
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

14

Manuscript received November 5, 2011
Manuscript revised November 20, 2011

Alternative Engine to Detect and Block Port Scan Attacks using
Virtual Network Environments

Walter Fuertes

Patricio Zambrano

Marco Sánchez Pablo Gamboa

Post Graduate Program, Escuela Politécnica del Ejército, Sangolquí – Ecuador

Summary
Currently, IP networks are constantly harmed by several attack
techniques such as port scans, denial of service, brute force attacks,
etc., which can collapse the continuity of business services. To
address this problem, this paper focuses on an alternative solution
for detection, block, and prevention of port scanning attacks.
Particularly, this implementation is an alternative engine to
automatically block specialized tool scans, namely PSAD (Port
Scan Attack Detector), but it is conceptualized differently from
the features that the program offers. To carry out this work, we
have designed and implemented a virtual network environment
that is to be configured as an experimenting platform with port
scan attacks. To neutralize such attacks, we performed a security
mechanism that takes the data reported by the PSAD and using
parameterized variables (block time and level of category)
automatic locks become viable, including custom records and
notifications via e-mail. To validate our solution, several tests of
port scan attacks have been run on public and private networks.
Then we have compared the performance of our alternative engine
with ClearOS (specialized security tool for Linux) and the PSAD.
The results show that our alternative engine is faster and more
reliable than the tools previously mentioned.
Keywords:
Network attacks, port scan attack, security, virtual network
environments.

1. Introduction

Some of the biggest threats to the security network are the
presence of bugs, viruses, Trojans, port scan, phishing and
denial of service. These can cause your Web server or client
to crash, corrupt your information, or, worst of all, allow
outsiders unauthorized access [1]. These intrusions may
render its resources inoperative and produce a loss of
productivity, causing economic losses and compromising
the business continuity. This paper centers its attention on
port scans attacks since these attacks in actuality represent
a considerable part of Internet traffic [2][3]. Thus, this
research focuses on an alternative solution for the detection
and blocking of port scan attacks performed on a virtual
network environment (VNE) [4].

Within this context, the scientific community has
demonstrated an ever growing interest in the
implementation of solutions, for diminishing network

security attacks making use of the virtualization
technologies. Under this precept the work proposed by
Keller & Naues [5], formulates the implementation of a
collaborative security lab using virtual machines. Other
works [6][7][8] propose virtual technology integration,
with the purpose of securing a network through the
implementation of a remote laboratory intrusion detection
system. Other researchers [9][10][11] have used virtual
machines based on the Honey net concept, as a security tool.
Within the same scope researches have used virtualization
platforms for disaster recuperation and mitigation of real IP
attacks [12][13][14]. Regarding mitigation mechanisms of
Denial of Service attacks (DoS), Fuertes et al. [15] exposes
a research where IP real attacks were evaluated in order to
detect and block DoS attacks using VNE. Within this scope
Yaar & Song [16] details Internet filter rules (called SIFF).
Lastly, Mirkovic & Reither [17] proposes D-WARD which
is a Distributed Denial-of-Service defense system, the goal
of which is the autonomous detection of these attacks using
new traffic profile techniques.

To address the problem mentioned above, this work
proposes the design and implementation of an alternate
engine for automatic blocking to the already existing
system inside the Port Scan Attack Detector (PSAD) [18]
that will be more efficient as well as customizable. In
essence, the alternative engine is an implemented routine
which captures PSAD output data reducing the necessary
time to analyze its register files and detect these attacks.

In order to carry out this work, all test infrastructures were
conducted in a VNE using Virtual Box, a virtualization tool
using virtualization software to be deployed on virtual
machines destined for desktop computers and enterprise
servers, which also implements full virtualization
[19][20][21].

To validate our mechanism and as the main contribution,
this paper proposes: i) to improve the system’s response
time when detecting port scans; and, ii) to configure a
customizable algorithm that acquires PSAD data and notify
the system administrator via e-mail.

The remainder of this paper is organized as follows: Section
2 presents the theoretical framework. Section 3 describes

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

15

the architecture of the VNE implemented, the full process
to achieve the mechanism to detect and block port scan
attacks, and its response. Section 4 presents a comparison
between the systems described above and evaluates the
results. Section 5 discusses Related Work. Lastly, the
Conclusions and Future work are given in Section 6.

2. Theoretical Framework

2.1 Port Scans

According to [23], a port scan is an attack that sends client
requests to a range of server port addresses on a host, with
the goal of finding an active port and exploiting a known
vulnerability of that service. Historically most scan
detection has been in the simple form of detecting N events
within a time interval of T seconds. Port scanning is an
exploration phase and is considered the first stage of a
computer attack. The aim behind scanning is to find open
ports on a system. There are a number of tools to
accomplish this goal; however, there are few tools available
to detect attempts to scan ports [24]. The most popular
techniques for this type of attack are: TCP connect scanning,
TCP SYN scanning, TCP FIN scanning, TCP reverse
indent scanning, FTP bounce attack, UDP ICMP port
unreachable scanning, SYN Stealth SCAN, ARP ping
SCAN, among others [25][26].

Actually, several open source port scan detection tools exist.
For example: Snort, Port Scanner, Honey pots, Scanlogd,
PSAD, etc. For this experimentation we have chosen the
PSAD since its register files can be analyzed, and the
algorithm to reduce the detection times can be improved.

2.2 Port Scan Attack Detector (PSAD)

The PSAD is a collection of three lightweight daemons
written in Perl and C, which are designed to work with the
Linux firewall system to detect port scans and other
suspicious traffic [18]. The PSAD makes use of the activity
logs of IPtables to detect, alert, and optionally block port
scan or any other suspect traffic [27]. On TCP scan, the
PSAD analyzes the TCP flags to both determine the type of
scan (syn, fin, xmas, etc.) and the corresponding options of
the command line that could be used so that nmap (Network
Mapper) can create its own scan [26].

2.3 Virtual Network Environment

Within the scope of this research, a VNE can be defined as
a set of virtual equipment (both systems as end-network

elements including routers and switches) connected
collectively in a given topology deployed on one or
multiple hosts, which emulates an equivalent system in
which the environment is perceived as if it were real [4].
The VNE encapsulates a set of applications within a virtual
network enabling service configurations for a specific
network in a realistic way. In the case of this research we
have used this concept because Virtualization platforms are
a potential technology to reproduce a real network
topology.

2.4 Virtualization with Virtual Box

Virtualization in essence is a technique to share hardware
resources. It can be used to partition physical equipment to
support multiple virtual machines [28], interconnect them,
and share hardware resources, such as CPU, memory and
input/output devices [29]. It provides an extra abstraction
layer between the hardware and operating system (OS). The
technique allows, via hardware, to have several guest
operating systems of diverse types executing
simultaneously [30]. Currently, there are several
alternatives in software that make virtualization possible,
one of these tools is Virtual Box, developed by a team of
researchers and supervised by ORACLE. Virtual Box [31]
is X86 virtualization software to be deployed on virtual
machines destined to desktop computers and enterprise
Servers. Virtual Box allows the execution of Operating
Systems without any modifications, including all the
software installed on them [20]. In this work, Virtual Box
provides the infrastructure to deploy and manage a VNE
which can be configured to emulate the execution of port
scan attacks.

2.5 Instruction Detection System

The Intrusion Detection System (IDS) is a software
application that monitors network activities for malicious
packets or policy violations and produces reports for
network security. This concept is included in this study
because most IDS (i.e. Snort) can detect port scan attacks.

According to [32], the IDS can either be host based or
network based. A host-based system looks for intrusions on
that particular host. Most of these programs rely on secure
auditing systems built into the operating system.
Network-based systems monitor a network for the tell-tale
signs of a break-in on another computer. Most of these
systems are essentially sophisticated network monitoring
systems that use Ethernet interfaces as packet sniffers. In
conclusion, the IDS primarily focuses on identifying
possible incidents, logging information about them, and
reporting malicious attempts [33].

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

16

3. Experimental Setup

This section has been divided into the following four parts:
The experimental platform, the development of the
mechanism to detect and block port scan attacks, the attack
test environment implementation, and the system
responses.

3.1 Experimental Platform

Figure 1 represents the experimental platform (i.e. real and
virtual) susceptible to internal and external port scan attacks.
The devices for internal and external networks and the
hardware and software technical specifications used in this
experimentation are described in Table 1.

As can be seen this hybrid topology includes a physical
computer which puts all the virtual machines connected
together into operation within a VNE. One virtual machine
took on the Web server services. Another was configured
as a firewall where the PSAD and the alternative engine
were installed. An additional virtual machine accomplished
the internal attacker functions to attempt to crash the Web
Server. Furthermore, a physical computer was connected to
the Internet which undertook the external attacker
functions.

Table 1: Matrix elements of the experimental platform

Fig. 1 Experimental Platform based on real and virtual network environment

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

17

3.2 Development of the mechanism to detect and
block port scan attacks

Figure 2 shows a schematic representation of the process
necessary to implement the mechanism to detect and block
port scan attacks. Some of the elements involved for
operation include: the establishment of a firewall, the
attacker (i.e. nmap), the PSAD execution, and finally, the
implementation of our alternative engine “security.sh”.
To execute this mechanism, we have executed an exclusive
script through two different means: on as a Demo, and
another by configuring it as a scheduling tool in the crontab
for automatic execution.
The Demo lets us generate a menu to setup the script data
manually, in order to see the attacker blocking both in
connectivity and in time. In other words, this type of
execution is purely demonstrative. The Demo runs the
script interactively with the user with the aim of
understanding how it works.
Working with crontab, however, implies an automatic
execution of the script (e.g. every 3 minutes) to see if there
are any attackers, and if there are, block, register and report
them to the network administrator.
As depicted in Fig. 2, the general form of operation of the
mechanism is as follows: i) Run the firewall (i.e.
firewall.sh) using the rules that follow the policies
described in Table 2 below; ii) Initialize the PSAD (e.g.
#psad -S with category 3). The PSAD supports blocking
hosts by adding Iptables rules to special chains.; iii) Run the
network mapper (nmap) (i.e. from the computer attacker);
iv) Define the e-mail addresses for those who are going to
be sent notifications (i.e. parameterized in the file
security.sh); and finally, v) Run the script in crontab (#
crontab -e), which is specified automatically each time the
script reviews PSAD records, in our case 3 minutes. The
full process and its elements will be explained in the
following paragraphs:

Fig. 2 Mechanism to detect and block port scan attacks (full process)

a. Implementing the firewall

This firewall is a script designed to prevent unauthorized
access to or from the topology depicted in Fig. 1. All
messages entering or leaving the network pass through the
firewall, which examines each message and allows or
denies the traffic based on specified security criteria. These
criteria are registered in a file script, namely IPtables. Most
Linux-based firewalls are just IPtables scripts. This
firewall sets the policies for incoming packages to drop and
defines rules for exceptions. This means everything is
forbidden unless is explicitly allowed. It is worth
mentioning that this script was set based on the
functionality requirements of the PSAD. This IPtables
evaluates: packets that are arriving at the computer from an
outside source; packets that are being sent through the
computer as a router; packets that are originating from
computer and are being sent out (see Table 2).

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

18

Table 2: Firewall script

#!/bin/sh
echo -n
FLUSH (rules)
iptables -F
iptables -X
iptables -Z
iptables -t nat -F
We set the default policy
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -t nat -P PREROUTING ACCEPT
iptables -t nat -P POSTROUTING ACCEPT

iptables -A INPUT -i lo -j ACCEPT
iptables -A INPUT -i eth0 -p tcp --dport 22 -j ACCEPT
iptables -A INPUT -i eth0 -p tcp --dport 25 -j ACCEPT
iptables -A INPUT -j LOG --log-level warn

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward
psad -F
service psad restart
clear

b. Implementing the alternative engine

Figure 3 is a visual representation of the sequence of the
alternative engine algorithm. The alternative engine is a
routine implemented in Shell Script created to capture data
provided by the PSAD, to achieve a more efficient
alternative block. It is worth mentioning that the operation
of the PSAD is based on a continuous review of packets
flowing through the firewall, storing the results in the tool's
own records which are compared with previously
parameterized ranges.
The alternative engine we developed works as follows: i)
PSAD variables are changed so that its mechanization does
not perform automatic blocks; ii) The comparison variables
(category level, block time) are adjusted; iii) Then the script
begins to filter PSAD records, comparing them with
previously established variables. If these variables meet
attack condition, the script automatically blocks the
aggressor for a set time; and finally, iv) Incidents of attack
are reported using Zimbra [34], which is e-mail freeware.
When a block is generated, the script immediately sends an
e-mail warning to the address previously defined by the
administrator. Note that the script also performs validation
in cases where the attacker is a recidivist, thereby
safeguarding the resources of the VNE in continuous
blocks.
Since this solution is configurable, the two parameters used
for comparison must be explained: the category level and
the block time, within the conceptualization framework of
the PSAD developer:
The category level of the attacker is the number of packages
required by a port scanner to complete its work. (e.g.

category 1: 5 packages; category 2: 15 packages; category
3: 150 packages; category 4: 1500 packages; category 5:
10,000 packages). As can be seen, the interrelationship
between the firewall and the PSAD is very important for
this categorization. Once the information is flowing
through the firewall, the PSAD filters out these packets and
applies a category depending on the number of packages
found. Finally, the PSAD stores this data in a register that
contains the same IP of the attacker.
Block time is a penalty applied to the attacker that does not
allow it to have any kind of communication either internally
or externally. Since this datum can be parameterized the
administrator can block one or more attackers for hours,
minutes, or even days. In the case of not wanting to ever
give communication to the attacker again the script must be
changed so that it always remains blocked.

3.3 Attack test

The proof of attack was developed on a virtual machine
using a Linux Centos 5.3-x64 based system (see Table 1).
The procedure to continue in the implementation was the
following: Install virtual machines and configure IP
addresses. Next configure the NAT, filtered by
IPtables-packets; installation, operation, and development
of script to capture information provided by the PSAD;
configuration of the attacker with nmap, connectivity and
attack-defense tests of the system; verification of blocks,
unblocks, and delivery of e-mail alerts.

3.4 System responses

In developing tests, nmap was used, with different attacks
such as: SYN Stealth Scan, ARP Ping Scan, ACK Scan, and
TCP Connect. At first, nmap was able to detect connected
devices, open ports, services and applications being
executed, type of operating system and firewall, to name a
few. As the number of attacks increased, the PSAD
continued to categorize the attacker according to levels 1 to
5. These values are both parameterizable and configurable
within the same tool, although not immediately blocked; it
is here where the script will read such parameter to later on
compare it against a preconfigured category variable (DL:
3). If within the parameters defined by the user (block time
and survey time–as configured in crontab), the attacker will
be immediately blocked (see Figs. 4 and 5).

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

19

Fig. 3 Flow diagram of the alternative engine

4. Experimental Results and Discussion

This section describes the results obtained by comparing
the effectiveness of our alternative engine with the PSAD
and ClearOS. These results were taken during several tests
on the experimental platform described in Fig. 1. The
outcomes show the number of packets received, the
response (detection) time, time of drop link, the CPU and
memory consumption, and network performance, from
various port scanning attacks. Finally in this section we
explain an interpretation of the findings (Discussion).

4.1 Alternative engine blocking system vs. PSAD

Figure 4 shows the comparison of the detection
mechanisms and its Detection time. As it can be seen, the
detection time of our alternative engine is eleven seconds
less than the PSAD. Within this context the Detection time
is the period that the mechanism takes to react to a given
input (i.e. drop connection when the attack was detected).

Fig. 4 Comparison of Detection time; Alternative Engine versus
PSAD

Figure 5 shows the number of received packets during the
time of connection, generated by the ICMP protocol
throughout three different connectivity tests. This outline
illustrate that the number of packets received using our
proposal is less than those generated by PSAD.
As information, according to RFC 792, “ICMP messages
are sent in several situations: for example, when a
datagram cannot reach its destination, when the gateway
does not have the buffering capacity to forward a datagram,
and when the Gateway can direct the host to send traffic on
a shorter route.”

48

50

52

54

56

58

60

62

64

66

Test 1 Test 2 Test 3

64

66

64

57 57

55

Pa
ck
et
s
re
ce
iv
ed

Packets received
with PSAD

Packets received
with A. Engine

Fig. 5 ICMP packets received during the detection time

Figure 6 shows the time it takes for these detection
mechanisms to categorize and block both the internal and
external attacker (i.e. through the loss of connectivity)
when conducting a port scan with nmap directly on the
firewall. This illustration shows that the detection time with
our alternative engine is less when compared with the
PSAD. The connection time of the attack is not part of the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

20

analysis given that the priority is the response time of the
script.

0,0000

0,0010

0,0020

0,0030

0,0040

0,0050

0,0060

0,0070

0,0080

0,0090

0,0100

1 6 11 16 21 26 31 36 41 46 51 56

Co
nn

ec
tio

n
ti
m
e
(s
ec
.)

Detection time (sec)

PSAD T
Engine

Fig. 6 Comparison of Alternative Engine versus PSAD.

4.2 Alternative engine blocking system vs. ClearOS

Figure 7 shows that ClearOS does not block the attack,
while our solution detected and blocked immediately.
ClearOS is a gateway server which comes with an
extensive list of features and integrated security services
[22]. Even though this open source tool takes less detection
time as compared with our alternative engine, it is not
effective. ClearOS only generates alarms instead, thus
making it vulnerable and unreliable for these types of
attacks.

0

0,001

0,002

0,003

0,004

0,005

0,006

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Co
nn
ec
tio
n
tim
e
(s
ec
)

Detection Time (sec)

CLEAROS
Engine

Fig. 7 Comparison of Alternative Engine versus ClearOS

4.3 Performance of PSAD Hardware vs. Alternative
Engine

For the analysis of the performance of the VNE, a script
was made, which filters data (the use of memory, CPU and
capture time). Once this data is captured and processed, the

performance between the PSAD tool and our alternative
automatic blocking engine, are depicted in Figs. 8 and 9.
The time allowed for the tests was 265 seconds, during this
time the performance of the CPU and the consumption of
the memory of the equipment used in the simulation were
analyzed. The results obtained are explained below:
Figure 8 illustrates that in the first 65 seconds from the start
of the attack, resource consumption is similar (i.e. between
0 and 65 seconds in tool activity), from there CPU resource
consumption increases. PSAD behavior shows a continued
stability, which does not happen with our solution. The
reason for this is because the implemented SCRIPT
consumes more system resources as it is making a steady
cyclical census to determine the category of attack.
Moreover, virtualization technologies also introduce a non
quantified overhead, and CPU resources are shared in the
system through the use of a virtualized structure.

‐1,5

0

1,5

3

4,5

6

7,5

9

0 100 200 300

C
P
U
 U

ti
li
za
ti
o
n
 %

Connection Time (sec)

CPU % PSAD
CPU % Engine

Fig. 8 CPU Consumption comparison during the attack.

‐0,5

0

0,5

1

1,5

2

2,5

3

3,5

0 50 100 150 200 250 300

M
em
or
y (
by
te
s)

Connection time (sec)
MEMORY PSAD MEMORY ENGINE

Fig. 9 Comparison of memory consumption during the attack.

Regarding the memory consumption analysis (e.g. data
collection every 2 seconds), Fig. 9 shows that the PSAD
tool takes more resources to stop an attack, which was not
reflected in the alternative engine (i.e. our solution),

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

21

therefore being more efficient making an immediate block
without requiring the use of virtual server memory.

4.4 Discussion

As an alternate solution for detection, block, and prevention
of port scan attacks we have developed an alternative
engine that will immediately send orders to execute the
necessary block; its execution can be programmed through
crontab. This order will be executed provided that
comparisons between parameterizable values and PSAD
records are performed, the latter being in constant
communication with IPtables which continuously monitors
the traffic generated.
As our experimental results have shown, our experimental
platform has obtained interesting results to emulate the
conditions of a real environment using a VNE. Furthermore,
this paper has also demonstrated the viability of conducting
these experiments. Moreover, given that a real similar
infrastructure is not always available to reproduce real
attacks for IP networks, this research has shown that
virtualized environments can be used to emulate a specific
network attack, whose results have been close to the real
environment. This has also been demonstrated in our
previous works for example in [4][20]. Therefore, the
results of the experiment have provided qualitative data
related to how the attacks work; the perceptual quality of
mitigation mechanisms in terms of efficiency, resource
consumption, and network performance. Thus, the use of
VNE allows the execution of all the tests saving time and
space in comparison with a real equipment environment.
The construction of multiple VNE helps network managers
in the evaluation of security tools, without putting systems
or servers in production at risk. Therefore, this
implementation should be directed to the analysis and
performance testing for the administrator to discern if these
tools are attached to their security requirements or, if
necessary, redesign them to perform specific functions. The
proposal generated to be implemented in such
environments does not jeopardize the security of the
information, or the continuity of the workflow of active
servers on a network in operation.
To highlight the advantages of the implementation of VNE,
note that the main contribution of the project was the design
and implementation of a reciprocating engine block based
on a predesigned tool, an improved reaction time attaching
it to the basic requirements of an administrator (quick
release, support for events of attacks (LOGS) and the
continuous information via e-mail) in a virtual network
environment. This environment allowed for quick
reinstallations of software and operating systems, achieving
a seamless flow of project development.
Finally, from an educational viewpoint, this approach can
be used to learn and teach computer network security and

information assurance. As a final point, it should be take
into account that this solution can be transported (i.e.
portability) because they are virtual machines that can be
ported to any equipment wherever required.

5. Related Work

There are very few papers discussing the effectiveness of
using virtualization technologies as a research platform, in
order to mitigate real attacks on IP networks. In the case of
the educational field, the work proposed by Keller and
Naues [5], explains a collaborative lab for experimentation
in the security of networks using virtual machines. In the
same field, other researches [6][7][8], propose the use of a
remote lab for the integration of virtualization technologies
for the IDS network security implementation. Another
comparable research has been described by [9][10][11].
Here authors have used the concept of the Honey net over
VMs as a security tool with the purpose of studying the
techniques and motivations of hackers. In the same context,
the work proposed by Damiani [12], describes a virtual
laboratory based on the Xen platform, which is used for the
configuration of a firewall in order to protect a server from
IPtables external attacks.
Concerning Disaster Recovery through the use of
virtualization, the work proposed in [13] demonstrates that
the use of this technology, as an option to minimize server
occupation so that network managers can dispose of an
environment equivalent to the real hardware production
network having flexibility and much lower costs of
management and maintenance.
In another context, the work purposed by Ferrie [14]
employed malicious code and service denial attacks against
VMware, Virtual PC, Parallels virtual machines. However,
in that research there are only recommendations instead of
real solutions being developed. Comparing such works
with current research we have implemented an alternative
engine to automatically detect, control and mitigate such
attacks.
In regards to the mitigation mechanisms of Denial of
Service attacks (DoS), Fuertes et al., [15] exposes a
research where IP real attacks were evaluated in order to
detect and block DoS attacks using VNE. Within this scope
Yaar & Song [16] details filter rules of Internet (called
SIFF). Lastly, Mirkovic & Reither [17] proposes D-WARD
which is a Distributed Denial-of-Service defense system
the goal of which is the autonomous detection of these
attacks using new traffic profile techniques.

6. Conclusions and Future Work

This research is based on actual port scan attacks performed
on an IP network using virtualization technologies. Block

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

22

tests were conducted using the system’s own tools as well
as a security-specialized distribution. Results obtained were
satisfactory as to the proposed alternative automatic engine
block given that the specified objective was fulfilled along
with a shorter response time and available adaption based
on the user’s needs. As an additional alternative, this gives
the network administrator the option to choose from an
internal block or the proposed block depending on their
requirements. It became evident that Linux operating
systems provide high scalability as part of their solutions; in
the event that a user is not comfortable with a suggested
solution, this user may also present improvements for the
already established system. It is worth mentioning that most
administrators focus their securities on blocking
communication ports but do not take into consideration that
the origin of attacks falls under exploration.
In this work we have designed and implemented a virtual
network environment which was configured as a platform
for experimenting with port scan attacks. To neutralize such
attacks, we performed an algorithm that takes data reported
by the PSAD and by using parameterized variables become
viable automatic blocks that include custom records and
notifications sent via e-mail (Zimbra). To validate our
solution there have been several tests of port scan attacks on
public and private networks. From there we compared the
performance of our alternative engine with ClearOS and
the PSAD. The results show that the alternative engine is
faster and more reliable than the tools previously
mentioned.
As for future work, we will be focusing on how to include
the integration of our alternative engine into the Snort tool
and the monitoring of its performance.

Acknowledgments

The authors would like to thank the comments and good
advice of Martha López, who helped to significantly
improve this paper. This material is based upon work
supported in part by the Electrical and Electric
Department-ESPE, under the Master’s degree Program in
Information Network and Connectivity.

References
[1] S. Garfinkel with Gene Spafford Web Security, Privacy &

Comerse, O’Really Book. Second Edition. ISBN
0-596000-456.

[2] B. Lee, C. Roedel, and E. Silenok, "Detection and
characterization of port scan attacks," vol. 2004. San Diego,
CA.

[3] El-Hajj, W., Aloul, F., Trabelsi, Z., Zaki, N., Coll. of Inf.
Technol., “On Detecting Port Scanning using Fuzzy Based
Intrusion Detection System”, UAE Univ., Al-Ain, 2008.

[4] W. Fuertes and J. E. López de Vergara, “An emulation of
VoD services using virtual network environments,”. In Proc.

GI/ITG Workshop on Overlay and Network Virtualization
NVWS'09, Kassel-Germany, March 2009.

[5] J. Keller, R. Naues, "A Collaborative Virtual Computer
Security Lab," e-science, In Proc. Second IEEE International
Conference on e-Science and Grid Computing, pp. 126, CA,
USA, 12/ 2006.

[6] P. Li, T. Mohammed, “Integration of Virtualization
Technology into Network Security Laboratory”, In Proc.
38th ASEE/IEEE Frontiers in Education Conference,
Saratoga, NY, 10/2008.

[7] T. Garfinkel and M. Rosenblum, “A Virtual Machine
Introspection Based Architecture for Intrusion Detection”. In
Proc. Network and Distributed Systems Security Symposium,
pps:{191—206}, 2003.

[8] K. Ali, “Algorizmi: A Configurable Virtual Testbed to
Generate Datasets for Offline Evaluation of IDS”, Electronic
Theses and Dissertations, University of Waterloo, 2010.

[9] F. Abbasi, R. Harris, “Experiences with a Generation III
virtual Honeynet”, In Proccedings of the Telecommunication
Networks and Applications Conference (ATNAC), 2009
Australasian, Canberra, ACT , ISBN: 978-1-4244-7323-6.
May 2009.

[10] Fermín Galán, David Fernández, "Use of VNUML in Virtual
Honeynets Deployment", IX Reunión Española sobre
Criptología y Seguridad de la Información (RECSI),
Barcelona (Spain), pp. 600-615, September 2006. ISBN:
84-9788-502-3.

[11] Hugo Fernández, Jorge Sznek, Eduardo Grosclaude,
“Detección y limitaciones de ataques clásicos con Honeynets
virtuales”, Publicado en el V Congreso de Seguridad
Informática 2009, (CIBSI'09), realizado e1 6 al18 de
Noviembre, 2009, Montevideo, Uruguay.

[12] E. Damiani, F. Frati, D. Rebeccani, “The open source virtual
lab : a case study”. In proceedings of the workshop on free
and open source learning environments and tools, hosted by:
FOSLET 2006; pp. 5-12, Italy nel 2006.

[13] Co-innovation lab Tokyo, “Disaster Recovery Solution
Using Virtualization Technology”, White paper,
http://www.cisco.com/en/US/prod/collateral/ps4159/ps6409
/ps5990/N037_COIL_en.pdf.

[14] P. Ferrie, Attacks on Virtual Machine Emulators, Symantec
White Paper, 2008.

[15] W. Fuertes, P. Zapata, L. Ayala y M. Mejía, "Plataforma de
Experimentación de Ataques Reales a Redes IP utilizando
Tecnologías de Virtualización", Memorias del 3er Congreso
de Software Libre CONASOL-2010, Talara, Perú, Dic. 2010.

[16] Abraham Yaar, Adrian Perrig, Dawn Song, SIFF: “A
Stateless Internet Flow Filter to Mitigate DDoS Flooding
Attacks”, C. Mellon University

[17] Jelena Mirkovic, Peter Reiher, “D-WARD: A Source-End
Defense Against Flooding Denial-of-Service Attacks”,
IEEE.

[18] Psad, http://www.cipherdyne.org/psad/ Last update:
02/23/2011.

[19] W. Fuertes, J. E. López de Vergara, F. Meneses,
"Educational Platform using Virtualization Technologies:
Teaching-Learning Applications and Research Uses Cases".
Accepted for its publication in II ACE Seminar: “Knowledge
Construction in Online Collaborative Communities”,

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

23

Albuquerque, NM – USA, October 2009. ISBN:
978-0-9842912-1-2

[20] W. M. Fuertes and Jorge E. López de Vergara, “A
quantitative comparison of virtual network environments
based on performance measurements”, in Proceedings of the
14th HP Software University Association Workshop,
Garching, Munich, Germany, 8-11 July 2007.

[21] F. Galán, D. Fernández, W. Fuertes, M. Gómez and J. E.
López de Vergara, “Scenario-based virtual network
infrastructure management in research and educationnal
testbeds with VNUML,”, Annals of Telecom, vol. 64(5), pp.
305-323, 2009.

[22] ClearOS, [ONline] http://www.clearfoundation.com/. Last
update, february 23, 2011.

[23] RFC 2828 “Internet Security Glossary”, [Online:]
http://tools.ietf.org/html/rfc2828. Last update: february 23,
2011.

[24] Gadge, J. Patil, A.A., “Port scan detection”, Proceedings of
12th IEEE International Conference (ICON 2008),
December, 2008.

[25] Avinash Sridharan, Ye, T., Supratik Bhattacharyya,
“Connectionless port scan detection on the backbone”, Dept.
of Electr. Eng., Univ. of Southern California, Los Angeles,
CA., 2006.

[26] Nmap, www.nmap.org. Last update: October 2010.
[27] Michael Rash, Linux Firewalls: Attack Detection and

Response with IPtables, psad, and fwsnort, ISBN:
10.1-59327-141-7. 2007.

[28] T. Hart-Sears and J. Lofton, “Server Virtualization: The New
Future for Midrange Implementation”. White paper.
Technology Partners International, Inc. July 2007.

[29] J. Humphreys and T. Grieser, “Mainstreaming Server
Virtualization: The Intel Approach”. White paper. June 2006.

[30] M. Tim Jones, “An overview of virtualization methods,
architectures, and implementations”. Emulex Corp.
Longmont, Colorado, 29 December 2006.

[31] VirtualBox, [Online:] www.virtualbox.org/. Last update:
October 2010.

[32] Simson Garfinkel, Web Security, Privacy & Commerce, 2nd
Edition, By O'Reilly, Pub Date: November 2001, ISBN:
0-596-00045-6.

[33] Scarfone K, Mell P. Guide to intrusion detection and
prevention systems (IDPS). NIST Special Publication
800-94; 2007

[34] Zimbra, [Online]: http://www.zimbra.com/. Last update:
October 2010.

Walter Marcelo Fuertes Díaz currently
works as Manager of Graduate Studies at
the Escuela Politécnica del Ejército of
Sangolquí-Ecuador. He is a
professor-researcher in the School of
Computer Science of that polytechnic,
where he received the engineering degree
in Computer Systems, in 1995. Then, he
received his Master in Science degree in

Computer Networking, from the Escuela Politécnica Nacional in
Quito-Ecuador, in 1999, and the Ph.D. (honors) degree in
Computer Science and Telecommunications engineering from
Universidad Autónoma de Madrid (UAM), Madrid, Spain, in
2010.

Patricio Xavier Zambrano Rodriguez
currently works as Network
Administrator at the Tribunal
Contencioso Electoral in the technology’s
area at Quito-Ecuador. He’s a master
student of Information Networks and
Connectivity at the “Escuela Politécnica
del Ejército” of Sangolquí-Ecuador,
where he received the engineering degree

in Telecomunications, in 2006.

Marco Polo Sanchez Aguayo currently
works as Software Designer at the
“Grupo TvCable” in the technology’s
area at Quito-Ecuador. He’s a master
student of Information Networks and
Connectivity at the “Escuela Politécnica
del Ejército” of Sangolquí-Ecuador. He
received his engineering degree in
Electronics, from the Escuela Politécnica

Javeriana in Quito-Ecuador, in 2002.

Pablo José Gamboa Vargas currently
works as a SCADA Telecommunications
Engineer at the Corporación Nacional de
Electricidad in Santo Domingo,
Ecuador. He earned his engineering
degree in Telecommunications at the
Escuela Politécnica del Ejército in
Sangolquí-Ecuador in 2006. He is
currently studying a Masters degree in

Information Networking and Connectivity, at the already
mentioned institution.

