 Classify future or unknown objects 
 Estimate accuracy of the model   
 the known class of a test tuple /sample is 

compared with the  result given  by the mode  
 accuracy rate = percentage of the tests tuples 

/samples correctly   classified by the model 

III. Existing Methods in Data Classification 

With an enormous amount of data stored in databases and 
data warehouses, it is increasingly important to develop 
powerful tools for analysis of such data and mining 
interesting knowledge from it. Data mining is a process of 
inferring knowledge from such huge data. Data Mining has 
three major components Clustering or Classification, 
Association Rules and Sequence Analysis.  Data 
Classification is an important step in data mining  
applications. 
By simple definition, in classification/clustering we 
analyze a set of data and generate a set of grouping rules 
which can be used to classify future data. For example, 
one may classify diseases and provide the symptoms 
which describe each class or subclass. This has much in 
common with traditional work in statistics and machine 
learning. However, there are important new issues which 
arise because of the sheer size of the data. One of the 
important problem in data mining is the Classification-rule 
learning which involves finding rules that partition given 
data into predefined classes. In the data mining domain 
where millions of records and a large number of attributes 
are involved, the execution time of existing algorithms can 
become prohibitive, particularly in interactive applications.  
In Data classification one develops a description or model 
for each class in a database, based on the features present in 
a set of class-labeled training data[17]. There have been 
many data classification methods such as  decision-tree 
methods, such as C4.5, statistical methods, neural networks, 
rough sets, database-oriented methods etc.  

Data Classification Methods  

The following list shows the available data classification 
methods.   
 

• Statistical Algorithms Statistical analysis 
systems such as SAS and SPSS have been used 
by analysts to detect unusual patterns and explain 
patterns using statistical models such as linear 
models. Such systems have their place and will 
continue to be used.  

• Neural Networks Artificial neural networks 
mimic the pattern-finding capacity of the human 
brain and hence some researchers have suggested 
applying Neural Network algorithms to pattern-
mapping. Neural networks have been applied 
successfully in a few applications that involve 
classification.  

• Genetic algorithms Optimization techniques that 
use processes such as genetic combination, 
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mutation, and natural selection in a design based 
on the concepts of natural evolution.  

• Nearest neighbor method A technique that 
classifies each record in a dataset based on a 
combination of the classes of the k record(s) most 
similar to it in a historical dataset. Sometimes 
called the k-nearest neighbor technique.  

• Rule induction The extraction of useful if-then 
rules from data based on statistical significance.  

• Data visualization The visual interpretation of 
complex relationships in multidimensional data.  

 
Many existing algorithms suggest abstracting the test data 
before classifying it into various classes. There are several 
alternatives for doing abstraction before classification: A 
data set can be generalized to either a minimally 
generalized abstraction level, an intermediate abstraction 
level, or a rather high abstraction level. Too low an 
abstraction level may result in scattered classes, bushy 
classification trees, and difficulty at concise semantic 
interpretation; whereas too high a level may result in the 
loss of classification accuracy.  

1) Classification-rule learning  

Classification-rule learning involves finding rules or 
decision trees that partition given data into predefined 
classes[1]. For any realistic problem domain of the 
classification-rule learning, the set of possible decision 
trees is too large to be searched exhaustively. In fact, the 
computational complexity of finding an optimal 
classification decision tree is NP hard.  

 
Most of the existing induction-based algorithms use 
Hunt's method as the basic algorithm. Here is a recursive 
description of Hunt's method for constructing a decision 
tree from a set T of training cases with classes denoted {C1, 
C2, … ,Ck }.  
 
Case 1  T contains one or more cases, all belonging to a 
single class Cj : The decision tree for T is a leaf identifying 
class Cj.  
 
Case 2  T contains no cases:   The decision tree for T is a 
leaf, but the class to be associated with the leaf must be 
determined from information other than T.  
 
Case 3 T contains cases that belong to a mixture of classes: 
A test is chosen, based on a single attribute, that has one or 
more mutually exclusive outcomes {O1, O2 , .. ,On }. T is 
partitioned into subsets T1, T2, … ,Tn , where Ti contains 
all the cases in T that have outcome Oi of the chosen test. 
The decision tree for T consists of a decision node 
identifying the test, and one branch for each possible 

outcome. The same tree building machinery is applied 
recursively to each subset of training cases.  

2) Decision Trees 

A decision tree is a classification scheme which generates 
a tree and a set of rules, representing the model of different 
classes from a given data set[12]. The set of records 
available for developing classification methods is 
generally divided into two disjoint subsets as follows: 

 
(i) a training set - used for deriving the 

classifier 
(ii) a test set        - used to measure the 

accuracy of the classifier 
 

The accuracy of the classifier is determined by the 
percentage of the test examples that are correctly classified. 
The attributes of the records are divided into two types as 
follows: 

 
Numerical attributes - attributes whose domain is 
numerical 
Categorical attributes - attributes whose domain is not   
numerical 

 
There is one distinguished attribute called the class label. 
The goal of the classification is to build a concise model 
that can be used to predict the class of the records whose 
class label is not known. 

 
A decision tree is a tree where the internal node - is a test 
on an attribute, the tree branch - is an outcome of the test, 
and the leaf node - is a class label or class distribution. 
 
There are two phases of decision tree generation: 

Tree construction 
o at start, all the training examples are at 

the root 
o partition examples based on selected 

attributes 
o test attributes are selected based on a 

heuristic or a statistical measure 
 

Tree pruning 
o identify and remove branches that reflect 

noise or outliers 
o One rule is generated for each path in 

the tree from the root to a leaf 
o Each attribute-value pair along a path 

forms a conjunction 
o The leaf node holds the class prediction 
o Rules are generally simpler to 

understand than trees 
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Tree Construction Principle 

There are various methods of building decision trees from 
a given training data set. Some basic concepts involved in 
the building of decision trees are discussed below. 

Splitting Attribute 

With every node of the decision tree, there is an associated 
attribute whose values determine the partitioning of the 
data set when the node is expanded. 

Splitting Criterion 

The qualifying condition on the splitting attribute for data 
set splitting at a node is called the splitting criterion at that 
node. For a numeric attribute, the criterion can be an 
equation or an inequality. For a categorical attribute, it is a 
membership condition on a subset of values. 

3) Decision Tree Construction Algorithms 

A number of algorithms for inducing decision trees have 
been proposed over the years. They differ among 
themselves in the methods employed for selecting splitting 
attributes and splitting conditions. These algorithms can be 
classified into two types. The first type of algorithms is the 
classical algorithms which handle only memory resident 
data. The second category can handle the efficiency and 
scalability issues. These algorithms remove the memory 
restrictions and are fast and scalable. 

4) CART (Classification And Regression Trees) 

It is one of the popular methods of building decision trees. 
CART builds a  binary decision tree by splitting the 
records at each node, according to a function of a single 
attribute[15]. CART uses the gini index for determining 
the best split. The initial split produces two nodes, each of 
which is split in the same manner as the root node. If no 
split is found which reduces the diversity of a given node, 
it is labeled as the leaf node.    
When the full tree is grown, only the leaf nodes remain. At 
the end of the tree growing process, every record of the 
training set has been assigned to some leaf  of the full 
decision tree. Each leaf can now be assigned a class and an 
error rate. The error rate of  a leaf node is the percentage 
of incorrect classification at that node. The error rate of  an 
entire decision tree is a weighted sum of the error rates of 
all the leaves. Each leaf’s contribution to the total is the 
error rate at that leaf multiplied by the probability that the 
record will end up there. 

5) ID3 algorithm  

The ID3 algorithm (Quinlan86) is a decision tree building 
algorithm which determines the classification of objects by 
testing the values of the their properties[12]. It builds the 
tree in a top down fashion, starting from a set of objects 
and a specification of properties. At each node of the tree, 
a property is tested and the results used to partition the 
object set. This process is recursively done till the set in a 
given subtree is homogeneous with respect to the 
classification criteria - in other words it contains objects 
belonging to the same category. This then becomes a leaf 
node. At each node, the property to test is chosen based on 
information theoretic criteria that seek to maximize 
information gain and minimize entropy. In simpler terms, 
that property is tested which divides the candidate set in 
the most homogeneous subsets.  

6) C4.5 algorithm  

This algorithm was proposed by Quinlan (1993). The 
C4.5 algorithm generates a classification-decision tree for 
the given data-set by recursive partitioning of data[14]. 
The decision is grown using Depth-first strategy. The 
algorithm considers all the possible tests that can split the 
data set and selects a test that gives the best information 
gain. For each discrete attribute, one test with outcomes as 
many as the number of distinct values of the attribute is 
considered. For each continuous attribute, binary tests 
involving every distinct values of the attribute are 
considered. In order to gather the entropy gain of all these 
binary tests efficiently, the training data set belonging to 
the node in consideration is sorted for the values of the 
continuous attribute and the entropy gains of the binary cut 
based on each distinct values are calculated in one scan of 
the sorted data. This process is repeated for each 
continuous attributes.  

7) SLIQ and SPRINT algorithms  

SLIQ (Supervised Learning In Quest) developed by IBM's 
Quest project team, is a decision tree classifier designed to 
classify large training data [1]. It uses a pre-sorting 
technique in the tree-growth phase. This helps avoid costly 
sorting at each node.  
SLIQ keeps a separate sorted list for each continuous 
attribute and a separate list called class list. An entry in the 
class list corresponds to a data item, and has a class label 
and name of the node it belongs in the decision tree. An 
entry in the sorted attribute list has an attribute value and 
the index of data item in the class list. SLIQ grows the 
decision tree in breadth-first manner.  
For each attribute, it scans the corresponding sorted list 
and calculate entropy values of each distinct values of all 
the nodes in the frontier of the decision tree 
simultaneously. After the entropy values have been 
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calculated for each attribute, one attribute is chosen for a 
split for each nodes in the current frontier, and they are 
expanded to have a new frontier. Then one more scan of 
the sorted attribute list is performed to update the class list 
for the new nodes.  
While SLIQ handles disk-resident data that are too large to 
fit in memory, it still requires some information to stay 
memory-resident which grows in direct proportion to the 
number of input records, putting a hard-limit on the size of 
training data. The Quest team has recently designed a new 
decision-tree-based classification algorithm, called 
SPRINT (Scalable PaRallelizable INduction of decision 
Trees) that for the removes all of the memory restrictions.  

8) CHAID (Chi-Square Automatic Interaction 
Detector) 

CHAID, proposed by Kass in 1980, is a derivative of AID 
( Automatic Interaction Detection), proposed by Hartigan 
in 1975. CHAID attempts to stop growing the tree before 
overfitting occurs. The decision tree is constructed by 
partitioning the data set into two or more subsets, based on 
the values of one of the non-class attributes. After the data 
set is partitioned according to the chosen attributes, each 
subset is considered for further partitioning using the same 
algorithm. This process is repeated for each subset until 
some stopping criterion is met. In CHAID, the number of 
subsets in a partition can range from two up to the number 
of distinct values of the splitting attribute. In this regard, 
CHAID differs from the CART, which always forms 
binary splits, and from ID3 and C4.5, which form a branch 
for every distinct value. 

9) Naïve k-means algorithm  

 One of the most popular heuristics for solving the k-
means problem is based on a simple iterative scheme for 
finding a locally optimal solution. This algorithm is often 
called the k-means algorithm. There are a number of 
variants to this algorithm, so to clarify which version we 
are using, we will refer to it as the naïve k-means 
algorithm as it is much simpler compared to the other 
algorithms described here.  
The naive k-means algorithm partitions the dataset into ‘k’ 
subsets such that all records, from now on referred to as 
points, in a given subset "belong" to the same center. Also 
the points in a given subset are closer to that center than to 
any other center. The partitioning of the space can be 
compared to that of Voronoi partitioning except that in 
Voronoi partitioning one partitions the space based on 
distance and here we partition the points based on distance.  
The algorithm keeps track of the centroids of the subsets, 
and proceeds in simple iterations. The initial partitioning is 
randomly generated, that is, we randomly initialize the 
centroids to some points in the region of the space. In each 

iteration step, a new set of centroids is generated using the 
existing set of centroids following two very simple steps. 
Let us denote the set of centroids after the ith iteration by 
C(i). The following operations are performed in the steps: 

 
(i) Partition the points based on the 

centroids C(i),  that is, find the centroids 
to which each of the points in the dataset 
belongs. The points are partitioned based 
on the Euclidean distance from the 
centroids.  

 
(ii) Set a new centroid c(i+1)  ∈  C (i+1)  to 

be the mean of all the points that are  
closest to c(i) ∈  C (i) The new location 
of the centroid in a particular partition is 
referred to as the new location of the old 
centroid.  

 
The algorithm is said to have converged when 
recomputing the partitions does not result in a change in 
the partitioning. In the terminology that we are using, the 
algorithm has converged completely when C(i) and C(i – 1) 
are identical. For configurations where no point is 
equidistant to more than one center, the above 
convergence condition can always be reached.  This 
convergence property along with its simplicity adds to the 
attractiveness of the k-means algorithm.   
The naïve k-means needs to perform a large number of 
"nearest-neighbor" queries for the points in the dataset. If 
the data is ‘d’ dimensional and there are ‘N’ points in the 
dataset, the cost of a single iteration is O(kdN). As one 
would have to run several iterations, it is generally not 
feasible to run the naïve k-means algorithm for large 
number of points. 
Sometimes the convergence of the centroids (i.e. C(i) and 
C(i+1) being identical) takes several iterations. Also in the 
last several iterations, the centroids move very little. As 
running the expensive iterations so many more times might 
not be efficient, we need a measure of convergence of the 
centroids so that we stop the iterations when the 
convergence criteria is met. Distortion is the most widely 
accepted measure.  
Clustering error measures the same criterion and is 
sometimes used instead of distortion. In fact k-means 
algorithm is designed to optimize distortion. Placing the 
cluster center at the mean of all the points minimizes the 
distortion for the points in the cluster. Also when another 
cluster center is closer to a point than its current cluster 
center, moving the cluster from its current cluster to the 
other can reduce the distortion further. The above two steps 
are precisely the steps done by the k-means cluster. Thus k-
means reduces distortion in every step locally. The k-
Means algorithm terminates at a solution that is locally 
optimal for the distortion function. Hence, a natural choice 
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as a convergence criterion is distortion. Among other 
measures of convergence used by other researchers, we can 
measure the sum of Euclidean distance of the new centroids 
from the old centroids.  In this thesis we always use 
clustering error/distortion as the convergence criterion for 
all variants of k-means algorithm. 

 
Definition 1: Clustering error is the sum of the squared 
Euclidean distances from points to the centers of the 
partitions to which they belong.   
Mathematically, given a clustering φ , we denote by 

)(xφ  the centroid this clustering associates with an 
arbitrary point x (so for k-means, )(xφ  is simply the 
center closest to x). We then define a measure of quality 
for φ :  

 

∑ −=
x

xx
N

distortion 2)(1 φφ  

Where |a| is used to denote the norm of a vector ‘a’. The 
lesser the difference in distortion over successive iterations, 
the more the centroids have converged. Distortion is 
therefore used as a measure of goodness of the partitioning.  
In spite of its simplicity, k-means often converges to local 
optima. The quality of the solution obtained depends 
heavily on the initial set of centroids, which is the only 
non-deterministic step in the algorithm. Note that although 
the starting centers can be selected arbitrarily, k-means is 
fully deterministic, given the starting centers. A bad choice 
of initial centers can have a great impact on both 
performance and distortion. Also a good choice of initial 
centroids would reduce the number of iterations that are 
required for the solution to converge. Many algorithms 
have tried to improve the quality of the k-means solution 
by suggesting different ways of sampling the initial centers, 
but none has been able to avoid the problem of the solution 
converging to a local optimum.  

10) Kd-trees  

A very important data structure that is used in our 
algorithm is a kd-tree. A kd-tree is a data structure for 
storing a set of finite points from a d-dimensional space. 
 
Kd-trees are simple data structures with the following 
properties: 

(i) They are binary trees; 
(ii) The root node contains all the points; 
(iii) A node is split along a split-plane such 

that points to the left are part of the left 
sub-tree, points to the right are part of 
the right sub-tree; 

(iv) The left and right sub-trees are 
recursively split until there is only one 

point in the leaf or a certain condition is 
satisfied.   

 
This is the basic kd-tree structure. There exist several 
variants of the kd-tree based on the way in which they 
choose the splitting plane, the termination criteria, etc.  
Originally designed to decrease the time in nearest 
neighbor queries, kd-trees have found other applications as 
well. Omohumdro has recommended it in a survey of 
possible techniques to increase speed of neural network 
Though kd-trees give substantial advantage for lower 
dimensions, the performance of kd-trees decreases/drops 
in higher dimensions. Other data structures like AD trees  
have been suggested for higher dimensions  but these have 
never been used for k-means.  After this brief introduction 
to the kd-trees (which is the primary data structure used in 
our algorithm), we discuss the two main approaches that 
try to counter the shortcomings of the k-means algorithm. 

11) The Greedy K-means Algorithm  

The local convergence properties of k-means have been 
improved in this algorithm. Also it does not require the 
initial set of centroids to be decided. The idea is that the 
global minima can be reached through a series of local 
searches based on the global clustering with one cluster 
less.  

 
Assumption: The assumption used in the algorithm is that 
the global optima can be reached by running k-means with 
the (k-1) clusters being placed at the optimal positions for 
the (k-1) clustering problem and the kth cluster being 
placed at an appropriate position that is yet to be 
discovered.  
 
Let us assume that the problem is to find K clusters and K’ 
≤ K. We Use the above assumption, the global optima for 
k = K’ clusters is computed as a series of local searches. 
Assuming that we have solved the k-means clustering 
problem for K’ – 1 clusters, we have to place a new cluster 
at an appropriate location. To discover the appropriate 
insertion location, which is not known, we run k-means 
algorithm until convergence with each of the points in the 
entire set of the points in the dataset being added as the 
candidate new cluster, one at a time, to the K’ – 1 clusters. 
The converged K clusters that have the minimum 
distortion after the convergence of k-means in the above 
local searches are the clusters of the global k-means.  
We know that for k = 1, the optimal clustering solution is 
the mean of all the points in the dataset. Using the above 
method we can compute the optimal positions for the k = 2, 
3, 4, ... K, clusters. Thus the process involves computing 
the optimal k-means centers for each of the K = 1, 2, 3… 
K clusters. The algorithm is entirely deterministic.  
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Though the attractiveness of the global k-means lies in it 
finding the global solution, the method involves a heavy 
cost. K-means is run N times, where N is the number of 
points in the dataset, for every cluster to be inserted. The 
complexity can be reduced considerably by not running 
the K-means with the new cluster being inserted at each of 
the dataset points but by finding another set of points that 
could act as an appropriate set for insertion location of the 
new cluster.  
The variant of the kd-tree splits the points in a node using 
the plane that passes through the mean of the points in the 
node and is perpendicular to the principal component of 
the points in the node. A node is not split if it has less than 
a pre-specified number of points or an upper bound to the 
number of leaf nodes is reached. The idea is that even if 
the kd-tree were not used for nearest neighbor queries, 
merely the construction of the kd-tree based on this 
strategy would give a very good preliminary clustering of 
the data. We can thus use the kd-tree nodes centers as the 
candidate/initial insertion positions for the new clusters.  
The time complexity of the algorithm can also be 
improved by taking a greedy approach. In this approach, 
running k-means for each possible insertion position is 
avoided. Instead reduction in the distortion when the new 
cluster is added is taken into account without actually 
running k-means. The point that gives the maximum 
decrease in the distortion when added as a cluster center is 
taken to be the new insertion position.  
K-means is run until convergence on the new list of 
clusters with this added point as the new cluster. The 
assumption is that the point that gives the maximum 
decrease in distortion is also the point for which the 
converged clusters would have the least distortion. This 
results in a substantial improvement in the running time of 
the algorithm, as it is unnecessary to run k-means for all 
the possible insertion positions. However, the solution 
may not be globally optimal but an approximate global 
solution.  

12) Self-Organising Map  

The SOM can be characterised as "an unsupervised 
network that seeks to learn a continuous topological 
mapping of a set of inputs onto a set of outputs in such a 
way that the outputs acquire the same topological order as 
the inputs, by means of self-organisation based on data 
examples" (Openshaw and Wymer 1994). Neurons are 
typically organized in a 2D grid, and the SOM tries to find 
clusters such that any two clusters that are close to each 
other in the grid space have codebook vectors that are 
close to each other in the input space.  
In the self-organization process the input vectors are 
presented to the network, and the cluster unit whose 
weight vector is closest (usually in terms of Euclidean 
distance) is chosen as the winner. The next step is to 

update the value of the winning unit and neighbouring 
units, this will approximate the values of the units to the 
one of the input vector. This can be viewed as a motion of 
the units in the direction of the input vector, the magnitude 
of this movement depends on the learning rate, which 
decreases along the process in order to obtain convergence.  
Bearing in mind that Vector Quantization (VQ) is 
essentially the same as the k-means algorithm, and that the 
VQ is a special case of the SOM, in which the 
neighbourhood size is zero, one can say that there is a 
close relation between SOM and k-means. Openshaw and 
Wymer (1994) go further and say that the basic SOM 
algorithm "…is essentially the same as a K means 
classifier; with a few differences due to neighbouring 
training which might well be regarded as a form of 
simulated annealing and it may provide better results and 
avoid some local optima."  

13) Genetic Algorithm  

Evolution has proven to be a very powerful mechanism in 
finding good solutions to difficult problems. One can look 
at the natural selection as an optimisation method, which 
tries to produce adequate solutions to particular 
environments.  
In spite of the large number of applications of GA in 
different types of optimisation problems, there is very little 
research on using this kind of approach to the clustering 
problem. In fact, and bearing in mind the quality of the 
solutions that this technology has showed in different 
types of fields and problems (Beasley, Bull and Martin, 
1993a, Mitchell, 1996) it makes perfect sense to try to use 
it in clustering problems.  
The flexibility associated with GA is one important aspect 
to bear in mind. With the same genome representation and 
just by changing the fitness function one can have a 
different algorithm. In the case of spatial analysis this is 
particularly important since one can try different fitness 
functions in an exploratory phase.  
In the genome each gene represents a data point and 
defines cluster membership. All necessary evolution 
operators can be implemented with this scheme. As 
pointed by Demiriz et all (1999) the major problem 
associated with this representation scheme is that it is not 
scalable, on the other hand it seems to be computationally 
efficient when the number of data points is not too large.  
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