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Summary 
In this study, we apply our Elitist-Ant System, Big Bang-Big 
Crunch and Scatter Search heuristics to solve two post-enrolment 
course timetabling problems (first and second international 
timetabling competitions) and to compare their performance and 
consistency. The approaches mainly focus on employing the elite 
pool and solution combination strategies. Both strategies provide 
deterministic search guidance by maintaining a balance between 
diversity and quality of the population. This is achieved by a 
dynamic changing of the population size and, the utilization of 
elite solutions and a probabilistic selection procedure in 
generating good quality and diversity solutions. Experimental 
results showed that our hybrid approaches produce good quality 
solutions, and outperforms some best known results reported in 
the literature including population-based algorithms. In term of 
solutions’ quality, the Scatter Search ranked first and followed 
closely by the Elitist-Ant System and Big Bang-Big Crunch 
heuristics.  
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1. Introduction 

The university course timetabling problem is considered as 
NP-hard problem [1], which is difficult to solve for 
optimality. During the last decade, various metaheuristics 
have been applied to solve course timetabling problem 
(see [2]). Metaheuristics are classified into two classes, 
population-based and single-based (aka local search) 
metaheuristics [3]. Some common population-based 
methods applied to the problem are the ant colony 
optimization [4] [5] [6], memetic algorithm [7] [8] and 
hybrid evolutionary algorithm [9]. Mainly, the population-
based metaheuristics are intensively investigated, where 
the population-based metaheuristics are utilized due to 
their capability of search space exploration and can be 
easily combined with local search methods to enhance the 
solution exploitation process [10]. Whilst, some common 
single-based methods applied to the problem are tabu 

search [5], simulated annealing [5], dual sequence 
simulated annealing with round-robin [11] and great 
deluge with kempe chain neighbourhood structure [12]. 
The single-based metaheuristics are utilized due to their 
capability of solution space exploitation. 
 The strength of population-based methods is certainly 
based on the capability of recombining solutions to obtain 
new ones [3]. In Evolutionary algorithms (EA) including 
scatter search, explicit recombinations (which are move 
and swap of assignments in a solution representing 
information exchange between generations of a solution’s 
good components) are implemented by one or more 
recombination operators, such as crossover and mutation 
[3]. Whilst, in Ant Colony Optimization (ACO), 
recombination is implicit, i.e. new solutions are generated 
using a distribution over the search space which is a 
function of earlier populations representing the search 
experience [3]. The implicit recombination enables the 
search process to perform a guided sampling of the search 
space [3]. Both recombination techniques can effectively 
find promising areas of the search space [3]. 
 However, a population-based metaheuristic is 
considered weak in intensifying the search for higher 
quality solutions. Hence, in order to enhance the 
intensification process, a specialized metaheuristics in 
exploiting the solution space (e.g. hill climbing) is usually 
hybridized with the population-based metaheuristics. 
Many studies have recommended the hybridization 
between a population-based metaheuristic and other 
single-based metaheuristics, such as [10] [13] [14]. Local 
search metaheuristics are able to overcome the weakness 
(in the population-based) of exploiting the solution space 
(further enhancement of a solution’s quality). 
 Jaradat and Ayob [15] enhanced the capability of the 
Elitist-Ant System in maintaining a balance between 
diversification and intensification of the search for solving 
the course timetabling problem. This is achieved by 
hybridizing the Elitist-Ant System with an iterated local 
search and an intensification mechanism to intensify the 
search further. A diversification mechanism is also 
employed to escape the local minima. Jaradat and Ayob 
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[16] enhanced the Big Bang-Big Crunch metaheuristic to 
solve the course timetabling problem. The approach 
utilizes an elite pool of good quality solutions and a 
dynamic population size to produce good quality solutions. 
Recently, Jaradat and Ayob [17] applied a hybrid Scatter 
Search to the course timetabling problem. The approach 
mainly utilizes a collection of elite solutions (containing 
good quality and diverse solutions) in generating new 
good quality solutions. 
 In this work, we focus on the university post-
enrolment course timetabling problems (namely the 1st and 
2nd timetabling competitions). This work mainly aims at 
comparing the performance of three hybrid population-
based approaches: hybrid Elitist-Ant System (Elitist-AS), 
hybrid Big Bang-Big Crunch optimization (BB-BC) and 
hybrid Scatter Search (SS) in solving the post-enrolment 
course timetabling problems. These approaches were 
proposed in [15] [16] [17]. In the previous works we test 
these approaches only on the Socha’s benchmark datasets 
[18]. 

2. Description of the Problem 

Course timetabling problems mainly comprise of 
assigning a set of courses, students and lecturers to a 
specific and fixed number of timeslots and rooms in a 
week, while satisfying some constraints [19]. In this work, 
we tested our hybrid approaches on benchmark post-
enrolment course timetabling instances of the 1st 
timetabling competition (TTComp2003, [20]) which 
consider only student preferences. These instances were 
generated by the Metaheuristic Network (refer to the 
official website). The 2nd international timetabling 
competition (ITC2007-Track2, [21]) is also considered in 
our experiments [2]. The benchmark problems are 
formulated as follows: 

• A set of N courses needs to be scheduled into 5 
working days a week of 9 timeslots each day, 
where T=45 timeslots,  

• A set of R rooms is given, where each room has a 
number of F features that include their capacities 
and other facilities,  

• A number of M students will attend the course. 
Each student attends a number of courses with a 
given size of each room involved.  

 
 There are two types of constraints: hard and soft. In 
order to produce a feasible timetable, all of the hard 
constraints must be satisfied, whereas the violation of the 
soft constraints must be minimized in order to produce a 
good quality timetable. Each violation of soft constraints 
will incur a penalty cost, where lower penalty values 
indicate good quality solutions. A feasible timetable is one 

in which all courses have been assigned to timeslots and 
rooms, and all hard constraints are satisfied. The hard 
constraints for both competitions’ instances are: 
H1: No student attends more than one course at the   
       same time;  
H2: The room is big enough for all the attending  
       students and satisfies all the features required  
       by the course;  
H3: Only one course is scheduled in each room at  
       any timeslot; 
H4: Events are only assigned to timeslots that are  
       pre-defined as available for those events  
       (applicable only to ITC2007-Track2); 
H5: where specified, events are scheduled to occur  
       in the correct order in the week (applicable   
       only to ITC2007-Track2); 
 
 Then, a quality of timetable is measured by penalising 
equally each violation of the following soft constraint (i.e. 
penalty cost=1 for each violation). The soft constraints for 
the problem are: 
S1: A student should not has a class in the last slot  
      of the day;  
S2: A student should not has more than two classes  
      consecutively;  
S3: A student should not has a single class on a day.  
 
 The objective function value of a timetable for each 
student is simply calculated as the summation of the hard 
and soft constraints violations (as in [5]). However, we 
deal only with feasible solutions in our approaches. More 
information about the instances and the problem 
formulation can be found in [2] [18]. 

3. The Hybrid Approaches 

In this work, we extend the investigation of our hybrid 
approaches [15] [16] [17] by applying them to the 
TTComp2003 and ITC2007-Track2 instances. 

3.1 Hybrid Elitist-Ant System 

The Elitist-AS was originally proposed by [22]. Since, the 
Elitist-AS is incapable of maintaining a balance between 
diversity and quality of the search, in our previous work 
[15] we enhanced its capability by hybridizing the Elitist-
AS with an Iterated Local Search (ILS), diversification 
and intensification mechanisms and, an external memory 
to store elite solutions. The ILS is employed for a 
significant solution improvement by accepting only a 
better solution. The diversification mechanism is 
employed by restarting the ant search (when it stagnates) 
to explore different regions (when no further possible 
improvement) of the search space. Whilst, the 
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intensification mechanism is employed to further explore 
the neighborhoods of a solution further. Those 
diversification and intensification mechanisms help in 
strengthen the ability of the pheromone deposition 
(intensification) and evaporation (diversification) in 
diversifying the search while maintaining the quality. 
Based on a collection of diverse elite solutions stored in an 
external memory and the number of non-improvement 
iterations (in the ILS), the intensification mechanism will 
be activated and commenced the search in improving the 
solution obtained from the ILS further. Whilst, the 
diversification mechanism will be activated and 
commenced when the ILS fails to improve the quality of 
solutions and the pheromone trails will be reinitialized. 
The pseudo code of our hybrid Elitist-AS is illustrated in 
Fig. 1 [15]. Our hybrid Elitist-AS algorithm starts the 
search by constructing a population of initial solutions 
using a constructive heuristic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  The pseudo code of the hybrid Elitist-AS for course timetabling 
problem [15]. 

 Each ant presents a solution which will be improved 
using the ILS (as in [5]) for a significant enhancement of 
its quality. Once an elite solution is found, it will be stored 
in the external memory. This solution will be utilized in 
the successive iterations as a reference to guide the search 
toward the global solution. If there is any improvement 
made to a solution, the intensification phase will proceed 
to explore furthermore the neighbours of the solution in 
order to generate new elite solution. If no improvement 
made for a predefined number of iterations (stagnation 

state), the intensification phase will be skipped and the 
diversification phase is commenced. The diversification 
phase will reinitialize the pheromone trail values to trigger 
the search again. The whole steps will be repeated until 
the stopping criterion is met, which is either the maximum 
number of iterations or a global (lower bound) solution is 
found. 

3.2 Hybrid Big Bang-Big Crunch 

The hybrid BB-BC (the BB-BC was originally proposed 
by [23]) is basically a search algorithm which is inspired 
by the theory of the universe evolution (life cycle). This 
approach is mainly characterized by a fast search space 
exploration and aggressive solution space exploitation 
[24]. This is presented by a population size reduction. The 
pseudo code of our hybrid BB-BC is illustrated in Fig. 2 
[16]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  The pseudo code of the hybrid BB-BC for course timetabling 
problem [16]. 

 The hybrid BB-BC starts the search with the same 
constructive heuristic as used in the hybrid Elitist-AS 
approach. A large population of initial solution is 
generated in the Big Bang phase, and the Euclidean 
distances among solutions are calculated. That is to 
measure their attractiveness and their diversity 
toward/from the yet found elite solution (the differences 
between solutions’ fitness values). In the Big Crunch 
phase, a number of neighbours for all solutions in the 
population are generated. The parent solutions are 
replaced by the some good quality off-springs in order to 
enforce the population converge towards better quality 
solution. An elite solution (centre of mass) is determined 
based on its quality, which is the best quality cost among 
solutions in the population. Then, for a significant 
enhancement of the centre of mass quality, a simple 
descent heuristic (as a local search) is applied to the centre 
of mass. Once a new centre of mass is found and improved 

Initialization phase (); 
while StoppingCriterion not met do  
Construction phase (); 
         for each ant // solution construction 
               Assign all course into feasible timeslots & rooms using  
                  A probabilistic rule; 
         end for 
Improvement phase (); 
         while non-improvement stopping criterion not met do  
                 Locally improve each constructed solution; //employ ILS 
                 Update size & content of external memory;  
         end while 
if there is a solution improvement then 
 Intensification phase (); 
  Explore randomly the neighbours of the best solution found so far 
         (elite solution); 
 Global Pheromone update phase ();          
  Update pheromone trails for assignments appearing in solution; 
else  
 Diversification phase (); 
  Pheromone evaporation; // diversity control  
  Reinitialize pheromone trails; 
  Generate new population of ant solutions using elite solutions in  
        the external memory by performing some perturbations; 
end if 
end while 
Return best ant // best solution 

Big Bang phase (solutions construction): 
Generate population (construct solutions from scratch for the first  
               generation, or else generate new population from the  
               elite pool) & measure Euclidean distances among  
               solutions in the population; 
Big Crunch phase (Local Search move):  
Repeat 
        Generate some neighbors for all solutions in the population and 

replace the parent with its best off-spring for each solution 
in the population; 

        Find the centre of mass; //best solution found so far 
        Apply local search to the centre of mass; 
        Update the elite pool and the best found solution; 
        Eliminate some poor quality solutions; 
Until population size is reduced to a single solution;  
Return to Big Bang phase if stopping criterion is not met; 
Return the best found solution 
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by the local search, it will be stored into elite pool acting 
as a reference for the search. That is for the purpose of 
guiding the search toward better solution quality, we 
generate new successive population(s) by utilizing those 
elite solutions (centre of masses). This is achieved by 
performing some perturbations to the elite solutions. In the 
Big Crunch phase, the population size will be gradually 
reduced (every iteration) into a single solution by 
eliminating poor quality solutions. The successive Big 
Bang phase will generate new population from the 
solutions of the elite pool rather than generating them 
from scratch. The whole process is repeated until the 
stopping criterion is met. 

3.3 Hybrid Scatter Search 

The hybrid SS (the SS was originally proposed by [25]) 
specifically performs structured combinations of elite 
collection of high diversity and high quality solutions 
contained in a dynamic memory. This elite collection is 
the key element to converge the search toward good 
quality solutions while diversifying the search.  
 As in genetic algorithms, SS concerns with producing 
a solution from the combination of elements from other 
two or more solutions to yield better solutions than the 
original ones.  Recently, SS became one of the state-of-
the-art methods for designing solution procedures for hard 
combinatorial optimization problems [26]. The pseudo 
code of our SS is shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  The pseudo code of the hybrid SS for course timetabling problem 
[17]. 

 The hybrid SS starts the search with the 
diversification method by generating a small population of 
initial solutions from scratch using constructive heuristics 
(e.g. largest degree). The whole population is then 
improved in the improvement method using a hill 

climbing procedure. This is intentionally used to direct the 
search toward the local optima.  
 In the reference set update method, a reference set 
(RefSet) of elite and diverse solutions is created (for the 
first iteration) and will be updated due time once a better 
quality or diverse solution than those in the RefSet in 
produced. The RefSet has two subsets: b1 and b2. Elite 
solutions are selected based on their quality and then 
stored in b1, whilst diverse solutions are selected based on 
their greatest dissimilarity from others in the population 
and then stored in b2. The solution that has more 
uncommon assignments from other solutions (course into 
timeslot), the more diverse it becomes. The RefSet is 
updated by replacing the worst elite solution in b1 by a 
better newly generated solution. While a worst diverse 
solution is replaced by a newly generated solution that has 
much dissimilarity from the ones in the b2.  
 Then the subset generation method is proceeded 
which selects one solutions from each subset in the RefSet 
to be combined and to generate new promising solutions. 
Those selected two solutions are from b1 and b2. This 
selection mechanism is called Type-I method [25], which 
is the combination of all 2-elements subsets. This means, 
combining all possible unrepeated two solutions.  
 In our work, the solution combination is performed 
using a single-point crossover operator to generate two 
off-springs. Feasibility of the off-springs is ensured by a 
repair function that rectifies a corrupted solution resulted 
by the crossover. These off-springs are further enhanced 
by the improvement method (e.g. the iterated local search). 
The improved off-springs will be compared to the ones in 
the RefSet for updating its contents. Then, a successive 
diversification generation method is commenced once 
again with the same population size. The new population 
is generated by performing some perturbations to the 
solutions in RefSet rather than building them from scratch. 
The whole process is repeated until the stopping criterion 
is met. 

4. Experiments and Results 

In this work, we tested our hybrid approaches on well 
known benchmark post-enrolment course timetabling 
instances (TTComp2003 and ITC2007-Track2). We ran 
our approaches 25 times (for each) on each instance for a 
restricted running time 474 seconds for the TTComp2003, 
and 494 seconds for the ITC2007-Track2. The 
experiments were performed on Intel Pentium Core2 Duo 
2.16 GHz processor, 2GB RAM, and implemented in Java 
NetBeans IDE v 6.9. Parameters shown in Table 1 are 
determined experimentally (e.g. elite pool size) and based 
on the literature (e.g. Elitism). For example, the population 
size in the Elitist-AS and SS is preferred to be relatively 

Diversification Generation Method;  
      Employ constructive heuristic (e.g. largest degree) to generate   
             initial population; 
 Improvement Method;  
       Employ Hill climber to enhance the quality of the population; 
 Repeat 
          Reference Set Update Method;  
              Maintain diversity of elite solutions using similarity  
                     measurement and dynamic update; 
          Subset Generation Method;  
              Employ Type-I selection; // select one solutions from each  
                     subset in the reference set 
          Solution Combination Method;  
               Perform one-point crossover;  
          Improvement Method;  
               Employ Iterated local search routine to enhance the  
                     quality of combined solutions; 
Until (StoppingCriterion);  
Return the best solution found 
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small [18] [27], while the BB-BC follows the typical 
population size as of the genetic algorithms. 

Table 1: Parameters settings used by our hybrid algorithms 
Parameter Description 

Population size Elitist-AS (20);  
BB-BC (100);  
SS (50). 

Stopping 
criterion 

No. Of iterations =100,000 or  
time limit is reached 

No. of Non-
improvement 
iterations 

Elitist-AS (100);  
BB-BC (30);  
SS (30). 

Elite pool size Elitist-AS (5); 
 BB-BC (10);  
SS (20). 

Similarity 
measurement 

Elitist-AS (Non);  
BB-BC (Euclidean distance, minimum distance 
from centre of mass);  
SS (Hamming distance, least similar is the best 
diverse). 

Neighborhood 
structures per 
solution 

Elitist-AS (5);  
BB-BC (3);  
SS (3). 

Local search Elitist-AS and SS (Iterated local search); 
BB-BC (Simple Descent heuristic). 

Elitism Last population solution is forced to be the best
 
 Tables 2 and 3 show the best results obtained by our 
approaches based on our parameters presented in Table 1, 
compared to the best known results obtained by other 
methodologies (including population-based) applied over 
the same instances.  

Table 2: Results of our hybrid approaches applied to TTComp2003 
Data 
Set 

Elitist
-AS 

BB-
BC 

SS MM
AS 

EM
GD 

3-
SA* 

1 56 46 37 65 52 16
2 18 21 12 36 20 2
3 60 45 40 69 78 17
4 75 88 75 138 74 34
5 81 96 54 143 71 42
6 0 0 0 24 6 0
7 3 2 2 24 6 2
8 3 1 0 28 15 0
9 23 17 14 36 32 1

10 70 63 58 75 58 21
11 39 32 32 50 30 5
12 91 78 64 95 88 55
13 66 73 57 79 105 31
14 22 20 20 73 51 11
15 28 21 18 31 34 2
16 8 12 5 23 10 0
17 100 87 68 108 121 37
18 28 34 20 26 26 4
19 59 62 40 108 57 7
20 0 0 0 5 5 0

Note:  
* the best known results obtained so far. 
3-SA: an extended work of the official winner [28]; which is a 3-phase 
Simulated Annealing-based approach; 
MMAS: Max-Min Ant System [4]; 
EMGD: Hybrid of Electromagnetic-Like mechanism with force decay 
rate Great Deluge [9]. 

Table 3: Results of our hybrid approaches applied to ITC2007-Track2 
Data
Set

Elitist
-AS

BB-
BC

SS ACO GA
TS 

Best 
know

1 697 541 470 15 523 151

2 1025 984 920 0 342 01

3 194 198 194 391 379 1643

4 219 360 219 239 234 234
5 0 0 0 34 0 02

6 0 0 0 87 0 02

7 8 6 6 0 0 01

8 0 0 0 4 0 02

9 1020 1067 979 0 1102 01

10 364 860 447 0 515 01

11 293 245 233 547 246 1783

12 227 14 14 32 241 321

13 0 0 0 166 0 02

14 0 0 0 0 0 02

15 0 0 0 0 0 02

16 10 1 1 41 0 02

17 0 0 0 68 0 02

18 0 0 0 26 0 02

19 1770 1680 1531 22 121 221

20 571 563 534 infeasible 304 3042

21 0 0 0 33 36 03

22 2383 2383 2359 0 1154 01

23 1126 982 982 1275 963 2383

24 20 3 3 30 274 213

Note:  
1ACO: Ant Colony Optimization [6]; 
2GATS: Hybrid Genetic Algorithm with Tabu Search [8]; 
3MMA: Combination of Tabu Search & Simulated Annealing with 
various neighbourhood operators [29]. The official winner. 
 
 From Tables 2 and 3 and, Tables 4 and 5 (in 
Appendix A), the statistical readings of the results 
obtained by the three hybrid approaches showed that, in 
many cases, the presented approaches significantly 
outperformed other approaches (especially the population-
based ones) reported in the literature applied on the same 
benchmark course timetabling instances. Also our hybrid 
approaches managed to obtain the optimal results (cost =0) 
for the following instances: 6, 8, and 20 (for 
TTComp2003); 5, 6, 8, 13, 14, 15, 17, 19, and 21 (for 
ITC2007-Track2). A number of new best results obtained 
(so far until the day of submitting this paper) by our 
hybrid approaches for ITC2007 (Track2) instances are 
presented in bold, they are: 4 (cost =219), 12 (cost =14), 
and 24 (cost =3).   
 Tables 4 and 5 (refer to Appendix A) show the 
computational statistics of our hybrid approaches, which 
indicate the performance of our hybrid approaches. It is 
clear that the hybrid SS is better than the hybrid Elitist-AS 
and BB-BC approaches it terms of the quality of solutions 
(see best); the consistency of producing feasible and good 
quality results (see the standard deviation, and the 
differences between best and median) across the 25 runs. 
This is also applied (to some extent) to both Elitist-AS and 
BB-BC approaches. It is also indicated that the Elitist-AS 
and the BB-BC are competing each other, as well as they 
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are very close or exactly the same as the SS approach (in 
some cases). 
 The hybrid SS outperforms both hybrid Elitist-AS and 
BB-BC due to the utilization of the elite pool of best 
quality and best diverse solutions represented by the 
RefSet and performing a combination of two solutions 
(best quality and best diverse solutions) in the form of 
one-point crossover. Whilst, the Elitist-AS outperforms 
the BB-BC due to maintaining a balance between 
diversification and intensification of the search by 
employing two mechanism namely the diversification and 
intensification mechanisms. The BB-BC performed well 
so far due to manipulating an elite pool of good quality 
solutions determined every search big bang-big crunch 
cycle (named as centres of mass), in which it guarantees 
good quality solutions while maintaining diversity of the 
search. 

5. Conclusion 

The overall goal of this study was to compare the 
performance of three hybrid population-based approaches 
(Elitist-Ant System, Big Bang-Big Crunch, and Scatter 
Search) for solving the post-enrolment course timetabling 
problem, by extending their implementation to the 1st and 
2nd international timetabling competitions. Generally, good 
quality solutions are obtained through exploiting an elite 
pool of good quality to maintain diversity of the search 
and to generate new good quality population. By utilizing 
the capabilities of a population-based approach in large 
search space exploration and best solutions exploitation 
using neighborhood structures [3], our experimental 
results indicated that our approaches are able to produce 
good quality solutions and are competitive (outperformed 
others and some of the best known results) to many 
reported results in the literature applied to the 
competitions’ benchmark instances. Generally, the 
mechanisms and operators employed in our hybrid 
approaches proved to be significant in the process of 
enhancing the performance of the approaches. The hybrid 
approaches were found out effective and efficient in terms 
of quality and convergence toward the global solution 
rapidly. In the future, we may investigate some alternative 
selection and/or recombination mechanisms of elite 
solutions in our hybrid approaches. That is, to further 
understand how to maintain a reasonable degree of the 
search diversity and to achieve an efficient convergence 
toward a global solution. 
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APPENDIX A 

Table 4. Computational statistics of our hybrid approaches applied on TTComp2003 instances 
Instance Hybrid Elitist-Ant System Hybrid Big Bang-Big Crunch Hybrid Scatter Search 

 best Std. median worst best Std. median worst best Std. median worst 
1 56 6.84 61 84 46 9.96 55 78 37 11.94 45 78 
2 18 3.4 18 31 21 3.33 24 31 12 5.86 19 31 
3 60 2.97 62 70 45 7.38 51 70 40 8.18 51 70 
4 75 5.24 80 96 88 3.26 94 101 75 5.004 81 94 
5 81 5.54 85 96 96 2.92 100 109 54 8.57 67 86 
6 0 .44 0 2 0 .37 0 1 0 .28 0 1 
7 3 1.06 3 6 2 1.7 2 9 2 1.67 2 8 
8 3 .2 3 4 1 .74 1 4 0 .91 0 4 
9 23 6.34 27 45 17 6.29 23 39 14 5.2 19 32 
10 70 5.9 80 90 63 6.74 69 89 58 9.1 63 89 
11 39 7.02 45 63 32 4.9 37 50 32 4.72 37 46 
12 91 3.61 93 104 78 5.73 83 98 64 10.82 73 99 
13 66 3.92 71 81 73 5.9 77 94 57 5.69 61 73 
14 22 4.53 25 40 20 5.65 23 36 20 4.46 24 35 
15 28 5.2 29 47 21 4.12 26 36 18 5.39 26 37 
16 8 2.4 8 17 12 3.18 17 21 5 2.17 7 11 
17 100 4.31 103 115 87 3.91 91 100 68 5.78 75 86 
18 28 3.91 34 43 34 5.62 41 52 20 5.2 23 35 
19 59 10.9 68 94 62 7.81 72 92 40 5.43 45 56 
20 0 .000 0 0 0 .2 0 1 0 .000 0 0 

 
 

Table 5. Computational statistics of our hybrid approaches applied on ITC2007-Track2 instances 
Instance Hybrid Elitist-Ant System Hybrid Big Bang-Big Crunch Hybrid Scatter Search 

 best Std. median worst best Std. median worst best Std. median worst 
1 697 56.8 706 840 541 99.72 706 880 470 129.51 706 840 
2 1025 144.1 1262 1435 984 160.43 1262 1400 920 184.36 1262 1400 
3 194 15.04 198 244 198 14.4 222 250 194 12.75 219 226 
4 219 84.8 379 429 360 17.9 380 429 219 66.68 380 390 
5 0 1.3 0 4 0 1.2 3 4 0 .000 0 0 
6 0 .000 0 0 0 .000 0 0 0 .000 0 0 
7 8 .56 8 10 6 .6 6 9 6 .37 6 7 
8 0 .000 0 0 0 .000 0 0 0 .000 0 0 
9 1020 64.04 1020 1227 1067 82.61 1172 1303 979 50.66 1020 1172 

10 364 214.44 447 868 860 74.69 860 1234 447 155.13 860 868 
11 293 35.43 328 393 245 26.74 250 338 233 7.02 245 250 
12 227 28.63 230 298 14 132.3 227 378 14 117.43 227 298 
13 0 .000 0 0 0 .000 0 0 0 .000 0 0 
14 0 .41 1 1 0 .88 1 3 0 .49 1 1 
15 0 .000 0 0 0 .000 0 0 0 .000 0 0 
16 10 .68 10 13 1 4.41 10 13 1 4.18 10 11 
17 0 .88 0 4 0 1.25 0 4 0 .000 0 0 
18 0 5.31 0 13 0 3.6 0 13 0 5.67 0 13 
19 1770 45.45 1864 1914 1680 88.6 1770 1955 1531 133.56 1531 1864 
20 571 14.03 573 612 563 13.03 571 612 534 14.09 541 571 
21 0 .47 0 2 0 .7 0 2 0 .000 0 0 
22 2383 23.62 2383 2453 2383 22.35 2432 2449 2359 23.97 2383 2435 
23 1126 192.41 1126 1608 982 215.28 1454 1608 982 181.82 1126 982 
24 20 1.4 20 27 3 9.22 20 31 3 8.67 20 3 

 
 
 


