
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

8

Manuscript received November 5, 2011
Manuscript revised November 20, 2011

Performance Evaluation of RSA Variants and Elliptic Curve
Cryptography on Handheld Devices

Jagdish Bhatta and Lok Prakash Pandey

Central Department of Computer Science and IT, Tribhuwan University, Nepal
 Nagarjuna College of Information Technology, Tribhuvan University, Nepal

Abstract
Handheld devices like mobile phones, PDAs have become
very popular. They need modern security mechanisms such
as the SSL protocols for their connectivity to the unsafe
Internet. On the background of security mechanisms,
cryptographic approaches are used. The most widely used
public key cryptography approach in the Internet is RSA.
But RSA needs heavy computing resources such as CPU
computing power and memory which handheld devices
cannot offer in large scale. Cryptographic approaches
should be used in such a manner that they do not affect the
user experience of the system. Keeping this in mind,
researchers all over the world continuously try to discover
newer approaches to the traditional RSA cryptosystem. A
number of RSA variants were discovered with this notion.
Further a relatively new concept called elliptic curve
cryptography has caught the eyes of researchers in recent
years with the view that it provides equal security with
lesser bit-length of keys than RSA. In this context, this
study focuses on the performance benefits of using RSA
variants and elliptic curve cryptography over the traditional
RSA cryptosystem so as to suggest an effective working
cryptographic model for resource-constraint handheld
devices.
Keywords
Elliptic Curve Cryptography, RSA, Public Key
Cryptography, Network Security, Handheld Devices.

1. Introduction

In this age of universal electronic connectivity, of
viruses and hackers, of electronic eavesdropping and
electronic fraud, there is indeed no time at which
security does not matter [26]. Handheld devices like
mobile phones, personal digital assistants (PDAs), etc
are needed in day-to-day activities, which also need
security mechanisms for their connectivity to the
unsafe Internet [11]. Implementing security
mechanisms within a system includes enforcing
confidentiality, integrity and availability.
Cryptography is one of the approaches for that. Even
though private key cryptography approaches are
more efficient in terms of length and number of keys
used than public key cryptography approaches, they
are not dominant player in securing communication

systems given their difficulty of providing secure key
management [18]. So, the better option seems to use
public key cryptography like RSA. However, the
practical techniques of public key cryptography for
network security like RSA demand considerable
computing resources for their effectiveness [11].
There is a contradiction between speed and security.
The main security parameter of a cryptosystem is the
length of the key. This key is used to encrypt and/or
decrypt messages. The longer the bit-length of the
key is; the more secure is the communication.
However, increasing the length of the key can
significantly slow down encryption and decryption
stages. Thus, the core problem with RSA is the use of
large keys in its encryption and decryption.
The time needed to perform encryption/decryption
should be sufficiently small on the handheld devices
to avoid having an off-putting impact on the user
experience of the system, while retaining the security
of the cryptosystem. D. Boneh and H. Shacham in [7]
have written that 1024-bit RSA decryption on a small
handheld device such as the PalmPilot III can take
about 30 seconds. Thus the solution to the successful
implementation of RSA in constrained-computing
environments is mainly by optimizing its decryption
time when encryption exponent is small.
A competing public key cryptosystem called elliptic
curve cryptosystem has begun to challenge RSA. The
basis of this challenge is by the use of smaller keys
compared to RSA providing equal level of security
for various bit-lengths of keys. This fact suggests that
ECC can be a possible alternative to RSA in case of
devices with constrained-computing capabilities.

2. RSA Variants

Original RSA
According to K. Hansen, T. Larsen and K. Olsen in
[11], the original RSA cryptosystem as proposed by
Rivest, Shamir and Adleman consists of three steps:
key generation, encryption and decryption.
Key generation: As a part of key generation, choose
two distinct large random prime numbers p and q.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

9

Then after, compute N = pq, N is used as the modulus
for both the public and private keys. Next, compute
the totient: φ(N) = (p − 1)(q − 1). Choose an integer
e such that 1 < e < φ(N), and e and φ(N) share no
factors other than 1 (i.e. e and φ(N) are relatively
prime). Then after, e is released as the public key
exponent. Next, choose d to satisfy the congruence
relation ed ≡ 1 mod φ(N); i.e. de = 1 + kφ(N) for
some integer k. The so computed d is kept as the
private key exponent.
Encryption: Encryption is C = Me mod N, where M
is the message.
Decryption: To recover M from C by using the
private key exponent d, the following computation is
done: M = Cd mod n.
In the computation of modular exponentiation in
encryption/decryption, repeated square-and-multiply
algorithm is used. This algorithm has a running time
of O(tv2) where t is the bit-length of the exponent
and v is the bit-length of the modulus. To improve
encryption efficiency, the encryption exponent is
generally chosen to be a small number, while the
decryption exponent cannot be chosen that way and
comes out to be a large number, so that decryption is
usually inefficient in RSA i.e. O(n3).
A number of RSA variants have been proposed by
various researchers, all seeking to improve the costly
decryption time of RSA so that it can be successfully
deployed in limited computing devices.
CRT RSA
CRT RSA is one of the RSA variant for speeding up
decryption. The concept behind CRT RSA is to split
the costly decryption operation into two smaller and
faster modular exponentiations instead of just one
using the Chinese Remainder Theorem.
According to the Chinese Remainder Theorem, for a
system of r congruences, x ≡ a1 (mod n1), …, x ≡ ar
(mod nr), where n1,…,nr are relatively prime integers
and a1,…,ar are ordinary integers, has a unique
solution modulo N = n1 * n2 *…* nr [11]. This
solution can be written as:
x = (a1 * N1 * y1 + … + ar * Nr * yr) mod N, where Ni
= N/ni and yi = Ni

-1 mod ni for 1 ≤ i ≤ r [11].
According to the authors in [11], the three steps in
CRT RSA are computed as follows:
Key generation: Key generation is same up to
computation of e and d as in the original RSA. Next,
dp = d mod p-1 and dq = d mod q-1 is computed. The
public key becomes <N, e> and the private key
becomes <p, q, dp, dq>.
Encryption: Encryption is the same as for the
original RSA i.e. C = Me mod N.
Decryption: Decryption is divided into the following
computations:

First, Mp = Cdp mod p and Mq = Cdq mod q is
computed. Then, using the Chinese Remainder
Theorem, M is found as:
M = (Mp * q * (q-1 mod p) + Mq * p * (p-1 mod q))
mod N.
The major operation in decryption is modular
exponentiation. Thus, decryption using CRT RSA
requires two times O((n/2)3) since the bitlength of
both the exponent and the modulus are n/2.
Compared to the O(n3) decryption of the original
RSA, CRT RSA improves decryption time with a
factor n3 / (2 * (n/2)3) = 42 [11]. In [8], the
cryptanalysis of CRT RSA has shown that size of d
should be large for the security of the cryptosystem.
Multi-Prime RSA
The central idea of Multi-Prime RSA is that by
adding more primes to the generation of N,
decryption can be split into an arbitrary number of
smaller exponentiations so that decryption becomes
more efficient than CRT RSA. According to M.J.
Hinek in [15], the three steps in Multi-Prime RSA are
as follows:
Key generation: Given the security parameter n and
r ≥ 3, r different primes p1,…, pr each of (n/r)-bits are
generated. Next N = p1 * p2 * … * pr and Φ(N) = (p1-
1) * (p2-1) * … * (pr-1) is calculated. Then e and d
are computed as in the original RSA. Finally, di = d
mod pi-1 for 1 ≤ i ≤ r is computed. The public key
becomes <N, e> and the private key becomes <p1,…,
pr, d1,…, dr>.
Encryption: Encryption is the same as for the
original RSA i.e. C = Me mod N.
Decryption: Decryption is divided into the following
computations:
First Mi = Cdi mod pi, for 1 ≤ i ≤ r is calculated. Then
using the Chinese Remainder Theorem, M is found
as:
M = (M1 * N1 * y1 + …+ Mr * Nr * yr) mod N where
Ni = N/pi and yi = Ni

-1 mod pi for 1 ≤ i ≤ r.
Decryption in Multi-Prime RSA requires r times
O((n/r)3). Compared to the O(n3) decryption of the
original RSA, Multi-Prime RSA improves decryption
time with a factor n3 / (r * (n / r) 3) = r2 [11]. Since
the individual primes need to have a certain size to
guard against factorization attacks, so the size of r is
limited and thus the actual improvement in
decryption is also checked.
Rebalanced RSA
In the original RSA cryptosystem, encryption is more
efficient than decryption because e is small and d is
large. Thus another way to optimize decryption is to
swap the exponents, i.e. make e large and d small.
But small values of d are vulnerable to attacks given
in [16]. So, in 1990 Wiener proposed a variant
Rebalanced RSA that retains the size of d but makes

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

10

the decryption exponents dp = d mod p-1 and dq = d
mod q-1 small (at the cost of a larger e). According to
the author in [27], the three steps of Rebalanced RSA
are as follows:
Key generation: Given the security parameter n and
w, two different primes p and q each (n/2)-bits are
generated such that gcd (p-1, q-1) = 2. Next N = p * q
and Φ(N) = (p-1) * (q-1) is computed. Then two w-
bit integers dp and dq satisfying gcd (dp, p-1) = gcd
(dq, q-1) = 1 and dp ≡ dq (mod 2) are calculated. Then
an integer d is to be found out such that d ≡ dp mod p-
1 and d ≡ dq mod q-1 according to [7]. Lastly, e is
computed using e * d ≡ 1 mod Φ(N). The public key
becomes <N, e> and the private key becomes <p, q,
dp, dq>.
Encryption: Encryption is the same as for the
original RSA, C = Me mod N, but with a much larger
e (on the order of N).
Decryption: Decryption is divided into the following
computations:
 First, Mp = Cdp mod p and Mq = Cdq mod q is
computed. Then, using the Chinese Remainder
Theorem, M is found as:
M = (Mp*q* (q-1 mod p) + Mq*p*(p-1 mod q)) mod N.
Decryption in Rebalanced RSA requires two times
O(w(n/2)2). Compared to the O(n3) decryption of the
original RSA, Rebalanced RSA improves decryption
time with a factor n3/(2*w*(n/2)2) = 2n/w [11]. With
respect to the security of Rebalanced RSA, it is
suggested to set w ≥ 160 thereby limiting the actual
improvement of decryption in practice [11]. Also the
speed-up in decryption comes at the cost of a much
slower encryption (since e is on the order of N). This
means that encryption in Rebalanced RSA is as slow
as decryption in the original RSA.
R-Prime RSA
R-Prime RSA is the combination of Rebalanced RSA
and Multi-Prime RSA [27]. In Rebalanced RSA,
decryption is the same as in CRT RSA. Since Multi-
Prime RSA is a generalization of CRT RSA,
generalizing Rebalanced RSA to use Multi-Prime
RSA in its decryption is the idea behind R-Prime
RSA. According to Paixao in [3], the three steps in
R-Prime RSA are as follows:
Key generation: Given n, r ≥ 3 and w; r different
primes p1,…, pr each (n/r)-bits long are generated
such that gcd(p1-1,…, pr-1) = 2. Next, N = p1 * … *
pr and Φ(N) = (p1-1) * … * (pr-1) is calculated. Then
r w-bit integers dp1,…, dpr satisfying gcd(dp1,p1-1) =
… = gcd(dpr,pr-1) = 1 and dp1 ≡ … ≡ dpr (mod 2) are
computed. Finally d is found out such that d ≡ dp1
mod p1-1,…, d ≡ dpr mod pr-1 according to [7] and e
is computed using the congruence relation e ≡ d-1
mod Φ(N). The public key becomes <N, e> and the
private key becomes <p1,…, pr, dp1,…, dpr>.

Encryption: Encryption is the same as for the
original RSA i.e. C = Me mod N, but with a much
larger e.
Decryption: Decryption is the same as for Multi-
Prime RSA, i.e., decryption is split into r modular
exponentiations Mi = mod pi for 1 ≤ i ≤ r and

then the Chinese Remainder Theorem is applied. The
difference lies in the length of dpi (denoted by di in
Multi-Prime RSA). In R-Prime RSA, these values are
w-bit each whereas in Multi-Prime RSA, they are n/r
each.

Decryption in R-Prime RSA requires r times
O(w*(n/r)2). Compared to the O(n3) decryption of the
original RSA, R-Prime RSA improves decryption
time with a factor n3/(r*w*(n/r)2) = nr/w [11]. The
same security considerations as Rebalanced RSA and
Multi-Prime RSA apply to R-Prime RSA, i.e. it is
mandatory to set w ≥ 160 and bound the value of r
with respect to n [11]. Here also as in Rebalanced
RSA, the speed-up in decryption implies a much
slower encryption.

3. Elliptic Curve Cryptography

Elliptic curve cryptography is an approach to public-
key cryptography based on the algebraic structure of
elliptic curves over finite fields [2]. The use of
elliptic curves in cryptography was suggested
independently by Neal Koblitz and Victor Miller in
1985 [2].
According to H. Tilborg in [9], an elliptic curve over
GF(p) or Zp for prime p is defined by the cubic
equation:
y2 ≡ (x3 + ax + b) mod p, where coefficients a and b
and the variables x and y are all elements of Zp such
that
(4a3 + 27b2) mod p ≠ 0, which implies that the curve
has no singular points.
Key Generation: An elliptic curve over GF(p) of the
form y2 ≡ (x3 + ax + b) mod p, where coefficients a
and b and the variables x and y are all elements of
GF(p) is chosen such that (4a3 + 27b2) mod p ≠ 0 [4].
The parameters p, a and b are provided. Next a base
point G from the group Ep(a, b) (or a generator point
if the order of the group is prime) on the elliptic
curve is taken whose order must be a large value n [9,
26]. The order n of point G on the elliptic curve is
defined as the smallest positive integer n such that
n*G = O [26]. Now the private keys to be used by the
communicating parties are integers less than this n
and are randomly chosen and their respective public

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

11

keys are G multiplied by their individual private keys
[9].
According to the authors in [20], the key generation
steps can be summarized as:

• Suppose Alice and Bob agree on a generator

point G = (xG, yG) and an elliptic group Ep (a,

b).

• Alice chooses an integer nA and calculates

PA = nA*G = (xA, yA). Now Alice’s public

key is PA = (xA, yA) and his private key is nA.

• Bob also chooses an integer nB and

calculates PB = nB*G = (xB, yB) in the same

way as Alice. Now Bob’s public key is PB =

(xB, yB) and his private key is nB.

Encryption and Decryption in ECC: To perform
encryption, the plaintext message m to be sent is first
encoded as a point Pm = (xm, ym) and it is this point
that will be encrypted as ciphertext and subsequently
decrypted [13].
According to the authors in [20] and [26], encryption
of a point is done as:

• Suppose that Alice wishes to send a message

Pm to Bob. For this, Alice chooses a random

positive integer k and computes c1 = k * G

and c2 = Pm + k * PB.

• Alice sends the ciphertext Cm = {c1, c2} to

Bob.

Here Alice has used Bob's public key PB for
encryption. Now again according to the authors in
[20] and [26], upon receiving the ciphertext pair (c1,
c2) from Alice, Bob recovers the message as follows:

• Bob multiplies c1 by his private key nB and

subtracts the result from c2, i.e. Pm + k * PB -

nB * (k * G) = Pm + k * (nB * G) - nB * (k *

G) = Pm.

4. Implementation

We have implemented the RSA with its variants and
the ECC in J2ME™ platform. J2ME™ (Java™ 2

Micro Edition) is the de facto application platform
used in handheld devices [2]. J2ME™ contains a
subset of the APIs of Java™ Standard Edition. The
Connected Limited Device Configuration (CLDC)
and the Mobile Information Device Profile (MIDP)
define the available APIs [21]. CLDC 1.1 and MIDP
2.1 are used in this work since they are supported in
NetBeans 6.5. They do not contain any general
cryptographic API for multi-precision computations
like the BigInteger and SecureRandom classes [11].
Thus to support those computations the APIs
provided by bouncycastle.org have been used [12].

Implementation Details of RSA and its Variants:
RSA with key sizes of 1536, 2048, 3072 and 7680
bits are equivalent in security to the ECC finite field
size of 192, 224, 256 and 384 bits [13, 20, 26]. So
they are implemented with these key sizes and the
timings of key generation, encryption and decryption
are captured using the standard Java™ function.

Implementation Details of ECC: NIST curve
domain parameters in GF (p) for the curve y*y mod p
= (x*x*x + a*x + b) mod p were taken for bit sizes of
192, 224, 256 and 384 from [13].

5. Analysis

For making the analysis realistic, great care has been
taken. In RSA, CRT RSA and Multi-Prime RSA, the
public key is taken to be 65537. The number of
individual primes to be generated in Multi-Prime
RSA and R-Prime RSA is taken to be 3 for modulus
sizes of 1536, 2048 and 3072, and 4 for modulus size
of 7680 as suggested by Hinek in [15]. In Rebalanced
RSA and R-Prime RSA the size of the individual
small decryption exponents is taken to be 224. With
ECC, the size of the private key is taken to be equal
to the finite field size and the scalar used in
encryption is randomly generated to be of 160-bits.
The point to be encrypted is taken as the base point of
the finite field in ECC, while for RSA and its variants
a numeric message of 256-bits is randomly generated
and then encrypted/decrypted.

The following graphs summarize the outcomes of the
experiments carried out during this study.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

12

Fig. 1: Graph showing the variation of key generation time with

increasing key sizes

Fig. 2: Graph showing the variation of encryption time with
increasing key sizes

 Fig. 3: Graph showing the variation of decryption time with
increasing key sizes

6. Conclusion

The central part of RSA cryptosystem and its
variants: CRT RSA, Multi-Prime RSA, Rebalanced
RSA, R-Prime RSA; and ECC were implemented on
J2ME™ platform. The tests were run on typical
numerical data which showed that ECC outperformed
RSA and each of its variants with a factor when
equivalent key sizes were taken of 384/7680 bits
large in all three steps: key generation, encryption
and decryption. Consequently, it can be asserted that
when higher security level is required, ECC will be
the suitable choice for handheld devices in future.

7. Recommendation and Future Work

With this study ECC is discovered as an effective
working cryptographic model for handheld devices
when the required security level is high. The
recommendations after this study are:

• The free of cost Bouncy-Castle

cryptography library may be changed with

other paid libraries for a better performance

analysis.

• Optimization algorithms exist for ECC that

may be used to further reduce the key

generation, encryption and decryption times

of ECC that are left in this study.

• Other standard elliptic curves like NIST

recommended curves over GF(2m) and

SECG curves over GF(p) and GF(2m) may

be tested.

References
[1] A. Menezes, P. van Oorschot and S. Vanstone,

“Handbook of Applied Cryptography”, 1st Edition,
CRC Press, 1997.

[2] B. Kayayurt, “End-to-End Security for Mobile
Devices”, Department of Computer Engineering,
Izmir Institute of Technology, Izmir, Turkey, July
2004.

[3] C. A. M. Paixao, “An Efficient Variant of the RSA
Cryptosystem”, Institute of Mathematics and Statistics,
University of Sao Paulo, Brasil.

[4] Certicom Research, “Standards for Efficient
Cryptography SEC1: Elliptic Curve Cryptography”,
Version 1.0, September 20, 2000.

[5] Certicom Research, “Standards for Efficient
Cryptography SEC2: Recommended Elliptic Curve
Domain Parameters”, Version 1.0, September 20,
2000.

[6] D. Boneh, “Review of Standards for Efficient
Cryptography SEC1: Elliptic Curve Cryptography”.

[7] D. Boneh and H. Shacham, “Fast Variants of RSA”,
RSA Laboratories, CryptoBytes, Volume 5, No. 1,
Winter/Spring 2002.

[8] E. Jochemsz, “Cryptanalysis of RSA Variants Using
Small Roots of Polynomials”, Eindhoven Technical
University, October 4, 2007.

[9] H.C.A.V. Tilborg, “Fundamentals of Cryptology”.
[10] H. Pietilainen, “Elliptic Curve Cryptography on Smart

Cards”, Helsinki University of Technology, Faculty of
Information Technology, Department of Computer
Science, October 30, 2000.

[11] K. Hansen, T. Larsen and K. Olsen, “On the
Efficiency of Fast RSA Variants in Modern Mobile

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

13

Phones”, International Journal of Computer Science
and Information Security, Vol. 6, No. 3, 2009.

[12] Legion of the Bouncy Castle, “The Bouncy Castle
Crypto APIs for Java”, www.bouncycastle.org, 2011.

[13] M. Brown, Dept. of C&O, University of Waterloo,
Canada, D. Hankerson, Dept. of Discrete and
Statistical Sciences, Auburn University, USA, J.
Lopez, Dept. of Computer Science, University of
Valle, Colombia, and A. Menezes, Certicom Research,
Canada, “Software Implementation of the NIST
Elliptic Curves Over Prime Fields”.

[14] Md. Ali-Al-Mamun, Md. M. Islam, S.M.M. Romman
and A.H.S.U. Ahmad, “Performance Evaluation of
Several Efficient RSA Variants.” International Journal
of Computer Science and Network Security, Vol. 8,
No. 7, July 2008.

[15] M. J. Hinek, “On the Security of Multi-Prime RSA”,
David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Ontario, N2L 3G1,
Canada, June 13, 2006.

[16] M. J. Wiener, “Cryptanalysis of Short RSA Secret
Exponents”, BNR, P.O. Box 3511 Station C, Ottawa,
Ontario, Canada, K1Y 4H7, August 3, 1989.

[17] M. Saeki, “Elliptic Curve Cryptosystems”, School of
Computer Science, McGill University, Montreal,
February 1997.

[18] R.A. Mollin, “An Introduction to Cryptography”,
Second Edition, Chapman & Hall/CRC, Taylor &
Francis Group, 2007.]

[19] RSA Laboratories, “PKCS #1 v2.1: RSA
Cryptography Standard”, RSA laboratories, June 14,
2002.

[20] R. Soram and M. Khomdram, “Juxtaposition of RSA
and Elliptic Curve Cryptosystem”, International
Journal of Computer Science and Network Security,
Vol. 9 No.9, September 2009.

[21] Sun Microsystems Inc., http://java.sun.com/javame.
[22] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,

“Introduction to Algorithms”, Second Edition,
Prentice-Hall India, 2007.

[23] T. Struk, “Elliptic Curve Cryptography as Suitable
Solution for Mobile Devices”, National University of
Ireland, Galway, August 28, 2009.

[24] T. Takagi, “Fast RSA-type Cryptosystem Modulo
pkq”, NTT Software Laboratories, 3-9-11, Midoro-cho
Musashino-shi, Tokyo 180-0012, Japan.

[25] W. Chou, “Elliptic Curve Cryptography and Its

Applications to Mobile Devices”, University of
Maryland, Department of Mathematics, College Park.

[26]
[27] W. Stallings, “Cryptography and Network Security”,

Fourth Edition, 2009.
[28] Z. Zhong and Z. Xia, “On the Variants and Speed

Methods of RSA”, Department of Computer Science,
School of Computer, Wuhan University, Wuhan,
Hubei 430072 P.R. China.

 Jagdish Bhatta received the
B.Sc. and M.Sc. degrees in
Computer Science from Tribhuvan
University, Nepal in 2004 and
2007, respectively. Since 2007 he
is a full time faculty member at the
Tribhuvan University. He has been
involved in number of researches
conducted in the department and

also has supervised graduate students dissertation. His
research areas are Cryptography and Network Security,
Artificial Intelligence, Automata Theory, Computational
Geometry.

Lok Prakash Pandey
 received the B.Sc. and
M.Sc. degrees in Computer Science
from Tribhuvan University, Nepal
in 2004 and 2009, respectively. He
has two years of teaching
experience in “Structured
Programming”, “Compiler Design
and Construction”, “Cryptography”

and “Network Security”. He also has worked as a “Chip-
Level Hardware Instructor”. His main area of interest in
research includes “Cryptography and Network Security”
and “Operating Systems”. He is currently working as a
Program Officer and faculty member for BIM and B.Sc.
CSIT studies in Nagarjuna College of IT affiliated to
Tribhuwan University.

