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Summary 
We present an algorithm to extract the skeleton from 
unorganized point clouds by exploiting a discrete curvature. In 
general, the result of skeleton extraction depends on the ordering 
of sample points and the geometric properties of consecutive 
points in the order. In this paper, we utilize the discrete curvature 
defined by three consecutive sample points to extract an order 
from points. Our method is more intuitive than the previous 
methods and can extract the skeleton from point clouds which 
resembles the global shape of the clouds. 
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1. Introduction 

The problems of extracting a skeleton from sample points 
appear in many scientific and engineering applications. 
Because of its practical importance, many algorithms have 
been proposed over the last two decades in the fields such 
as the reverse engineering of geometric models and 
medical imaging. Especially, curve reconstruction plays an 
important role in the shape reconstruction problems [1, 2]. 
 
Curve reconstruction is the problem of computing a 
piecewise linear approximation to a curve from a set of 
sample points. Many approaches have been suggested for 
the reconstruction of curves from sample points. 
Edelsbrunner et al. [3] defined the alpha-shapes of point 
sets as the underlying space of a simplicial complex. Attali 
[4] proposed the r-regular shape method, where the r-
regular shapes are characterized by requiring that any 
circle passing the points on the boundary has radius 
greater than r. These methods deal with only uniform 
sample points. For the non-uniform sample points, Amenta 
et al. [5] proposed the first algorithm to reconstruct a 
curve from non-uniform sample points with guarantee. 
This algorithm uses the Voronoi diagram and the 
Delaunay triangulation of the sample points. Dey et al. [6] 
proposed the nearest neighbor approach based on the 
properties of Voronoi diagrams. These algorithms work 
only under the assumption that the sample points are dense 
and do not work for non-simple curve reconstruction 

because they reconstruct curves without the consideration 
of curve's orientation. There has been little research for 
curve reconstruction from an unorganized point set. Fang 
et al. [7] used a method based on spring energy 
minimization to approximate an unorganized point set 
with a curve, which needs a good initial guess of the 
solution. Dedieu et al. [8] presented an algorithm for 
ordering unorganized points assuming that all points are 
on the reconstructed curves. This is not appropriate for a 
point cloud. Taubin et al. [9] reconstructed a planar curve 
from unorganized points using an implicit simplicial curve, 
which is defined by a planar triangular mesh and the 
values at the vertices of the mesh. These methods are not 
appropriate for curves with self-intersections. Most of all 
curve reconstruction algorithms are based on the 
Euclidean distance to compute the proximity and the 
adjacency. Recently, Kim et al. [10] proposed a method 
based on Brownian motion, which can reconstruct curves 
with self-intersection. 
 
In this paper, we propose a curve reconstruction algorithm 
based on discrete curvature, which extracts the 
representative points from point clouds so that the shape 
of the reconstructed curve resembles that of the set of 
point clouds. This paper is organized as follows. The 
concept of discrete curvatures is introduced in Section 2. 
The algorithm is explained in Section 3. The algorithm 
utilizes the principal component analysis in order to 
choose the initial direction of reconstructing a curve, and 
the greedy approach in each step in order to select the next 
point of minimal curvature among the candidates. Section 
4 shows the experimental results. In Section 5, we 
conclude this paper with some remark on future researches.  

2. Discrete Curvature 

In this section, we introduce a discrete curvature 
estimation proposed by Kim et al. [11] which is based on 
the parabolic interpolation. In general, the local shape of a 
polygon at a vertex is determined by the geometric 
relationship between the vertex and its adjacent vertices. 
We have known that the concept of curvature is derived 
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from a curve and it is a quantity to measure the local 
bending of curves. Therefore, the best method to resemble 
the local shape, following the original definition of a 
curvature is to use the quadratic curve interpolating the 
three consecutive vertices. 
 
We adopt a quadratic Bezier curve as an interpolating 
curve. Let RQP ,, be three consecutive vertices. The 
general form of the quadratic Bezier curve satisfying 

QB =)2/1( is as follows: 
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Fig. 1  Discrete curvature of three consecutive points P, Q, R. 

The curvature of )(tB at 2/1=t is 
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Hence, we can define a new Parabola-based discrete 
curvature of the given vertex Q as follows: 
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First of all, we find out the geometric properties of the P -
discrete curvature formula. Let 2/)( PRV −= and 

RQPG +−= 2 . The P -discrete curvature formula is  
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where θ  is the in-between angle of the vectors G  and V . 

3. Practical Algorithm 

In this section, we will describe a practical algorithm for 
ordering points in an unorganized point cloud. Assume 
that there are arbitrarily scattered $n$ points, called 
sample points, in 3R . Denote the set of all sample points 
by P . The point ordering problem aims to choose a subset 
sP of P , where sP  is a well-ordered set. In the above 
theoretical section, we have assumed that the first point 

0p  and the second point 1p  are known. This easily 
enabled us to initialize the algorithm at the first point with 
an initial direction 10 pp . In general, the result of the point 
ordering problem is dependent on the initial direction. But, 
in practice, 0p  and 1p  are not known. Moreover, the well-
ordered subset sP may have several connected 
components, and may be open or closed according to the 
distribution of the data points. So we need to analyze the 
distribution of the sample points in order to find out the 
property of the subset sP . In general, the sample points of 
the unorganized point cloud for curve reconstruction may 
cluster in several groups and the points of each group are 
densely located near meaningful trajectories. So, the shape 
of each cluster looks like the union of bands. The 
objective of our algorithm is to remove outliers in each 
cluster and find out a well-ordered subset that plays a role 
of skeletons of clusters. Our algorithm consists of three 
major steps: data clustering, determination of the initial 
direction, and local point ordering.  
 
Data Clustering  
Most partitioning methods cluster objects based on the 
Euclidean distance between objects. Such methods can 
find only spherical-shaped clusters and encounter 
difficulty at discovering clusters of arbitrary shapes. 
However, the shape of the input point set P  is unknown 
we cannot apply such clustering methods. In this paper, 
we adopt the DBSCAN clustering algorithm based on the 
density, which is useful to filter out noises (outliers) and 
discover clusters of arbitrary shape. The general idea is to 
continue growing the given cluster as long as the density 
in the neighborhood exceeds some threshold; that is, for 
each data point within a given cluster, the neighborhood of 
a given radius cr , called clustering radius has to contain 
at least a minimum number of points. By exploiting 
DBSCAN algorithm, we may obtain nc  clusters 

ncCLCLCLCL ,,,, 321 L . For each cluster jCL , we choose a 
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point which may well represent the character of the shape 
of the cluster as the initial point, denoted by jcp .   
 
 Determination of Initial Direction 
 Now, we will try to determine the initial direction of the 
natural distance at the initial point jcp  for each cluster 

jCL . For the sake of convenience, we set the initial point 
as 0p . In order to analyze the distribution of points near 0p , 
we compute the neighborhood ),( 0 rpN of 0p  with a given 
radius r , called ordering radius;  
 

}),(|{),( 00 rppdCLprpN j <∈= , 
 

where ),( qpd  is the Euclidean distance between two 
points p and q . And then we apply the PCA (Principal 
Components Analysis) to the neighborhood because the 
principal component analysis of a set of points gives us the 
mean, an orthogonal frame, and the standard deviation of 
the neighbors. Let mqqq ,, 21 L be the points in the 
neighborhood ),( 0 rpN . We compute the mean m of the 
neighbors such that sqqqm s /)( 21 +++= L and then we 
construct the covariance matrix C by  
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We compute the eigenvector of the covariance matrix 
which corresponds to the maximal eigenvalue so that it 
plays a role of the major principal axis in the 
neighborhood. Let ID  be the unit vector on the principal 
axis. Then the neighborhood ),( 0 rpN  may be subdivided 
into two half discs:  

),(),(),( 000 rpHDrpHDrpN +−= U , 
 

where  
 

},,0|),({),( 0000 ppIDpprpNprpHD ≠<⋅∈=−  
},0|),({),( 0000 ppIDpprpNprpHD ≠>⋅∈=+  

 
If φ=−HD or φ=+HD , then the point 0p is one of the 
two end points of sP . Otherwise the point is a middle 
point of sP  so that we should apply the following one-
way ordering algorithm to both +HD and −HD  with the 
direction vectors ID and ID− , respectively. Let +sP  and 

−sP be the solutions of the one-way ordering problem with 
the initial directions ID  and ID− , respectively. Then the 
solution sP of the original point ordering problem may be 
obtained by merging the subsets +sP and −sP , i.e., 

−+= sPsPsP U .  
 
Local Point Ordering 
Now, we are ready to explain the one-way point ordering 
algorithm with the first point 0p  and the initial direction 
ID . First of all, we have to select the candidates of the 
next point 1p in the neighborhood ),( 0 rpN . It is well 
known that the candidate set 1C is the same as the half 
disc ),( 0 rpHD+ . So, without loss of generality, we may 
put ),(1 rpHDC ii ++ = . Next, we select the second point 

1p in 1C satisfying the following condition: 
 

)},(|)(min{)( 01 00
rpHDppcurvpcurv pp +∈= , 

 
where the function )(

0
pcurv p is derived from the initial 

direction vector ID . The point 1p is added to the well-
ordered set so that },{ 10 ppsP =+ . In order to find out the 
third point 2p , we compute the candidate set 2C that is the 
half disc ),( 1 rpHD+ with the direction vector ][ 10 ppD = . 
The third point 2p should satisfy the following condition: 
 

)},(|)(min{)( 12 11
rpHDppcurvpcurv pp +∈= ,  

 
where the function )(

1
pcurvp is derived from the direction 

vector ][ 10 ppD = . Then },,{ 210 pppsP =+ . We apply the 
above process until the candidate set 1+iC is empty or the 
intersection of 1+iC and )( 0pHD− is not empty. When the 
algorithm meets the former condition, it generates one of 
the two end points for an open curve, so it has to be 
applied to the other region of the cluster with the 
direction ID− . If the latter is satisfied, then the new 
obtained point 

1np is near the first point 0p . We can 

consider the well-ordered set is a closed piecewise curve 
so that there is no need to continue this one-way point 
ordering algorithm in the cluster. The solution of the one-
way point ordering problem is  
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},,,,{

1210 nppppsP L=+ . 

 
By similar process, we may get 
 

},,,{ 1122 −+−−− = pppsP nn L  

 
as the solution of the backward one-way ordering 
algorithm. Now, we may obtain the first connected well-
ordered subset −+= sPsPsP U . Therefore, the global point 
ordering problem can be solved by applying the above 
process to all of clusters in sP .  

4. Experimental Results 

In this section, we tested the performance of our algorithm 
for several reconstruction problems where each problem is 
focused on the following facts: (1) the effect of clustering 
radius in point clouds, (2) the effect of ordering radius, 
and (3) the ability of reconstructing a 3D curve from 3D 
points sampled on the quadratic surfaces. 
 

 
(a)                                             (b) 

        
(c)                                             (d) 

Fig. 2 Results for 3D point clouds 

There are two different results of extracting the skeleton 
from point clouds according to the size of the clustering 
radius as shown in Figure 2. The radii of circles of red 
color and green color represent the sizes of ordering radius 

and clustering radius, respectively. As shown in Figure 2 
(a) and (b), the smaller the size of clustering radius is, the 
smoother the extracted skeleton is. The blue colored curve 
represents the subset +sP , and the red colored curve 
does −sP . 
 

 
(a)                                             (b) 

 
(c)                                       (d) 

Fig. 3 3D curve reconstruction of sample points 

Figure 3 presents four piecewise linear curves obtained by 
our algorithm with the clustering radius 5.0=cr . Figure 
3(a) and (b) shows the effect of the size of the ordering 
radius. The size of ordering radius of Figure 3 (a) is 
greater than that of Figure 3 (b). The points near the North 
pole of Figure 3 (a) was already used in local point 
ordering so that the points cannot be candidates in the next 
ordering and thus the shape of curve reconstruction likes a 
circle. Whereas the points near the North pole of Figure 3 
(b) can be candidates for the next ordered points in local 
point ordering, so that the reconstructed curve can pass 
through near North pole in several times. 

5. Conclusion 

We proposed a new method for constructing curves from 
unorganized point clouds with noise. In general, the result 
of curve reconstruction depends on how to select and 
order the representative points to resemble the shape of the 
clouds. In this paper, we exploit discrete curvature to 
reflect orientation to the ordering of sample points, so that 
our algorithm is able to reconstruct not only simple curves 
but also non-simple curves. Moreover, for unorganized 
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point clouds, this method can efficiently extracts the 
skeletons of the clouds by cutting out the outliers, even 
though the result by our method is sensitive to the initial 
point and the initial direction. Our algorithm consists of 
three steps: point clustering, initialization of point and 
direction, and local point ordering. The core of our 
algorithm is the third step, local point ordering, which 
adopts the discrete curvature as a measure of what is the 
best next point.  
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