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Summary 
We present experimental results from intentionally obfuscating 
binary instruction data on the x86 64-bit environment. The work 
is a part of a larger research project to implement an obfuscating 
compiler, where the intent is to make reverse engineering of 
compiled binaries more difficult by hiding instructions from the 
reversing tools. We empirically determine good selections of 
“junk” bytes in order to maximize the number of instructions 
hidden or misrepresented by reverse engineering tools. 
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1. Introduction 

Protection of intellectual property has been a major 
concern for countless professions in the engineering world, 
particularly where binary data is exported for 
manufacturing of embedded devices, or where binary 
executables contain keys or activation and licensing data. 
It is all too easy for software to be reverse engineered and 
have its methods and secrets analyzed. This research 
examines the effectiveness of binary obfuscation by 
inserting various bytes of “junk” at addresses between 
instructions, in an attempt to confuse disassemblers used 
in the process of reverse engineering. 
Our paper is organized such that section two contains a 
review of obfuscation in general, to make the reader aware 
of the various techniques in use, and also lists other 
studies done in this area; we are aware of 32-bit 
experiments along these lines, but we examine 64-bit 
binaries. Following this we present the research question 
and the methods we employed. The results are given in the 
next section, section three, and finally some thoughts 
about future work are listed in section four. This was an 
empirical study but we mention there that a brute-force 
approach may also be obtained with a little effort. 

2. Obfuscation 

Obfuscation is defined as the process of making something 
obscure or unclear [15]. When applied to software, it is the 
process of making source code difficult to understand and 
therefore difficult to reverse engineer. In this section we 
describe how obfuscation works, and our question 

concerning the determination of which “junk” yields the 
best results. 

 

2.1. Overview 

Reverse engineering of executable programs, in order to 
steal intellectual property or modify program behavior, 
can be thwarted in part by various techniques for 
performing software obfuscation. These techniques 
generally fall into three categories: 

 
1. Obfuscation at the source code level, in order to 

hide variable names, strip comments, remove indentation 
that is indicative of program structure, and other source 
level modifications. These techniques might be used 
where the original source code must be given to the end 
user, but where we do not desire the end user to 
understand the intellectual property represented by the 
code. These also may apply where, for example, a Java file 
is compiled to a “class” file, which then would contain all 
of the original variable names, types, methods, etc.  

 
2. Obfuscation at an intermediate level, where 

techniques can be used to alter the way the program 
accomplishes certain tasks, but in such a way as to not 
modify the observable behavior of the program. Examples 
include replacing “return” statements containing values 
with “thrown” exceptions containing these values, which 
are then caught by the caller. These techniques might be 
applicable to an environment such as compiled C++ where 
tools exist which will attempt to recreate the program flow 
in C++ pseudo code from a binary program image. 
Additional information can be found in Chen [1], Laszlo 
[8], and others. 

 
3. Finally, obfuscation at a binary level. In low-level 

obfuscation the assumption is that the reverse engineering 
process is concerned primarily with recreating an accurate 
assembly language representation of the binary code. Here, 
techniques include inserting conditional jumps where a 
tested predicate is known to be false, in order to lead 
reverse assemblers astray. Other techniques include 
inserting “junk” into key areas in the binary so as to throw 
off disassemblers in architectures with varying length 
instructions (particularly x86) as described by 
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Balakrishnan [2] as well as Johansson [8] and other 
previous work as noted above. 
It is this final type of obfuscation that is the focus of this 
paper. The inserted “junk” may represent the first bytes of 
a valid operation code mnemonic (opcode) that causes 
subsequent bytes of valid opcodes to be considered as a 
part of the previous instruction. We address this in greater 
detail below. 

2.2. Reverse assembly 

The reverse assembly process is largely accomplished 
using a mixture of two methods: a linear sweep of the 
instruction space of the program, and/or a tree-based 
approach whereby there is a certain amount of program 
flow analysis is involved.  
In the linear sweep method, the program is assumed to 
contain one long area of instructions and the disassembler 
starts at the entry point of the program and goes from there. 
Each instruction is assumed to be decoded correctly, the 
appropriate number of bytes is added to the current 
disassembly point, and the process repeats. This method is 
very simple to thwart because after any unconditional 
jump or call, “junk” bytes can be inserted at that point. 
However the linear method is rarely used alone in practice 
when good reverse assemblers are at use. 
The tree-based method should, intuitively, give better 
results where the code might have a mixture of 
instructions and data in the same space. A good flowchart 
describing this approach can be found in the work by 
Johansson [8]. A detailed description of the method, along 
with additional heuristics to improve the process, can be 
found in Kruegel [10]. The basic idea is to keep a stack of 
destination addresses, initialized with the starting address 
of the program. At every iteration, the next address is 
popped and disassembly starts from that address. If the 
disassembled instruction is a jump or call, then the 
destination address is pushed onto the stack. The process 
continues until the stack is empty, and as a result the 
process mirrors the control flow graph of the program 
being disassembled.  
The two popular reverse assembly tools in widespread use 
are OllyDbg [12] and IdaPro [6]. IdaPro, in particular, 
uses a tree-based method, which is described in [4]. In the 
overall architecture of our obfuscating compiler, these are 
the tools that will be used for determining the level of 
complexity added by our overall approaches.  
Lastly we note that although IdaPro and OllyDbg are the 
main tools in practice, in some cases the reverse assembler 
tools can be automatically created. One example is the 
DERIVE system described by Hsieh [4], where the user 
feeds the system examples of assembler mnemonics and 
output, and the system creates C language declarations 
which are then used for reverse assemblers or other tools. 

One of the CPUs tested was the x86 platform and they 
note that the output is suitable for a reverse assembler 
which is largely automatically created, although they only 
provide the instruction-at-a-time level. 

2.3. Previous work 

Many papers concerning reverse engineering have 
proposed the insertion of “junk” to throw off reverse 
assemblers. However the previous studies primarily deal 
with 32-bit executables. Additionally, many obfuscation 
techniques deal not with disassembly, as is our intention, 
but decompilation. The following examples are 32-bit 
experiments that deal with obfuscation during disassembly. 
Dube [14] examined operation code (opcode) shifting in 
32-bit applications. Essentially, after being presented with 
a jump, anywhere from one to eight bytes are inserted in 
the executable. The debugger must then decide if the bytes 
were data or instructions – opcodes with possible prefixes. 
The experiment measured how many instructions were 
manipulated with two different debuggers: IdaPro and 
OllyDbg version 1.10. The results varied, with more 
instructions disguised with more bytes inserted. For a 
single byte, the average number of instructions obscured 
was about 2.8.  
Linn and Debray [15] implemented a system for 32-bit 
Linux executables that obfuscated executables, at the 
user’s request, using a variety of techniques. Their 
research into inserting “junk bytes” in selected locations 
resulted in 26% to 30% of instructions incorrectly 
disassembled during a linear sweep. 
Although this is apparently a popular technique to use, 
few have investigated the best choices for “junk” insertion, 
and those that have explored the problem with respect to 
x86 32-bit operations. 

2.4. Research question 

We are in the process of implementing an obfuscating 
compiler, which will generate code that is difficult to 
reverse engineer. A part of the project is to eliminate the 
“fall through” areas in the program flow of control; these 
are locations where an instruction either jumps to a 
different location in the object file, or continues with the 
subsequent instruction (“falls through”). The obfuscating 
compiler inserts jumps, either to the destination of the 
original jump, or the destination of the original “fall 
through” instruction. This allows the sections in the 
machine code to be rearranged and makes it possible to 
insert extraneous information between the basic blocks of 
machine code. 
We include selected “junk” which is inserted after jumps 
and constructed in such a way that they maximize the 
mistaken identification of instructions buy a reverse 
assembler. For example, a byte representing the first 
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portion of an instruction that is N bytes in length will 
cause the next N-1 bytes to be assumed as part of the 
instruction. In fact these may contain shorter instructions 
that are now missed by the reverse assembly process. 
The following figure provides an example of this 
technique in action. The original reverse assembly is at the 
top of the figure and starts with a “NOP” – no-operation – 
instruction. If this byte is modified and is set to a byte 
value of 05 (all numbers are in hexadecimal), the reverse 
assembly is as shown in the bottom half of the figure. 
 

 
00000000 90          nop 
00000001 31ed        xor ebp, ebp 
00000003 4989d1      mov r9, rdx 
00000006 5e          pop rsi 
00000007 4889e2      mov rdx, rsp 
 
After: 
 
00000000 0531ed4989  add eax, 0x8949ed31 
00000005 d15e48      rcr dword [rsi+0x48],1 
00000008 89e2        mov edx, esp 
 

Figure 1. One Byte Replacement Hides Four Instructions. 

By modifying the hex 90 to a 05 we have hidden four 
instructions, the “XOR” through the second “MOV”; the 
reverse assembler incorrectly assumes that this is a three-
instruction sequence as shown.  
Our aim in the research is to discover optimal values to 
insert, in such a way as to maximize the number of missed 
instructions. 

3. Results 

Initially we tried to predict the expected number of hidden 
instructions just by examining the 64-bit instruction set 
and making an approximation of the average result. 
However it became clear that the real results using actual 
64-bit executable programs may be different because of 
the actual mix of instructions typically found. We describe 
here our method for determining this. 

3.1. Experimental method 

A simple approach to the problem could be to try each 
combination of several instructions, modifying the initial 
byte each time to determine which bytes make good 
choices. This is obviously computational intensive, but 
also suffers from another drawback, in that as mentioned, 
certain instructions may be more prevalent than others. An 
example of this is the x86 32-bit instruction set, which 

includes, for instance, the “AAA” instruction, “ASCII 
Adjust after Addition” [4]. This instruction is used for 
binary-coded-decimal (BCD) arithmetic. However, BCD 
is not used as often as it might once have been. This leads 
to the conclusion that we should test against actual x86 
64-bit programs, using their actual mix of instructions, as 
opposed to a synthesized set of all instructions.  Further, a 
large class of instructions that were available in 32-bit x86 
mode are not available in 64-bit mode, and cause program 
exceptions. The “AAA” instruction is, in fact, one such 
operation. Our conclusion is that we should test not 
against every potential sequence of bytes, but against 
actual instruction sequences from 64-bit programs. Thus 
our first tool was a shell script to extract the instruction 
area from a genuine x86 64-bit executable program.  
For the reverse assembly process, we examined the 
“objdump” utility available on Linux platforms, but settled 
instead on “udcli”, a tool that is part of the “udis86” 
project [12]. This tool allows one to feed an arbitrary 
string of bytes to the program, which displays the 
disassembly of the bytes as they are entered. Eventually 
the “gold standard” will be determining the difficulty of 
reverse engineering our obfuscated binaries using IdaPro; 
for this experiment any reverse assembler is sufficient and 
“udcli” is convenient. 
We used this reverse assembly as our starting point, and 
took advantage of the addresses that are displayed by the 
tool.  In our eventual obfuscating compiler, blocks of code 
will have space between them where the junk bytes can be 
inserted. We thus implemented software that inserts a 
“NOP” instruction at one of these addresses in the binary 
data. The resulting file is then disassembled and the results 
are saved. The same location is then replaced with all byte 
values from 00 hex through FF hex in turn, and this was 
repeated for every possible instruction address. Each of 
these is disassembled and compared with the original, and 
the number of missed instructions is noted. In this manner 
we collected the differences for each byte value at each 
instruction boundary in the original program.  
Finally we selected a set of utilities from the “/bin” 
directory on a x86 64-bit Linux machine; our obfuscation 
data is tied to the binary files on Linux, presumably 
compiled with GCC. As other compilers might generate 
slightly different instruction sequences as output, we note 
that these may be biased towards the Linux/GCC model. 
However, we feel that the results are likely to be similar 
for other operating environments and compilers as long as 
they are on x86 64-bit platforms. 

3.2. Experimental results 

We considered that a best-case scenario for the maximum 
number of obfuscated instructions is when the original 
instructions are one or two bytes in length, and the “junk” 
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causes them to be considered as the suffix of a longer 
complex instruction. Although this upper bound might be 
useful to know, it would not appear in practice because of 
the unlikely scenario that the code contains such a long 
sequence of short instructions. Regardless, in order to 
gauge our results we determined that the maximum 
number of instructions we could potentially obfuscate was 
likely around ten, and estimated that the real number was 
likely to be three or four. We based this estimate on the 
x86 64-bit instruction format, where longest instruction 
sequence is 15 bytes [1], and is described below. 
Instructions can start with a “legacy prefix” which is bytes 
whose presence is due to backwards compatibility. In 64-
bit mode they are allowed but ignored and include 
segment overrides, operand size overrides, and other 
prefixes which were necessary in earlier versions of the 
architecture. There are five groups of legacy prefixes and 
normally an instruction can contain a maximum of one 
byte from each of the five groups. If we are analyzing a 
current executable compiled on a 64-bit platform with a 
64-bit compiler, these prefixes should not normally be 
present in the instruction if the executable program was 

created for a 64-bit platform to begin with. In intel CPUs 
(but not AMD) an additional branch prediction prefix may 
also be present before the actual operation code. 
Following the legacy prefixes is a one byte optional 
“REX” prefix. The “REX” prefix allows access to 
extended registers in the hardware and allows access to the 
full 64-bit operand size. Although the use of the “REX” 
prefix is optional there are few instructions that default to 
64-bit, and thus most instructions would likely contain the 
prefix if they deal with 64-bit data.  
Following the prefixes is the actual x86 operation code, 
which is either one or two bytes, and then a “ModRM” 
byte. The “ModRM” byte is used in certain instruction 
encodings to provide additional opcode bits with which to 
define the function of the instruction. Next is the “SIB”, or 
“Scale Index Base” byte. Some instructions have a “SIB” 
byte following their “ModRM” byte to define memory 
addressing for the complex-addressing modes.  
Finally there are two additional fields, “Displacement” and 
“Immediate” which can be one, two, four, or eight bytes in 
length.  
 

 

 

Figure 2. Obfuscated instruction count for “junk” byte values. 

Not all instructions contain all fields; thus the total number 
of bytes described here is greater than the 15 bytes 
allowed according to the technical reference. By 
examining some of the object files disassembled, we 

observed that the average instruction length was 2.57 
bytes on our 64-bit Linux system. While a bit lower than 
expected we note that the areas between sections in the 
files are padded with “NOP” bytes, which skews the 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011 

 

108

average lower than if we simply consider instructions that 
“do something”. But using this average we should be able 
to hide approximately 15/2.57=5.8 instructions. Since the 
2.57 average is low due to the propensity of “NOP”s, the 
5.8 figure is likely high for the same reason when 
considering instructions that do actual work. We thus 
predicted a three to four instruction estimate. 
After conducting experiments in the environment 
previously described, we created a scaled graph of the 
average number of instructions obfuscated. Figure 2 
shows the results of the experiment, and our maximum 
average was about 1.5 – considerably lower than we 
anticipated, but with good results in certain areas 
depending on the selected bytes of “junk”. One aspect we 
neglected to consider is that there are still a large number 
of one-byte opcodes, and if these are inserted in place of 
the “NOP” instruction they will yield no change at all in 
the resulting disassembly; they obstruct nothing. The best 
results were given with bytes with hex values A0 through 
A3, which had an average of 3.281 instructions. A quick 
examination reveals that hex A0 for example represents a 
“MOV” instruction from a 64-bit address, which causes 
eight additional bytes to be included in the instruction. 
Hiding eight bytes with an average instruction length of 
2.57 gives a figure of 3.11 instructions, approximately 
what was actually measured. 
For our use, the results indicate that certain bytes should 
be used for obfuscation and certain bytes should not. 
Those that should not include obvious selections that are 
one byte opcodes, thus appearing as zeros on the graph 
since they hide no instructions at all, but also those that 
perform poorly such as hex 3E, which only masks 1.037 
instructions on average. Sorting the opcodes according to 
the best obfuscation and selecting those that mask at least 
two operations yields Table 1 below: 

Table 1. Values obfuscating two or more instructions 
Value Instructions Value Instructions 
0xa0 3.281 0xa9 2.342 
0xa1 3.281 0xb8 2.342 
0xa2 3.281 0xb9 2.342 
0xa3 3.281 0xba 2.342 
0x69 2.911 0xbb 2.342 
0x81 2.911 0xbc 2.342 
0xf7 2.561 0xbd 2.342 
0x0F 2.444 0xbe 2.342 
0x05 2.342 0xbf 2.342 
0x0D 2.342 0xe8 2.342 
0x15 2.342 0xe9 2.342 
0x1d 2.342 0x6b 2.156 
0x25 2.342 0x80 2.156 
0x2d 2.342 0x83 2.156 
0x35 2.342 0xc0 2.156 
0x3d 2.342 0xc1 2.156 
0x68 2.342 0xf6 2.039 

 

These values represent those that will be inserted between 
blocks in the obfuscation process. Selecting from among 
this set at random is a feature that will be added to our 
obfuscating compiler in the near future.  

4. Conclusions and future work 

We determined that the optimal byte values used for 
obfuscation are actually hex A0 through A3. These were 
not the instructions we originally considered as yielding 
best results – initially, we assumed the “REX” prefixes 
(bytes 40 through 4F) would be the bytes of interest. As it 
was, these bytes actually yielded below-average results. 
We obviously considered only one-byte insertions into the 
instruction stream, so that the processing of the files could 
be accomplished in a reasonable timeframe. Multi-byte 
“junk” may be desirable, and one area of future work 
would be to craft custom opcode prefixes to maximize the 
obfuscation.  
Currently we are using actual binary executable from our 
Linux machine as the experimental data. However by 
modifying the source code for the “udcli” tool it would be 
possible to perform the experiment again, easily, using the 
brute force approach. While we feel that the empirical 
numbers we have obtained are probably better from the 
obfuscation point of view, because they relate to actual 
binary code, modifying the “udcli” tool would facilitate 
the brute force approach and allow for longer sequences of 
“junk” bytes to be tested. 
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