
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

167

Manuscript received October 5, 2011
Manuscript revised October 20, 2011

A Study of Clustering and Classification Algorithms Used in
Datamining

Sandhia Valsala Jissy Ann George Priyanka Parvathy

College of Computer Studies AMA International University Salmabad,Kingdom of Bahrain

Abstract
Clustering and classification of data is a difficult problem
that is related to various fields and applications. Challenge is
greater, as input space dimensions become larger and feature
scales are different from each other. The term “classification” is
frequently used as an algorithm for all data mining tasks[1].
Instead, it is best to use the term to refer to the category of
supervised learning algorithms used to search interesting data
patterns. While classification algorithms have become very
popular and ubiquitous in DM research, it is just but one of the
many types of algorithms available to solve a specific type of
DM task[12]. In this paper various clustering and classification
algorithms are going to be addressed in detail. A detailed survey
on existing algorithms will be made and the scalability of some
of the existing classification algorithms will be examined.
Keywords
DM, clustering, classification, supervised learning, scalability

I. Introduction

There are so many methods for data classification.
Generally the selection of a particular method may depend
on the application. The selection of a particular
methodology for data classification may depend on the
volume of data and the number of classes present in that
data. Further, the classification algorithms are designed in
a custom manner for a specific purpose to solve a
particular classification scenario.
The essence of clustering data is to identify homogeneous
groups of objects based on the values of their attributes. It
is a problem that is related to various scientific and applied
fields and has been used in science and in the field of data
mining for a long time, with applications of techniques
ranging from artificial intelligence and pattern recognition
to databases and statistics [13]. There are different types of
clustering algorithms for different types of applications
and a common distinction is between hierarchical and
partitioning clustering algorithms. But although numerous
related texts exist in the literature, clustering of data is still
considered an open issue, basically because it is difficult to
handle in the cases that the data is characterized by
numerous measurable features. This is often referred to as
the curse of dimensionality. Although hierarchical
clustering methods are more flexible than their partitioning
counterparts, in that they do not need the number of

clusters as an input, they are less robust in some other
ways. More specifically, errors from the initial steps of the
algorithm tend to propagate throughout the whole
procedure to the final output. This could be a major
problem, with respect to the corresponding data sets,
resulting to misleading and inappropriate conclusions.
Moreover, the considerably higher computational
complexity that hierarchical algorithms typically have
makes them inapplicable in most real life situations, due to
the large size of the data sets. Works in the field of
classification focus in the usage of characterized data, also
known as training data, for the automatic generation of
systems that are able to classify (characterize) future data.
This classification relies on the similarity of incoming data
to the training data. The main aim is to automatically
generate systems that are able to correctly classify
incoming data [12]. Although the tasks of classification
and clustering are closely related, an important difference
exists among them. While in the task of classification the
most important part is the distinction between classes, i.e.
the detection of class boundaries, in the task of clustering
the most important part is the identification of cluster
characteristics. The latter is usually tackled via the
selection of cluster representatives or cluster centroids).
Typically, in order to achieve automatic classification
systems generation, one first needs to detect the patterns
that underlie in the data, in contrast to simply partitioning
data samples based on available labels [17], and then study
the way these patterns relate to meaningful classes.
Efficient solutions have been proposed in the literature for
both tasks, for the case in which a unique similarity or
dissimilarity measure is defined among input data
elements [6]. When, on the other hand, multiple
independent features characterize data, and thus more than
one meaningful similarity or dissimilarity measures can be
defined, both tasks become more difficult to handle.

II. The Role of Classification in Data Mining

Based on the data collected, data mining algorithms are
used to either produce a description of the data stored, or
predict an outcome[10]. Different kinds of algorithms are
used to achieve either one of these tasks. However, in the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

168

overall KDD process, any mixture of these tasks may be
called upon to achieve the desired results. The Steps
involved in KDD are:

a) Description tasks: These tasks describe the
data being mined and they are:

i) Summarization: To extract compact
patterns that describe subsets of data.
The method used to achieve this task are
Association Rule algorithms.

ii) Segmentation or Clustering: To separate
data items into subsets that are similar to
each other. Partition-based clustering
algorithms are used to achieve this task.

iii) Change and Deviation Detection: To
detect changes in sequential data (such
as protein sequencing, behavioral
sequences, etc.).

iv) Dependency Modeling: To construct
models of causality within the data.

b) Prediction tasks: To predict some field(s) in a
database based on information in other fields.

i) Classification: To predict the most likely
state of a categorical variable (its class).

ii) Regression: To predict results that are
numeric continuous variables.

Classification

Model Construction

Model construction is building the model from the training
set

 Each tuple/sample is assumed to belong a
prefined class

 The class of a tuple/sample is determined by
the class label attribute

 The training set of tuples/samples is used for
model construction

 The model is represented as classification
rules, decision trees or mathematical
formulae

Model Usage

 Classify future or unknown objects
 Estimate accuracy of the model
 the known class of a test tuple /sample is

compared with the result given by the mode
 accuracy rate = percentage of the tests tuples

/samples correctly classified by the model

III. Existing Methods in Data Classification

With an enormous amount of data stored in databases and
data warehouses, it is increasingly important to develop
powerful tools for analysis of such data and mining
interesting knowledge from it. Data mining is a process of
inferring knowledge from such huge data. Data Mining has
three major components Clustering or Classification,
Association Rules and Sequence Analysis. Data
Classification is an important step in data mining
applications.
By simple definition, in classification/clustering we
analyze a set of data and generate a set of grouping rules
which can be used to classify future data. For example,
one may classify diseases and provide the symptoms
which describe each class or subclass. This has much in
common with traditional work in statistics and machine
learning. However, there are important new issues which
arise because of the sheer size of the data. One of the
important problem in data mining is the Classification-rule
learning which involves finding rules that partition given
data into predefined classes. In the data mining domain
where millions of records and a large number of attributes
are involved, the execution time of existing algorithms can
become prohibitive, particularly in interactive applications.
In Data classification one develops a description or model
for each class in a database, based on the features present in
a set of class-labeled training data[17]. There have been
many data classification methods such as decision-tree
methods, such as C4.5, statistical methods, neural networks,
rough sets, database-oriented methods etc.

Data Classification Methods

The following list shows the available data classification
methods.

• Statistical Algorithms Statistical analysis
systems such as SAS and SPSS have been used
by analysts to detect unusual patterns and explain
patterns using statistical models such as linear
models. Such systems have their place and will
continue to be used.

• Neural Networks Artificial neural networks
mimic the pattern-finding capacity of the human
brain and hence some researchers have suggested
applying Neural Network algorithms to pattern-
mapping. Neural networks have been applied
successfully in a few applications that involve
classification.

• Genetic algorithms Optimization techniques that
use processes such as genetic combination,

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

169

mutation, and natural selection in a design based
on the concepts of natural evolution.

• Nearest neighbor method A technique that
classifies each record in a dataset based on a
combination of the classes of the k record(s) most
similar to it in a historical dataset. Sometimes
called the k-nearest neighbor technique.

• Rule induction The extraction of useful if-then
rules from data based on statistical significance.

• Data visualization The visual interpretation of
complex relationships in multidimensional data.

Many existing algorithms suggest abstracting the test data
before classifying it into various classes. There are several
alternatives for doing abstraction before classification: A
data set can be generalized to either a minimally
generalized abstraction level, an intermediate abstraction
level, or a rather high abstraction level. Too low an
abstraction level may result in scattered classes, bushy
classification trees, and difficulty at concise semantic
interpretation; whereas too high a level may result in the
loss of classification accuracy.

1) Classification-rule learning

Classification-rule learning involves finding rules or
decision trees that partition given data into predefined
classes[1]. For any realistic problem domain of the
classification-rule learning, the set of possible decision
trees is too large to be searched exhaustively. In fact, the
computational complexity of finding an optimal
classification decision tree is NP hard.

Most of the existing induction-based algorithms use
Hunt's method as the basic algorithm. Here is a recursive
description of Hunt's method for constructing a decision
tree from a set T of training cases with classes denoted {C1,
C2, … ,Ck }.

Case 1 T contains one or more cases, all belonging to a
single class Cj : The decision tree for T is a leaf identifying
class Cj.

Case 2 T contains no cases: The decision tree for T is a
leaf, but the class to be associated with the leaf must be
determined from information other than T.

Case 3 T contains cases that belong to a mixture of classes:
A test is chosen, based on a single attribute, that has one or
more mutually exclusive outcomes {O1, O2 , .. ,On }. T is
partitioned into subsets T1, T2, … ,Tn , where Ti contains
all the cases in T that have outcome Oi of the chosen test.
The decision tree for T consists of a decision node
identifying the test, and one branch for each possible

outcome. The same tree building machinery is applied
recursively to each subset of training cases.

2) Decision Trees

A decision tree is a classification scheme which generates
a tree and a set of rules, representing the model of different
classes from a given data set[12]. The set of records
available for developing classification methods is
generally divided into two disjoint subsets as follows:

(i) a training set - used for deriving the

classifier
(ii) a test set - used to measure the

accuracy of the classifier

The accuracy of the classifier is determined by the
percentage of the test examples that are correctly classified.
The attributes of the records are divided into two types as
follows:

Numerical attributes - attributes whose domain is
numerical
Categorical attributes - attributes whose domain is not
numerical

There is one distinguished attribute called the class label.
The goal of the classification is to build a concise model
that can be used to predict the class of the records whose
class label is not known.

A decision tree is a tree where the internal node - is a test
on an attribute, the tree branch - is an outcome of the test,
and the leaf node - is a class label or class distribution.

There are two phases of decision tree generation:

Tree construction
o at start, all the training examples are at

the root
o partition examples based on selected

attributes
o test attributes are selected based on a

heuristic or a statistical measure

Tree pruning
o identify and remove branches that reflect

noise or outliers
o One rule is generated for each path in

the tree from the root to a leaf
o Each attribute-value pair along a path

forms a conjunction
o The leaf node holds the class prediction
o Rules are generally simpler to

understand than trees

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

170

Tree Construction Principle

There are various methods of building decision trees from
a given training data set. Some basic concepts involved in
the building of decision trees are discussed below.

Splitting Attribute

With every node of the decision tree, there is an associated
attribute whose values determine the partitioning of the
data set when the node is expanded.

Splitting Criterion

The qualifying condition on the splitting attribute for data
set splitting at a node is called the splitting criterion at that
node. For a numeric attribute, the criterion can be an
equation or an inequality. For a categorical attribute, it is a
membership condition on a subset of values.

3) Decision Tree Construction Algorithms

A number of algorithms for inducing decision trees have
been proposed over the years. They differ among
themselves in the methods employed for selecting splitting
attributes and splitting conditions. These algorithms can be
classified into two types. The first type of algorithms is the
classical algorithms which handle only memory resident
data. The second category can handle the efficiency and
scalability issues. These algorithms remove the memory
restrictions and are fast and scalable.

4) CART (Classification And Regression Trees)

It is one of the popular methods of building decision trees.
CART builds a binary decision tree by splitting the
records at each node, according to a function of a single
attribute[15]. CART uses the gini index for determining
the best split. The initial split produces two nodes, each of
which is split in the same manner as the root node. If no
split is found which reduces the diversity of a given node,
it is labeled as the leaf node.
When the full tree is grown, only the leaf nodes remain. At
the end of the tree growing process, every record of the
training set has been assigned to some leaf of the full
decision tree. Each leaf can now be assigned a class and an
error rate. The error rate of a leaf node is the percentage
of incorrect classification at that node. The error rate of an
entire decision tree is a weighted sum of the error rates of
all the leaves. Each leaf’s contribution to the total is the
error rate at that leaf multiplied by the probability that the
record will end up there.

5) ID3 algorithm

The ID3 algorithm (Quinlan86) is a decision tree building
algorithm which determines the classification of objects by
testing the values of the their properties[12]. It builds the
tree in a top down fashion, starting from a set of objects
and a specification of properties. At each node of the tree,
a property is tested and the results used to partition the
object set. This process is recursively done till the set in a
given subtree is homogeneous with respect to the
classification criteria - in other words it contains objects
belonging to the same category. This then becomes a leaf
node. At each node, the property to test is chosen based on
information theoretic criteria that seek to maximize
information gain and minimize entropy. In simpler terms,
that property is tested which divides the candidate set in
the most homogeneous subsets.

6) C4.5 algorithm

This algorithm was proposed by Quinlan (1993). The
C4.5 algorithm generates a classification-decision tree for
the given data-set by recursive partitioning of data[14].
The decision is grown using Depth-first strategy. The
algorithm considers all the possible tests that can split the
data set and selects a test that gives the best information
gain. For each discrete attribute, one test with outcomes as
many as the number of distinct values of the attribute is
considered. For each continuous attribute, binary tests
involving every distinct values of the attribute are
considered. In order to gather the entropy gain of all these
binary tests efficiently, the training data set belonging to
the node in consideration is sorted for the values of the
continuous attribute and the entropy gains of the binary cut
based on each distinct values are calculated in one scan of
the sorted data. This process is repeated for each
continuous attributes.

7) SLIQ and SPRINT algorithms

SLIQ (Supervised Learning In Quest) developed by IBM's
Quest project team, is a decision tree classifier designed to
classify large training data [1]. It uses a pre-sorting
technique in the tree-growth phase. This helps avoid costly
sorting at each node.
SLIQ keeps a separate sorted list for each continuous
attribute and a separate list called class list. An entry in the
class list corresponds to a data item, and has a class label
and name of the node it belongs in the decision tree. An
entry in the sorted attribute list has an attribute value and
the index of data item in the class list. SLIQ grows the
decision tree in breadth-first manner.
For each attribute, it scans the corresponding sorted list
and calculate entropy values of each distinct values of all
the nodes in the frontier of the decision tree
simultaneously. After the entropy values have been

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

171

calculated for each attribute, one attribute is chosen for a
split for each nodes in the current frontier, and they are
expanded to have a new frontier. Then one more scan of
the sorted attribute list is performed to update the class list
for the new nodes.
While SLIQ handles disk-resident data that are too large to
fit in memory, it still requires some information to stay
memory-resident which grows in direct proportion to the
number of input records, putting a hard-limit on the size of
training data. The Quest team has recently designed a new
decision-tree-based classification algorithm, called
SPRINT (Scalable PaRallelizable INduction of decision
Trees) that for the removes all of the memory restrictions.

8) CHAID (Chi-Square Automatic Interaction
Detector)

CHAID, proposed by Kass in 1980, is a derivative of AID
(Automatic Interaction Detection), proposed by Hartigan
in 1975. CHAID attempts to stop growing the tree before
overfitting occurs. The decision tree is constructed by
partitioning the data set into two or more subsets, based on
the values of one of the non-class attributes. After the data
set is partitioned according to the chosen attributes, each
subset is considered for further partitioning using the same
algorithm. This process is repeated for each subset until
some stopping criterion is met. In CHAID, the number of
subsets in a partition can range from two up to the number
of distinct values of the splitting attribute. In this regard,
CHAID differs from the CART, which always forms
binary splits, and from ID3 and C4.5, which form a branch
for every distinct value.

9) Naïve k-means algorithm

 One of the most popular heuristics for solving the k-
means problem is based on a simple iterative scheme for
finding a locally optimal solution. This algorithm is often
called the k-means algorithm. There are a number of
variants to this algorithm, so to clarify which version we
are using, we will refer to it as the naïve k-means
algorithm as it is much simpler compared to the other
algorithms described here.
The naive k-means algorithm partitions the dataset into ‘k’
subsets such that all records, from now on referred to as
points, in a given subset "belong" to the same center. Also
the points in a given subset are closer to that center than to
any other center. The partitioning of the space can be
compared to that of Voronoi partitioning except that in
Voronoi partitioning one partitions the space based on
distance and here we partition the points based on distance.
The algorithm keeps track of the centroids of the subsets,
and proceeds in simple iterations. The initial partitioning is
randomly generated, that is, we randomly initialize the
centroids to some points in the region of the space. In each

iteration step, a new set of centroids is generated using the
existing set of centroids following two very simple steps.
Let us denote the set of centroids after the ith iteration by
C(i). The following operations are performed in the steps:

(i) Partition the points based on the

centroids C(i), that is, find the centroids
to which each of the points in the dataset
belongs. The points are partitioned based
on the Euclidean distance from the
centroids.

(ii) Set a new centroid c(i+1) ∈ C (i+1) to

be the mean of all the points that are
closest to c(i) ∈ C (i) The new location
of the centroid in a particular partition is
referred to as the new location of the old
centroid.

The algorithm is said to have converged when
recomputing the partitions does not result in a change in
the partitioning. In the terminology that we are using, the
algorithm has converged completely when C(i) and C(i – 1)
are identical. For configurations where no point is
equidistant to more than one center, the above
convergence condition can always be reached. This
convergence property along with its simplicity adds to the
attractiveness of the k-means algorithm.
The naïve k-means needs to perform a large number of
"nearest-neighbor" queries for the points in the dataset. If
the data is ‘d’ dimensional and there are ‘N’ points in the
dataset, the cost of a single iteration is O(kdN). As one
would have to run several iterations, it is generally not
feasible to run the naïve k-means algorithm for large
number of points.
Sometimes the convergence of the centroids (i.e. C(i) and
C(i+1) being identical) takes several iterations. Also in the
last several iterations, the centroids move very little. As
running the expensive iterations so many more times might
not be efficient, we need a measure of convergence of the
centroids so that we stop the iterations when the
convergence criteria is met. Distortion is the most widely
accepted measure.
Clustering error measures the same criterion and is
sometimes used instead of distortion. In fact k-means
algorithm is designed to optimize distortion. Placing the
cluster center at the mean of all the points minimizes the
distortion for the points in the cluster. Also when another
cluster center is closer to a point than its current cluster
center, moving the cluster from its current cluster to the
other can reduce the distortion further. The above two steps
are precisely the steps done by the k-means cluster. Thus k-
means reduces distortion in every step locally. The k-
Means algorithm terminates at a solution that is locally
optimal for the distortion function. Hence, a natural choice

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

172

as a convergence criterion is distortion. Among other
measures of convergence used by other researchers, we can
measure the sum of Euclidean distance of the new centroids
from the old centroids. In this thesis we always use
clustering error/distortion as the convergence criterion for
all variants of k-means algorithm.

Definition 1: Clustering error is the sum of the squared
Euclidean distances from points to the centers of the
partitions to which they belong.
Mathematically, given a clustering φ , we denote by

)(xφ the centroid this clustering associates with an
arbitrary point x (so for k-means,)(xφ is simply the
center closest to x). We then define a measure of quality
for φ :

∑ −=
x

xx
N

distortion 2)(1 φφ

Where |a| is used to denote the norm of a vector ‘a’. The
lesser the difference in distortion over successive iterations,
the more the centroids have converged. Distortion is
therefore used as a measure of goodness of the partitioning.
In spite of its simplicity, k-means often converges to local
optima. The quality of the solution obtained depends
heavily on the initial set of centroids, which is the only
non-deterministic step in the algorithm. Note that although
the starting centers can be selected arbitrarily, k-means is
fully deterministic, given the starting centers. A bad choice
of initial centers can have a great impact on both
performance and distortion. Also a good choice of initial
centroids would reduce the number of iterations that are
required for the solution to converge. Many algorithms
have tried to improve the quality of the k-means solution
by suggesting different ways of sampling the initial centers,
but none has been able to avoid the problem of the solution
converging to a local optimum.

10) Kd-trees

A very important data structure that is used in our
algorithm is a kd-tree. A kd-tree is a data structure for
storing a set of finite points from a d-dimensional space.

Kd-trees are simple data structures with the following
properties:

(i) They are binary trees;
(ii) The root node contains all the points;
(iii) A node is split along a split-plane such

that points to the left are part of the left
sub-tree, points to the right are part of
the right sub-tree;

(iv) The left and right sub-trees are
recursively split until there is only one

point in the leaf or a certain condition is
satisfied.

This is the basic kd-tree structure. There exist several
variants of the kd-tree based on the way in which they
choose the splitting plane, the termination criteria, etc.
Originally designed to decrease the time in nearest
neighbor queries, kd-trees have found other applications as
well. Omohumdro has recommended it in a survey of
possible techniques to increase speed of neural network
Though kd-trees give substantial advantage for lower
dimensions, the performance of kd-trees decreases/drops
in higher dimensions. Other data structures like AD trees
have been suggested for higher dimensions but these have
never been used for k-means. After this brief introduction
to the kd-trees (which is the primary data structure used in
our algorithm), we discuss the two main approaches that
try to counter the shortcomings of the k-means algorithm.

11) The Greedy K-means Algorithm

The local convergence properties of k-means have been
improved in this algorithm. Also it does not require the
initial set of centroids to be decided. The idea is that the
global minima can be reached through a series of local
searches based on the global clustering with one cluster
less.

Assumption: The assumption used in the algorithm is that
the global optima can be reached by running k-means with
the (k-1) clusters being placed at the optimal positions for
the (k-1) clustering problem and the kth cluster being
placed at an appropriate position that is yet to be
discovered.

Let us assume that the problem is to find K clusters and K’
≤ K. We Use the above assumption, the global optima for
k = K’ clusters is computed as a series of local searches.
Assuming that we have solved the k-means clustering
problem for K’ – 1 clusters, we have to place a new cluster
at an appropriate location. To discover the appropriate
insertion location, which is not known, we run k-means
algorithm until convergence with each of the points in the
entire set of the points in the dataset being added as the
candidate new cluster, one at a time, to the K’ – 1 clusters.
The converged K clusters that have the minimum
distortion after the convergence of k-means in the above
local searches are the clusters of the global k-means.
We know that for k = 1, the optimal clustering solution is
the mean of all the points in the dataset. Using the above
method we can compute the optimal positions for the k = 2,
3, 4, ... K, clusters. Thus the process involves computing
the optimal k-means centers for each of the K = 1, 2, 3…
K clusters. The algorithm is entirely deterministic.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

173

Though the attractiveness of the global k-means lies in it
finding the global solution, the method involves a heavy
cost. K-means is run N times, where N is the number of
points in the dataset, for every cluster to be inserted. The
complexity can be reduced considerably by not running
the K-means with the new cluster being inserted at each of
the dataset points but by finding another set of points that
could act as an appropriate set for insertion location of the
new cluster.
The variant of the kd-tree splits the points in a node using
the plane that passes through the mean of the points in the
node and is perpendicular to the principal component of
the points in the node. A node is not split if it has less than
a pre-specified number of points or an upper bound to the
number of leaf nodes is reached. The idea is that even if
the kd-tree were not used for nearest neighbor queries,
merely the construction of the kd-tree based on this
strategy would give a very good preliminary clustering of
the data. We can thus use the kd-tree nodes centers as the
candidate/initial insertion positions for the new clusters.
The time complexity of the algorithm can also be
improved by taking a greedy approach. In this approach,
running k-means for each possible insertion position is
avoided. Instead reduction in the distortion when the new
cluster is added is taken into account without actually
running k-means. The point that gives the maximum
decrease in the distortion when added as a cluster center is
taken to be the new insertion position.
K-means is run until convergence on the new list of
clusters with this added point as the new cluster. The
assumption is that the point that gives the maximum
decrease in distortion is also the point for which the
converged clusters would have the least distortion. This
results in a substantial improvement in the running time of
the algorithm, as it is unnecessary to run k-means for all
the possible insertion positions. However, the solution
may not be globally optimal but an approximate global
solution.

12) Self-Organising Map

The SOM can be characterised as "an unsupervised
network that seeks to learn a continuous topological
mapping of a set of inputs onto a set of outputs in such a
way that the outputs acquire the same topological order as
the inputs, by means of self-organisation based on data
examples" (Openshaw and Wymer 1994). Neurons are
typically organized in a 2D grid, and the SOM tries to find
clusters such that any two clusters that are close to each
other in the grid space have codebook vectors that are
close to each other in the input space.
In the self-organization process the input vectors are
presented to the network, and the cluster unit whose
weight vector is closest (usually in terms of Euclidean
distance) is chosen as the winner. The next step is to

update the value of the winning unit and neighbouring
units, this will approximate the values of the units to the
one of the input vector. This can be viewed as a motion of
the units in the direction of the input vector, the magnitude
of this movement depends on the learning rate, which
decreases along the process in order to obtain convergence.
Bearing in mind that Vector Quantization (VQ) is
essentially the same as the k-means algorithm, and that the
VQ is a special case of the SOM, in which the
neighbourhood size is zero, one can say that there is a
close relation between SOM and k-means. Openshaw and
Wymer (1994) go further and say that the basic SOM
algorithm "…is essentially the same as a K means
classifier; with a few differences due to neighbouring
training which might well be regarded as a form of
simulated annealing and it may provide better results and
avoid some local optima."

13) Genetic Algorithm

Evolution has proven to be a very powerful mechanism in
finding good solutions to difficult problems. One can look
at the natural selection as an optimisation method, which
tries to produce adequate solutions to particular
environments.
In spite of the large number of applications of GA in
different types of optimisation problems, there is very little
research on using this kind of approach to the clustering
problem. In fact, and bearing in mind the quality of the
solutions that this technology has showed in different
types of fields and problems (Beasley, Bull and Martin,
1993a, Mitchell, 1996) it makes perfect sense to try to use
it in clustering problems.
The flexibility associated with GA is one important aspect
to bear in mind. With the same genome representation and
just by changing the fitness function one can have a
different algorithm. In the case of spatial analysis this is
particularly important since one can try different fitness
functions in an exploratory phase.
In the genome each gene represents a data point and
defines cluster membership. All necessary evolution
operators can be implemented with this scheme. As
pointed by Demiriz et all (1999) the major problem
associated with this representation scheme is that it is not
scalable, on the other hand it seems to be computationally
efficient when the number of data points is not too large.

IV.REFERENCES

[1] Holsheimer, M., Kersten, M., Mannila, H., Toivonen, H.
“A Perspective on Databases and Data Mining”,
Proceedings KDD '95.

[2] Carpenter, G.A. & Grossberg, S. (2003), Adaptive
Resonance Theory, In M.A. Arbib (Ed.), The Handbook of

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.10, October 2011

174

Brain Theory and Neural Networks, Second Edition.
Cambridge, MA: MIT Press

[3] Grossberg, S. (1987), Competitive learning: From
interactive activation to adaptive resonance, Cognitive
Science (Publication).

[4] Carpenter, G.A. & Grossberg, S. (1987), ART 2: Self-
organization of stable category recognition codes for analog
input patterns, Applied Optics.

[5] Carpenter, G.A., Grossberg, S., & Rosen, D.B. (1991), ART
2-A: An adaptive resonance algorithm for rapid category
learning and recognition, Neural Networks (Publication).

[6] Carpenter, G.A. & Grossberg, S. (1990), ART 3:
Hierarchical search using chemical transmitters in self-
organizing pattern recognition architectures, Neural
Networks (Publication)

[7] Carpenter, G.A., Grossberg, S., & Rosen, D.B. (1991b),
Fuzzy ART: Fast stable learning and categorization of
analog patterns by an adaptive resonance system, Neural
Networks (Publication)

[8] Carpenter, G.A., Grossberg, S., & Reynolds, J.H. (1991),
ARTMAP: Supervised real-time learning and classification
of nonstationary data by a self-organizing neural network,
Neural Networks (Publication)

[9] Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds,
J.H., & Rosen, D.B. (1992), Fuzzy ARTMAP: A neural
network architecture.

[10] ftp://ftp.fas.sfu.ca/pub/cs/han/kdd
[11] http://www.data-miner.com/
[12] http://www.cs.purdue.edu/homes/ayg/CS590D/resources.ht

ml
[13] http://www.kd1.com/
[14] Pieter Adriaans, Dolf Zantinge - Data Mining – Addison

Wesley Longman – 1999
[15] Arun K Pujari - Data mining techniques - Universities Press

– 2001
[16] Michael J. A. Berry, Gordon S. Linoff – Mastering Data

Mining – Wiley Computer Publishing – 2001
[17] Rhonda Delmater, Monte Hancock – Data Mining

Explained – Butterworth-Heinemann – 2001
[18] http://www.revue-

texto.net/Reperes/Biblios/Forest_Biblio.html
[19] http://cns-web.bu.edu/~steve/

Sandhia Valsala, is presently associated with
AMA International University, Bahrain as
Asst Professor in the Computer Science
Department. She holds a Master’s degree in
Computer Applications from Bharatiyar
University, Coimbatore and is currently

pursuing her Phd from Karpagam University Coimbatore.

Jissy Ann George is presently associated with
AMA International University, Bahrain as
Asst Professor in the Computer Science
Department. She holds a Master’s degree in
Information Technology from Alagappa
University, Coimbatore .

Priyanka parvathy is presently associated
with AMA International University, Bahrain
as Asst Professor in the Computer Science
Department. She holds a Master’s degree in
VLSI/CAD, Manipal Academy of Higher
Education.

