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Abstract 
Handheld devices like mobile phones, PDAs have become 
very popular. They need modern security mechanisms such 
as the SSL protocols for their connectivity to the unsafe 
Internet. On the background of security mechanisms, 
cryptographic approaches are used. The most widely used 
public key cryptography approach in the Internet is RSA. 
But RSA needs heavy computing resources such as CPU 
computing power and memory which handheld devices 
cannot offer in large scale. Cryptographic approaches 
should be used in such a manner that they do not affect the 
user experience of the system. Keeping this in mind, 
researchers all over the world continuously try to discover 
newer approaches to the traditional RSA cryptosystem. A 
number of RSA variants were discovered with this notion. 
Further a relatively new concept called elliptic curve 
cryptography has caught the eyes of researchers in recent 
years with the view that it provides equal security with 
lesser bit-length of keys than RSA. In this context, this 
study focuses on the performance benefits of using RSA 
variants and elliptic curve cryptography over the traditional 
RSA cryptosystem so as to suggest an effective working 
cryptographic model for resource-constraint handheld 
devices. 
Keywords 
Elliptic Curve Cryptography, RSA, Public Key 
Cryptography, Network Security, Handheld Devices. 

1. Introduction 

In this age of universal electronic connectivity, of 
viruses and hackers, of electronic eavesdropping and 
electronic fraud, there is indeed no time at which 
security does not matter [26]. Handheld devices like 
mobile phones, personal digital assistants (PDAs), etc 
are needed in day-to-day activities, which also need 
security mechanisms for their connectivity to the 
unsafe Internet [11]. Implementing security 
mechanisms within a system includes enforcing 
confidentiality, integrity and availability. 
Cryptography is one of the approaches for that. Even 
though private key cryptography approaches are 
more efficient in terms of length and number of keys 
used than public key cryptography approaches, they 
are not dominant player in securing communication 

systems given their difficulty of providing secure key 
management [18]. So, the better option seems to use 
public key cryptography like RSA. However, the 
practical techniques of public key cryptography for 
network security like RSA demand considerable 
computing resources for their effectiveness [11].  
There is a contradiction between speed and security. 
The main security parameter of a cryptosystem is the 
length of the key. This key is used to encrypt and/or 
decrypt messages. The longer the bit-length of the 
key is; the more secure is the communication. 
However, increasing the length of the key can 
significantly slow down encryption and decryption 
stages. Thus, the core problem with RSA is the use of 
large keys in its encryption and decryption.  
The time needed to perform encryption/decryption 
should be sufficiently small on the handheld devices 
to avoid having an off-putting impact on the user 
experience of the system, while retaining the security 
of the cryptosystem. D. Boneh and H. Shacham in [7] 
have written that 1024-bit RSA decryption on a small 
handheld device such as the PalmPilot III can take 
about 30 seconds. Thus the solution to the successful 
implementation of RSA in constrained-computing 
environments is mainly by optimizing its decryption 
time when encryption exponent is small. 
A competing public key cryptosystem called elliptic 
curve cryptosystem has begun to challenge RSA. The 
basis of this challenge is by the use of smaller keys 
compared to RSA providing equal level of security 
for various bit-lengths of keys. This fact suggests that 
ECC can be a possible alternative to RSA in case of 
devices with constrained-computing capabilities. 

2. RSA Variants  

Original RSA 
According to K. Hansen, T. Larsen and K. Olsen in 
[11], the original RSA cryptosystem as proposed by 
Rivest, Shamir and Adleman consists of three steps: 
key generation, encryption and decryption. 
Key generation: As a part of key generation, choose 
two distinct large random prime numbers p and q. 
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Then after, compute N = pq, N is used as the modulus 
for both the public and private keys. Next, compute 
the totient: φ(N) = (p − 1)(q − 1).  Choose an integer 
e such that 1 < e < φ(N), and e and φ(N) share no 
factors other than 1 (i.e. e and φ(N) are relatively 
prime). Then after, e is released as the public key 
exponent.  Next, choose d to satisfy the congruence 
relation ed ≡ 1 mod φ(N); i.e. de = 1 + kφ(N) for 
some integer k. The so computed d is kept as the 
private key exponent. 
Encryption: Encryption is C = Me mod N, where M 
is the message. 
Decryption: To recover M from C by using the 
private key exponent d, the following computation is 
done: M = Cd mod n. 
In the computation of modular exponentiation in 
encryption/decryption, repeated square-and-multiply 
algorithm is used. This algorithm has a running time 
of O(tv2) where t is the bit-length of the exponent 
and v is the bit-length of the modulus. To improve 
encryption efficiency, the encryption exponent is 
generally chosen to be a small number, while the 
decryption exponent cannot be chosen that way and 
comes out to be a large number, so that decryption is 
usually inefficient in RSA i.e. O(n3). 
A number of RSA variants have been proposed by 
various researchers, all seeking to improve the costly 
decryption time of RSA so that it can be successfully 
deployed in limited computing devices. 
CRT RSA 
CRT RSA is one of the RSA variant for speeding up 
decryption. The concept behind CRT RSA is to split 
the costly decryption operation into two smaller and 
faster modular exponentiations instead of just one 
using the Chinese Remainder Theorem. 
According to the Chinese Remainder Theorem, for a 
system of r congruences, x ≡ a1 (mod n1), …, x ≡ ar 
(mod nr), where n1,…,nr are relatively prime integers 
and a1,…,ar are ordinary integers, has a unique 
solution modulo N = n1 * n2 *…* nr [11]. This 
solution can be written as: 
x = (a1 * N1 * y1 + … + ar * Nr * yr) mod N, where Ni 
= N/ni and yi = Ni

-1 mod ni for 1 ≤ i ≤ r [11].  
According to the authors in [11], the three steps in 
CRT RSA are computed as follows: 
Key generation: Key generation is same up to 
computation of e and d as in the original RSA. Next, 
dp = d mod p-1 and dq = d mod q-1 is computed. The 
public key becomes <N, e> and the private key 
becomes <p, q, dp, dq>. 
Encryption: Encryption is the same as for the 
original RSA i.e. C = Me mod N. 
Decryption: Decryption is divided into the following 
computations: 

First, Mp = Cdp mod p and Mq = Cdq mod q is 
computed. Then, using the Chinese Remainder 
Theorem, M is found as: 
M = (Mp * q * (q-1 mod p) + Mq * p * (p-1 mod q)) 
mod N. 
The major operation in decryption is modular 
exponentiation. Thus, decryption using CRT RSA 
requires two times O((n/2)3) since the bitlength of 
both the exponent and the modulus are n/2. 
Compared to the O(n3) decryption of the original 
RSA, CRT RSA improves decryption time with a 
factor n3 / (2 * (n/2)3) = 42 [11]. In [8], the 
cryptanalysis of CRT RSA has shown that size of d 
should be large for the security of the cryptosystem. 
Multi-Prime RSA 
The central idea of Multi-Prime RSA is that by 
adding more primes to the generation of N, 
decryption can be split into an arbitrary number of 
smaller exponentiations so that decryption becomes 
more efficient than CRT RSA. According to M.J. 
Hinek in [15], the three steps in Multi-Prime RSA are 
as follows:  
Key generation: Given the security parameter n and 
r ≥ 3, r different primes p1,…, pr each of (n/r)-bits are 
generated. Next N = p1 * p2 * … * pr and Φ(N) = (p1-
1) * (p2-1) * … * (pr-1) is calculated. Then e and d 
are computed as in the original RSA. Finally, di = d 
mod pi-1 for 1 ≤ i ≤ r is computed. The public key 
becomes <N, e> and the private key becomes <p1,…, 
pr, d1,…, dr>. 
Encryption: Encryption is the same as for the 
original RSA i.e. C = Me mod N. 
Decryption: Decryption is divided into the following 
computations: 
First Mi = Cdi mod pi, for 1 ≤ i ≤ r is calculated. Then 
using the Chinese Remainder Theorem, M is found 
as:  
M = (M1 * N1 * y1 + …+ Mr * Nr * yr) mod N where 
Ni = N/pi and yi = Ni

-1 mod pi for 1 ≤ i ≤ r. 
Decryption in Multi-Prime RSA requires r times 
O((n/r)3). Compared to the O(n3) decryption of the 
original RSA, Multi-Prime RSA improves decryption 
time with a factor n3 / (r * (n / r) 3) = r2 [11]. Since 
the individual primes need to have a certain size to 
guard against factorization attacks, so the size of r is 
limited and thus the actual improvement in 
decryption is also checked. 
Rebalanced RSA 
In the original RSA cryptosystem, encryption is more 
efficient than decryption because e is small and d is 
large. Thus another way to optimize decryption is to 
swap the exponents, i.e. make e large and d small. 
But small values of d are vulnerable to attacks given 
in [16]. So, in 1990 Wiener proposed a variant 
Rebalanced RSA that retains the size of d but makes 
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the decryption exponents dp = d mod p-1 and dq = d 
mod q-1 small (at the cost of a larger e). According to 
the author in [27], the three steps of Rebalanced RSA 
are as follows:  
Key generation: Given the security parameter n and 
w, two different primes p and q each (n/2)-bits are 
generated such that gcd (p-1, q-1) = 2. Next N = p * q 
and Φ(N) = (p-1) * (q-1) is computed. Then two w-
bit integers dp and dq satisfying gcd (dp, p-1) = gcd 
(dq, q-1) = 1 and dp ≡ dq (mod 2) are calculated. Then 
an integer d is to be found out such that d ≡ dp mod p-
1 and d ≡ dq mod q-1 according to [7]. Lastly, e is 
computed using e * d ≡ 1 mod Φ(N). The public key 
becomes <N, e> and the private key becomes <p, q, 
dp, dq>. 
Encryption: Encryption is the same as for the 
original RSA, C = Me mod N, but with a much larger 
e (on the order of N). 
Decryption: Decryption is divided into the following 
computations: 
 First, Mp = Cdp mod p and Mq = Cdq mod q is 
computed. Then, using the Chinese Remainder 
Theorem, M is found as: 
M = (Mp*q* (q-1 mod p) + Mq*p*(p-1 mod q)) mod N. 
Decryption in Rebalanced RSA requires two times 
O(w(n/2)2). Compared to the O(n3) decryption of the 
original RSA, Rebalanced RSA improves decryption 
time with a factor n3/(2*w*(n/2)2) = 2n/w [11]. With 
respect to the security of Rebalanced RSA, it is 
suggested to set w ≥ 160 thereby limiting the actual 
improvement of decryption in practice [11]. Also the 
speed-up in decryption comes at the cost of a much 
slower encryption (since e is on the order of N). This 
means that encryption in Rebalanced RSA is as slow 
as decryption in the original RSA.  
R-Prime RSA 
R-Prime RSA is the combination of Rebalanced RSA 
and Multi-Prime RSA [27]. In Rebalanced RSA, 
decryption is the same as in CRT RSA. Since Multi-
Prime RSA is a generalization of CRT RSA, 
generalizing Rebalanced RSA to use Multi-Prime 
RSA in its decryption is the idea behind R-Prime 
RSA. According to Paixao in [3], the three steps in 
R-Prime RSA are as follows: 
Key generation: Given n, r ≥ 3 and w; r different 
primes p1,…, pr each (n/r)-bits long are generated  
such that gcd(p1-1,…, pr-1) = 2. Next, N = p1 * … * 
pr and Φ(N) = (p1-1) * … * (pr-1) is calculated. Then 
r w-bit integers dp1,…, dpr satisfying gcd(dp1,p1-1) = 
… = gcd(dpr,pr-1) = 1 and dp1 ≡ … ≡ dpr (mod 2) are 
computed. Finally d is found out such that d ≡ dp1 
mod p1-1,…, d ≡ dpr mod pr-1 according to [7] and e 
is computed using the congruence relation e ≡ d-1 
mod Φ(N). The public key becomes <N, e> and the 
private key becomes <p1,…, pr, dp1,…, dpr>. 

Encryption: Encryption is the same as for the 
original RSA i.e. C = Me mod N, but with a much 
larger e. 
Decryption: Decryption is the same as for Multi-
Prime RSA, i.e., decryption is split into r modular 
exponentiations Mi =   mod pi for 1 ≤ i ≤ r and 

then the Chinese Remainder Theorem is applied. The 
difference lies in the length of dpi (denoted by di in 
Multi-Prime RSA). In R-Prime RSA, these values are 
w-bit each whereas in Multi-Prime RSA, they are n/r 
each.  
 
Decryption in R-Prime RSA requires r times 
O(w*(n/r)2). Compared to the O(n3) decryption of the 
original RSA, R-Prime RSA improves decryption 
time with a factor n3/(r*w*(n/r)2) = nr/w [11]. The 
same security considerations as Rebalanced RSA and 
Multi-Prime RSA apply to R-Prime RSA, i.e. it is 
mandatory to set w ≥ 160 and bound the value of r 
with respect to n [11]. Here also as in Rebalanced 
RSA, the speed-up in decryption implies a much 
slower encryption.  

3. Elliptic Curve Cryptography 

Elliptic curve cryptography is an approach to public-
key cryptography based on the algebraic structure of 
elliptic curves over finite fields [2]. The use of 
elliptic curves in cryptography was suggested 
independently by Neal Koblitz and Victor Miller in 
1985 [2].  
According to H. Tilborg in [9], an elliptic curve over 
GF(p) or Zp for prime p is defined by the cubic 
equation: 
y2 ≡ (x3 + ax + b) mod p, where coefficients a and b 
and the variables x and y are all elements of Zp such 
that  
(4a3 + 27b2) mod p ≠ 0, which implies that the curve 
has no singular points. 
Key Generation: An elliptic curve over GF(p) of the 
form y2 ≡ (x3 + ax + b) mod p, where coefficients a 
and b and the variables x and y are all elements of 
GF(p) is chosen such that (4a3 + 27b2) mod p ≠ 0 [4]. 
The parameters p, a and b are provided. Next a base 
point G from the group Ep(a, b) (or a generator point 
if the order of the group is prime) on the elliptic 
curve is taken whose order must be a large value n [9, 
26]. The order n of point G on the elliptic curve is 
defined as the smallest positive integer n such that 
n*G = O [26]. Now the private keys to be used by the 
communicating parties are integers less than this n 
and are randomly chosen and their respective public 
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keys are G multiplied by their individual private keys 
[9]. 
According to the authors in [20], the key generation 
steps can be summarized as: 

• Suppose Alice and Bob agree on a generator 

point G = (xG, yG) and an elliptic group Ep (a, 

b). 

• Alice chooses an integer nA and calculates 

PA = nA*G = (xA, yA). Now Alice’s public 

key is PA = (xA, yA) and his private key is nA. 

• Bob also chooses an integer nB and 

calculates PB = nB*G = (xB, yB) in the same 

way as Alice. Now Bob’s public key is PB = 

(xB, yB) and his private key is nB. 

Encryption and Decryption in ECC: To perform 
encryption, the plaintext message m to be sent is first 
encoded as a point Pm = (xm, ym) and it is this point 
that will be encrypted as ciphertext and subsequently 
decrypted [13].   
According to the authors in [20] and [26], encryption 
of a point is done as: 

• Suppose that Alice wishes to send a message 

Pm to Bob. For this, Alice chooses a random 

positive integer k and computes c1 = k * G 

and c2 = Pm + k * PB.  

• Alice sends the ciphertext Cm = {c1, c2} to 

Bob. 

 
Here Alice has used Bob's public key PB for 
encryption. Now again according to the authors in 
[20] and [26], upon receiving the ciphertext pair (c1, 
c2) from Alice, Bob recovers the message as follows: 

• Bob multiplies c1 by his private key nB and 

subtracts the result from c2, i.e. Pm + k * PB - 

nB * (k * G) = Pm + k * (nB * G) - nB * (k * 

G) = Pm. 

4. Implementation 

We have implemented the RSA with its variants and 
the ECC in J2ME™ platform. J2ME™ (Java™ 2 

Micro Edition) is the de facto application platform 
used in handheld devices [2]. J2ME™ contains a 
subset of the APIs of Java™ Standard Edition. The 
Connected Limited Device Configuration (CLDC) 
and the Mobile Information Device Profile (MIDP) 
define the available APIs [21]. CLDC 1.1 and MIDP 
2.1 are used in this work since they are supported in 
NetBeans 6.5. They do not contain any general 
cryptographic API for multi-precision computations 
like the BigInteger and SecureRandom classes [11]. 
Thus to support those computations the APIs 
provided by bouncycastle.org have been used [12]. 

Implementation Details of RSA and its Variants: 
RSA with key sizes of 1536, 2048, 3072 and 7680 
bits are equivalent in security to the ECC finite field 
size of 192, 224, 256 and 384 bits [13, 20, 26]. So 
they are implemented with these key sizes and the 
timings of key generation, encryption and decryption 
are captured using the standard Java™ function. 

Implementation Details of ECC:  NIST curve 
domain parameters in GF (p) for the curve y*y mod p 
= (x*x*x + a*x + b) mod p were taken for bit sizes of 
192, 224, 256 and 384 from [13]. 

5. Analysis 

For making the analysis realistic, great care has been 
taken. In RSA, CRT RSA and Multi-Prime RSA, the 
public key is taken to be 65537. The number of 
individual primes to be generated in Multi-Prime 
RSA and R-Prime RSA is taken to be 3 for modulus 
sizes of 1536, 2048 and 3072, and 4 for modulus size 
of 7680 as suggested by Hinek in [15]. In Rebalanced 
RSA and R-Prime RSA the size of the individual 
small decryption exponents is taken to be 224. With 
ECC, the size of the private key is taken to be equal 
to the finite field size and the scalar used in 
encryption is randomly generated to be of 160-bits. 
The point to be encrypted is taken as the base point of 
the finite field in ECC, while for RSA and its variants 
a numeric message of 256-bits is randomly generated 
and then encrypted/decrypted.  
 
The following graphs summarize the outcomes of the 
experiments carried out during this study. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011 

 

12

Fig. 1: Graph showing the variation of key generation time  with 

increasing key sizes 

Fig. 2: Graph showing the variation of encryption time with 
increasing key   sizes  

 

   Fig.  3: Graph showing the variation of decryption time with 
increasing key sizes 

6. Conclusion 

The central part of RSA cryptosystem and its 
variants: CRT RSA, Multi-Prime RSA, Rebalanced 
RSA, R-Prime RSA; and ECC were implemented on 
J2ME™ platform. The tests were run on typical 
numerical data which showed that ECC outperformed 
RSA and each of its variants with a factor when 
equivalent key sizes were taken of 384/7680 bits 
large in all three steps: key generation, encryption 
and decryption. Consequently, it can be asserted that 
when higher security level is required, ECC will be 
the suitable choice for handheld devices in future. 

7. Recommendation and Future Work 

With this study ECC is discovered as an effective 
working cryptographic model for handheld devices 
when the required security level is high. The 
recommendations after this study are: 

• The free of cost Bouncy-Castle 

cryptography library may be changed with 

other paid libraries for a better performance 

analysis.  

• Optimization algorithms exist for ECC that 

may be used to further reduce the key 

generation, encryption and decryption times 

of ECC that are left in this study.  

• Other standard elliptic curves like NIST 

recommended curves over GF(2m) and 

SECG curves over GF(p) and GF(2m) may 

be tested.  
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