
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

104

Manuscript received November 5, 2011
Manuscript revised November 20, 2011

Optimal Values for Disrupting x86-64 Reverse Assemblers

Sara Shinn, William Mahoney,

School of Interdisciplinary Informatics University of Nebraska at Omaha Omaha, Nebraska 68182-0500

Summary
We present experimental results from intentionally obfuscating
binary instruction data on the x86 64-bit environment. The work
is a part of a larger research project to implement an obfuscating
compiler, where the intent is to make reverse engineering of
compiled binaries more difficult by hiding instructions from the
reversing tools. We empirically determine good selections of
“junk” bytes in order to maximize the number of instructions
hidden or misrepresented by reverse engineering tools.
Key words:
Reverse engineering, intel x86, assembly language, obfuscation

1. Introduction

Protection of intellectual property has been a major
concern for countless professions in the engineering world,
particularly where binary data is exported for
manufacturing of embedded devices, or where binary
executables contain keys or activation and licensing data.
It is all too easy for software to be reverse engineered and
have its methods and secrets analyzed. This research
examines the effectiveness of binary obfuscation by
inserting various bytes of “junk” at addresses between
instructions, in an attempt to confuse disassemblers used
in the process of reverse engineering.
Our paper is organized such that section two contains a
review of obfuscation in general, to make the reader aware
of the various techniques in use, and also lists other
studies done in this area; we are aware of 32-bit
experiments along these lines, but we examine 64-bit
binaries. Following this we present the research question
and the methods we employed. The results are given in the
next section, section three, and finally some thoughts
about future work are listed in section four. This was an
empirical study but we mention there that a brute-force
approach may also be obtained with a little effort.

2. Obfuscation

Obfuscation is defined as the process of making something
obscure or unclear [15]. When applied to software, it is the
process of making source code difficult to understand and
therefore difficult to reverse engineer. In this section we
describe how obfuscation works, and our question

concerning the determination of which “junk” yields the
best results.

2.1. Overview

Reverse engineering of executable programs, in order to
steal intellectual property or modify program behavior,
can be thwarted in part by various techniques for
performing software obfuscation. These techniques
generally fall into three categories:

1. Obfuscation at the source code level, in order to

hide variable names, strip comments, remove indentation
that is indicative of program structure, and other source
level modifications. These techniques might be used
where the original source code must be given to the end
user, but where we do not desire the end user to
understand the intellectual property represented by the
code. These also may apply where, for example, a Java file
is compiled to a “class” file, which then would contain all
of the original variable names, types, methods, etc.

2. Obfuscation at an intermediate level, where

techniques can be used to alter the way the program
accomplishes certain tasks, but in such a way as to not
modify the observable behavior of the program. Examples
include replacing “return” statements containing values
with “thrown” exceptions containing these values, which
are then caught by the caller. These techniques might be
applicable to an environment such as compiled C++ where
tools exist which will attempt to recreate the program flow
in C++ pseudo code from a binary program image.
Additional information can be found in Chen [1], Laszlo
[8], and others.

3. Finally, obfuscation at a binary level. In low-level

obfuscation the assumption is that the reverse engineering
process is concerned primarily with recreating an accurate
assembly language representation of the binary code. Here,
techniques include inserting conditional jumps where a
tested predicate is known to be false, in order to lead
reverse assemblers astray. Other techniques include
inserting “junk” into key areas in the binary so as to throw
off disassemblers in architectures with varying length
instructions (particularly x86) as described by

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

105

Balakrishnan [2] as well as Johansson [8] and other
previous work as noted above.
It is this final type of obfuscation that is the focus of this
paper. The inserted “junk” may represent the first bytes of
a valid operation code mnemonic (opcode) that causes
subsequent bytes of valid opcodes to be considered as a
part of the previous instruction. We address this in greater
detail below.

2.2. Reverse assembly

The reverse assembly process is largely accomplished
using a mixture of two methods: a linear sweep of the
instruction space of the program, and/or a tree-based
approach whereby there is a certain amount of program
flow analysis is involved.
In the linear sweep method, the program is assumed to
contain one long area of instructions and the disassembler
starts at the entry point of the program and goes from there.
Each instruction is assumed to be decoded correctly, the
appropriate number of bytes is added to the current
disassembly point, and the process repeats. This method is
very simple to thwart because after any unconditional
jump or call, “junk” bytes can be inserted at that point.
However the linear method is rarely used alone in practice
when good reverse assemblers are at use.
The tree-based method should, intuitively, give better
results where the code might have a mixture of
instructions and data in the same space. A good flowchart
describing this approach can be found in the work by
Johansson [8]. A detailed description of the method, along
with additional heuristics to improve the process, can be
found in Kruegel [10]. The basic idea is to keep a stack of
destination addresses, initialized with the starting address
of the program. At every iteration, the next address is
popped and disassembly starts from that address. If the
disassembled instruction is a jump or call, then the
destination address is pushed onto the stack. The process
continues until the stack is empty, and as a result the
process mirrors the control flow graph of the program
being disassembled.
The two popular reverse assembly tools in widespread use
are OllyDbg [12] and IdaPro [6]. IdaPro, in particular,
uses a tree-based method, which is described in [4]. In the
overall architecture of our obfuscating compiler, these are
the tools that will be used for determining the level of
complexity added by our overall approaches.
Lastly we note that although IdaPro and OllyDbg are the
main tools in practice, in some cases the reverse assembler
tools can be automatically created. One example is the
DERIVE system described by Hsieh [4], where the user
feeds the system examples of assembler mnemonics and
output, and the system creates C language declarations
which are then used for reverse assemblers or other tools.

One of the CPUs tested was the x86 platform and they
note that the output is suitable for a reverse assembler
which is largely automatically created, although they only
provide the instruction-at-a-time level.

2.3. Previous work

Many papers concerning reverse engineering have
proposed the insertion of “junk” to throw off reverse
assemblers. However the previous studies primarily deal
with 32-bit executables. Additionally, many obfuscation
techniques deal not with disassembly, as is our intention,
but decompilation. The following examples are 32-bit
experiments that deal with obfuscation during disassembly.
Dube [14] examined operation code (opcode) shifting in
32-bit applications. Essentially, after being presented with
a jump, anywhere from one to eight bytes are inserted in
the executable. The debugger must then decide if the bytes
were data or instructions – opcodes with possible prefixes.
The experiment measured how many instructions were
manipulated with two different debuggers: IdaPro and
OllyDbg version 1.10. The results varied, with more
instructions disguised with more bytes inserted. For a
single byte, the average number of instructions obscured
was about 2.8.
Linn and Debray [15] implemented a system for 32-bit
Linux executables that obfuscated executables, at the
user’s request, using a variety of techniques. Their
research into inserting “junk bytes” in selected locations
resulted in 26% to 30% of instructions incorrectly
disassembled during a linear sweep.
Although this is apparently a popular technique to use,
few have investigated the best choices for “junk” insertion,
and those that have explored the problem with respect to
x86 32-bit operations.

2.4. Research question

We are in the process of implementing an obfuscating
compiler, which will generate code that is difficult to
reverse engineer. A part of the project is to eliminate the
“fall through” areas in the program flow of control; these
are locations where an instruction either jumps to a
different location in the object file, or continues with the
subsequent instruction (“falls through”). The obfuscating
compiler inserts jumps, either to the destination of the
original jump, or the destination of the original “fall
through” instruction. This allows the sections in the
machine code to be rearranged and makes it possible to
insert extraneous information between the basic blocks of
machine code.
We include selected “junk” which is inserted after jumps
and constructed in such a way that they maximize the
mistaken identification of instructions buy a reverse
assembler. For example, a byte representing the first

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

106

portion of an instruction that is N bytes in length will
cause the next N-1 bytes to be assumed as part of the
instruction. In fact these may contain shorter instructions
that are now missed by the reverse assembly process.
The following figure provides an example of this
technique in action. The original reverse assembly is at the
top of the figure and starts with a “NOP” – no-operation –
instruction. If this byte is modified and is set to a byte
value of 05 (all numbers are in hexadecimal), the reverse
assembly is as shown in the bottom half of the figure.

00000000 90 nop
00000001 31ed xor ebp, ebp
00000003 4989d1 mov r9, rdx
00000006 5e pop rsi
00000007 4889e2 mov rdx, rsp

After:

00000000 0531ed4989 add eax, 0x8949ed31
00000005 d15e48 rcr dword [rsi+0x48],1
00000008 89e2 mov edx, esp

Figure 1. One Byte Replacement Hides Four Instructions.

By modifying the hex 90 to a 05 we have hidden four
instructions, the “XOR” through the second “MOV”; the
reverse assembler incorrectly assumes that this is a three-
instruction sequence as shown.
Our aim in the research is to discover optimal values to
insert, in such a way as to maximize the number of missed
instructions.

3. Results

Initially we tried to predict the expected number of hidden
instructions just by examining the 64-bit instruction set
and making an approximation of the average result.
However it became clear that the real results using actual
64-bit executable programs may be different because of
the actual mix of instructions typically found. We describe
here our method for determining this.

3.1. Experimental method

A simple approach to the problem could be to try each
combination of several instructions, modifying the initial
byte each time to determine which bytes make good
choices. This is obviously computational intensive, but
also suffers from another drawback, in that as mentioned,
certain instructions may be more prevalent than others. An
example of this is the x86 32-bit instruction set, which

includes, for instance, the “AAA” instruction, “ASCII
Adjust after Addition” [4]. This instruction is used for
binary-coded-decimal (BCD) arithmetic. However, BCD
is not used as often as it might once have been. This leads
to the conclusion that we should test against actual x86
64-bit programs, using their actual mix of instructions, as
opposed to a synthesized set of all instructions. Further, a
large class of instructions that were available in 32-bit x86
mode are not available in 64-bit mode, and cause program
exceptions. The “AAA” instruction is, in fact, one such
operation. Our conclusion is that we should test not
against every potential sequence of bytes, but against
actual instruction sequences from 64-bit programs. Thus
our first tool was a shell script to extract the instruction
area from a genuine x86 64-bit executable program.
For the reverse assembly process, we examined the
“objdump” utility available on Linux platforms, but settled
instead on “udcli”, a tool that is part of the “udis86”
project [12]. This tool allows one to feed an arbitrary
string of bytes to the program, which displays the
disassembly of the bytes as they are entered. Eventually
the “gold standard” will be determining the difficulty of
reverse engineering our obfuscated binaries using IdaPro;
for this experiment any reverse assembler is sufficient and
“udcli” is convenient.
We used this reverse assembly as our starting point, and
took advantage of the addresses that are displayed by the
tool. In our eventual obfuscating compiler, blocks of code
will have space between them where the junk bytes can be
inserted. We thus implemented software that inserts a
“NOP” instruction at one of these addresses in the binary
data. The resulting file is then disassembled and the results
are saved. The same location is then replaced with all byte
values from 00 hex through FF hex in turn, and this was
repeated for every possible instruction address. Each of
these is disassembled and compared with the original, and
the number of missed instructions is noted. In this manner
we collected the differences for each byte value at each
instruction boundary in the original program.
Finally we selected a set of utilities from the “/bin”
directory on a x86 64-bit Linux machine; our obfuscation
data is tied to the binary files on Linux, presumably
compiled with GCC. As other compilers might generate
slightly different instruction sequences as output, we note
that these may be biased towards the Linux/GCC model.
However, we feel that the results are likely to be similar
for other operating environments and compilers as long as
they are on x86 64-bit platforms.

3.2. Experimental results

We considered that a best-case scenario for the maximum
number of obfuscated instructions is when the original
instructions are one or two bytes in length, and the “junk”

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

107

causes them to be considered as the suffix of a longer
complex instruction. Although this upper bound might be
useful to know, it would not appear in practice because of
the unlikely scenario that the code contains such a long
sequence of short instructions. Regardless, in order to
gauge our results we determined that the maximum
number of instructions we could potentially obfuscate was
likely around ten, and estimated that the real number was
likely to be three or four. We based this estimate on the
x86 64-bit instruction format, where longest instruction
sequence is 15 bytes [1], and is described below.
Instructions can start with a “legacy prefix” which is bytes
whose presence is due to backwards compatibility. In 64-
bit mode they are allowed but ignored and include
segment overrides, operand size overrides, and other
prefixes which were necessary in earlier versions of the
architecture. There are five groups of legacy prefixes and
normally an instruction can contain a maximum of one
byte from each of the five groups. If we are analyzing a
current executable compiled on a 64-bit platform with a
64-bit compiler, these prefixes should not normally be
present in the instruction if the executable program was

created for a 64-bit platform to begin with. In intel CPUs
(but not AMD) an additional branch prediction prefix may
also be present before the actual operation code.
Following the legacy prefixes is a one byte optional
“REX” prefix. The “REX” prefix allows access to
extended registers in the hardware and allows access to the
full 64-bit operand size. Although the use of the “REX”
prefix is optional there are few instructions that default to
64-bit, and thus most instructions would likely contain the
prefix if they deal with 64-bit data.
Following the prefixes is the actual x86 operation code,
which is either one or two bytes, and then a “ModRM”
byte. The “ModRM” byte is used in certain instruction
encodings to provide additional opcode bits with which to
define the function of the instruction. Next is the “SIB”, or
“Scale Index Base” byte. Some instructions have a “SIB”
byte following their “ModRM” byte to define memory
addressing for the complex-addressing modes.
Finally there are two additional fields, “Displacement” and
“Immediate” which can be one, two, four, or eight bytes in
length.

Figure 2. Obfuscated instruction count for “junk” byte values.

Not all instructions contain all fields; thus the total number
of bytes described here is greater than the 15 bytes
allowed according to the technical reference. By
examining some of the object files disassembled, we

observed that the average instruction length was 2.57
bytes on our 64-bit Linux system. While a bit lower than
expected we note that the areas between sections in the
files are padded with “NOP” bytes, which skews the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

108

average lower than if we simply consider instructions that
“do something”. But using this average we should be able
to hide approximately 15/2.57=5.8 instructions. Since the
2.57 average is low due to the propensity of “NOP”s, the
5.8 figure is likely high for the same reason when
considering instructions that do actual work. We thus
predicted a three to four instruction estimate.
After conducting experiments in the environment
previously described, we created a scaled graph of the
average number of instructions obfuscated. Figure 2
shows the results of the experiment, and our maximum
average was about 1.5 – considerably lower than we
anticipated, but with good results in certain areas
depending on the selected bytes of “junk”. One aspect we
neglected to consider is that there are still a large number
of one-byte opcodes, and if these are inserted in place of
the “NOP” instruction they will yield no change at all in
the resulting disassembly; they obstruct nothing. The best
results were given with bytes with hex values A0 through
A3, which had an average of 3.281 instructions. A quick
examination reveals that hex A0 for example represents a
“MOV” instruction from a 64-bit address, which causes
eight additional bytes to be included in the instruction.
Hiding eight bytes with an average instruction length of
2.57 gives a figure of 3.11 instructions, approximately
what was actually measured.
For our use, the results indicate that certain bytes should
be used for obfuscation and certain bytes should not.
Those that should not include obvious selections that are
one byte opcodes, thus appearing as zeros on the graph
since they hide no instructions at all, but also those that
perform poorly such as hex 3E, which only masks 1.037
instructions on average. Sorting the opcodes according to
the best obfuscation and selecting those that mask at least
two operations yields Table 1 below:

Table 1. Values obfuscating two or more instructions
Value Instructions Value Instructions
0xa0 3.281 0xa9 2.342
0xa1 3.281 0xb8 2.342
0xa2 3.281 0xb9 2.342
0xa3 3.281 0xba 2.342
0x69 2.911 0xbb 2.342
0x81 2.911 0xbc 2.342
0xf7 2.561 0xbd 2.342
0x0F 2.444 0xbe 2.342
0x05 2.342 0xbf 2.342
0x0D 2.342 0xe8 2.342
0x15 2.342 0xe9 2.342
0x1d 2.342 0x6b 2.156
0x25 2.342 0x80 2.156
0x2d 2.342 0x83 2.156
0x35 2.342 0xc0 2.156
0x3d 2.342 0xc1 2.156
0x68 2.342 0xf6 2.039

These values represent those that will be inserted between
blocks in the obfuscation process. Selecting from among
this set at random is a feature that will be added to our
obfuscating compiler in the near future.

4. Conclusions and future work

We determined that the optimal byte values used for
obfuscation are actually hex A0 through A3. These were
not the instructions we originally considered as yielding
best results – initially, we assumed the “REX” prefixes
(bytes 40 through 4F) would be the bytes of interest. As it
was, these bytes actually yielded below-average results.
We obviously considered only one-byte insertions into the
instruction stream, so that the processing of the files could
be accomplished in a reasonable timeframe. Multi-byte
“junk” may be desirable, and one area of future work
would be to craft custom opcode prefixes to maximize the
obfuscation.
Currently we are using actual binary executable from our
Linux machine as the experimental data. However by
modifying the source code for the “udcli” tool it would be
possible to perform the experiment again, easily, using the
brute force approach. While we feel that the empirical
numbers we have obtained are probably better from the
obfuscation point of view, because they relate to actual
binary code, modifying the “udcli” tool would facilitate
the brute force approach and allow for longer sequences of
“junk” bytes to be tested.

5. Acknowledgements

This research is based upon work supported by the
National Science Foundation under Grant No. CNS-
1062995.

References
[1] AMD, “AMD64 Architecture Programmer’s Manual

Volume 3: General-Purpose and System Instructions”,
November 2009, Figure 1.1.

[2] Balakrishnan, Arini, Chloe Schulze, “Code Obfuscation
Literature Survey”,
http://pages.cs.wisc.edu/~arinib/writeup.pdf or
http://www.obfuscators.org/2008/04/code-obfuscation-
literature-survey.html

[3] Chen, Haibo, et. al. “Control flow obfuscation with
information flow tracking” MICRO 42 Proceedings of the
42nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2009, ACM New York.

[4] Ferguson, Justin, Dan Kaminsky, “Reverse Engineering
Code with IdaPro”, 2008, Elsevier.

[5] Hsieh, Wilson C., Dawson R. Engler, Godmar Back,
“Reverse-Engineering Instruction Encodings”, Proceedings
of the 2001 USENIX Conference, 133-146.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

109

[6] IdaPro at http://www.hex-rays.com/idapro/
[7] Intel, “Intel 64 and IA-32 Architectures Software

Developer’s Manual” Volume 2A: Instruction Set Reference
A-M, intel, 2008.

[8] Johansson, Hakan T., “Tuning Intel x86 Executables”,
Master’s Thesis, Goteborg University, December 2002,
figures 2.2 and 2.3.

[9] Krishnamoorthy, Nithya, Saumya Debray, Keith Fligg,
“Static Detection of Disassembly Errors”, 16th Working
Conference on Reverse Engineering, 2009.
http://www.cs.arizona.edu/~debray/Publications/disasm-
resist.

[10] Kruegel, Christopher, William Robertson, Fredrik Valeur
and Giovanni Vigna, “Static Disassembly of Obfuscated
Binaries”, 13th USENIX Security Symposium, 2004.

[11] Laszlo, T. and A. Kiss, “Obfuscating C++ Programs via
Control Flow Flattening”, http://www.inf.u-
szeged.hu/~akiss/pub/pdf/laszlo_obfuscating_journal.pdf

[12] OllyDbg at http://www.ollydbg.de/
[13] Thampi, Vivek, “udis86 Disassembler Library for x86 and

x86-64”, at http://udis86.sourceforge.net/
[14] Dube, Thomas, Kenneth Edge, Richard Raines, Rusty

Baldwin, Barry Mullins and Christopher Reuter,
“Metamorphism: A Software Protection Mechanism”,
Proceedings of the International Conference on Information
Warfare and Security. 15-16 March 2006, University of
Maryland Eastern Shore, Baltimore. Reading, UK:
Academic Conferences Limited, 2006. Print.

[15] C. Linn and S. Debray. “Obfuscation of Executable Code to
Improve Reisistance to Static Disassembly”, 10th ACM
Conference on Computer and Communications
Security(CCS), pages 290-299, October 2003.
http://www.cs.arizona.edu/~debray/Publications/disasm-
resist.pdf

[16] Dictionary.com, “obfuscation,” in Dictionary.com
Unabridged. Source location: Random House, Inc.
http://dictionary.reference.com. 2011.

Sara Shinn is from Nebraska City,
Nebraska and is an undergraduate student
double major in Computer Engineering
and Computer Science at the University of
Nebraska at Omaha. She participated in a
Research Experiences for Undergraduates
(REU) program sponsored by the National
Science Foundation during the summer of
2011. This paper is the result of her

research project and will be a portion of the overall obfuscating
compiler project.

William R. Mahoney received his B.A.
and B.S. degrees from Southern Illinois
University, and his M.A. and Ph.D.
degrees from the University of Nebraska.
He is an Assistant Professor in the College
of Information Science and Technology,
University of Nebraska at Omaha, and is
the Director of the Nebraska University

Center for Information Assurance (NUCIA). His primary
research interests include language compilers, hardware and
instruction set design, and code generation and optimization, as
these topics relate to information assurance goals. As such is
interests are in areas such as code obfuscation, reverse
engineering and anti-reverse engineering techniques, and
vulnerability analysis. Prior to the Kiewit Institute Dr. Mahoney
worked for 20+ years in the computer design industry,
specifically in the areas of embedded computing and real-time
operating systems.

