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Summary 
Classical security policies are generally expressed through 

permissions, prohibitions and obligations. Deontic logic is 

commonly used for modeling such security rules. We recently 

emphasize the need of the recommendation modality and we 

tried to formally specify this new notion by extending the 

Deontic logic. In this paper we first develop further our 

Recommendation Specification Language. Then, in order to be 

able to reason on the security policy and to derive new rules, we 

give more details about our new recommendation-based 

axiomatic. Finally, we prove that our new formal system is 

semantically complete and sound. 
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1. Introduction 

Over the last two decades, information and communication 

systems have continually been connected, open, pervasive, 

powerful and complex. At the same time it has become 

increasingly difficult to achieve an acceptable level of 

security, especially for sensitive and critical systems. 

Consequently, several key issues need to be investigated in 

this priority field: Information systems security. 

Dealing with this issue every security study should 

identify an “organizational security policy”: a set of 

security rules, procedures, or guidelines imposed (or 

presumed to be imposed) now and/or in the future by an 

actual or hypothetical organization in the operational 

environment [1]. Such an organizational security policy 

usually relies on an access control policy, which defines 

who has access to what, when and in which conditions. 

However, a security policy does not guarantee a secure 

functioning of the system; more important, it could  be 

badly designed, inconsistent or incomplete, especially for 

huge systems that are congested and under stress.  

Therefore, The fundamental objective, now is to provide a 

continuous monitoring of the policy to verify its coherence 

and detect possible conflicting situations (e.g., situation 

where a certain user has the recommendation (or the 

permission) and the prohibition to carry out a certain 

action on the same object); and also guarantee that all the 

security objectives are covered by the security mechanisms 

implementing the policy; etc. In this context, an access 

control model is often used to rigorously specify and 

reason on the access control policy (permissions, 

obligations and prohibitions rules that control the actions 

performed by subjects on objects). 

Moreover, even if most of existing access control models, 

tools and mechanisms only deal with permissions and 

prohibitions, it is equally clear that obligations and 

recommendations become more and more present in 

current systems, and thus, should be modeled and enforced. 

To manage that situation, actually many several works was 

intended to model obligations. As we know, obligations 

can be useful to impose some internal or external, manual 

or automatic actions that should be respected or carried out 

by users or by the system itself.  

So, For example, in the OrBAC model [17], security rules 

have the form Access Modality (org, r, v, a, c); while 

Access Modality is a Permission, Obligation or a 

Prohibition. This rule means: in the context c, organization 

org grants role r the permission or the obligation or the 

prohibition to perform activity a on view v.  

Bettini et al. distinguish between provisions and 

obligations [3]. Provisions are conditions that need to be 

satisfied or actions that must be performed before a 

decision is rendered, whereas obligations are actions that 

must be fulfilled by either the users or the system after the 

decision.  

However, these access modalities do not consider the 

interaction between system and user: system recommend 

user to do something-user must assume his decision if he 

refuses the advice of system. 

For example, in the General Security Referential document 

[2] issued by the National Security Agency information 

systems in France, we find recommendations for the 

selection and design of cryptographic mechanisms: “It is 

recommended for any application, to use RSA public 

exponents strictly greater than 65.536”. In this respect, 

when a user authenticates himself with a RSA public key 

based certificate (e.g., to access a protected website), it is 

recommended to use RSA public exponents strictly greater 

than 65.536. 

An other example is about Recommendations on collective 

cross-border management of copyright and related rights 

for legitimate on line music services published by the 

Commission of the European Communities [26]. This 

document specifies several recommendations like:  
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• Commercial users should inform collective right 

managers 

•  of the different features of the services for which 

they want 

•  to acquire on line rights. 

•  

• where a right-holder has transferred the 

management of 

•  an on line right to another collective rights 

manager, without prejudice to other forms of 

cooperation 

•  among rights managers, all collective rights 

managers 

•  concerned should ensure that those on line rights 

are 

•  withdrawn from any existing reciprocal 

representation 

•  agreement concluded amongst them. 

•  

We can cite many other examples, but due to space 

limitation we can clearly state that recommendations are 

present in many current and emergent applications. 

We recently emphasize the need of recommendations and 

we considered them as a Deontic logic modality[5]. 

However, our statements were neither justified nor enough 

mature. To overcome this limitations, Section 2 of this 

paper presents our new logical-based framework for 

modeling recommendations. In particular, we precisely 

and formally give the syntax, semantic and axiomatization 

of our Recommendation Language. It is worth to note that 

this paper is the first one that gives a sounded and 

complete logical framework with mathematical proofs and 

justification, which is very important in our context. 

Afterward, Section 3 shows how using our formalism, for 

example for querying the security policy and verifying its 

consistency and coherence. Finally, Section 4 draws 

conclusions and perspectives. 

2. Recommendation Specification Language 

A formal language for specifying a security policy should 

be expressive enough to cover all the requirements of the 

targeted application. Basically, in order to specify security 

policies with the different access modalities (permissions, 

prohibitions, obligations and recommendation), we need 

first to express norms, e.g., rules which say what must be 

the case, must not be the case, may be the case or may not 

be the case. Actually, these norms was already addressed 

by several logical models such as deontic logic. The latter 

can be seen as an extension of modal logic that considers 

modal operators such as obligations, permissions and 

prohibitions. Note that researches in deontic reasoning 

within a modal logic point of view has already been done 

by several works such as by Aqvist [20] and Prior [21]. 

Moreover, within the  context of computer security, 

several authors like Bieber and Cuppens [22], Glasgow et 

al. [23], Prakken and Sergot [24], etc. have used deontic 

logic. In the rest of  the following sub-sections, we extend 

the modal logic in order to model the notions 

of ”recommendation” and ”inadvisabilities”. We 

particularly present the axiomatic, semantic and 

axiomatization as well as all the proofs related to our 

language. 

2.1 Syntax 

Let PV be a countable set of propositional variables, with 

typical members denoted p, q, etc. By means of the 

Boolean operators ￢ (“not . . .”) and _ (“. . . or . . .”) of 
classical logic and the modal operator O (“it is obligatory 

that . . .”) of modal logic, we combine these variables so as 

to build up the set of formulas of deontic logic given by 

the rule:  

•  ::= p | ￢  | (_  ) | O  . 

We make use of the standard abbreviations for the other 

Boolean operators. We supplement the language by the 

modal operators F, P, and E expressing “it is forbidden 

that . . .”, “it is permitted that . . .”, and “it is elective 

that . . .”: F  = O￢  , P  = ￢O￢  , E  = ￢O 

 . Basically, the specific characteristic of a norm is the 

consistency of the set of all obligations that make it up. 

This characteristic corresponds to the formula ￢(O  ^ 
O￢  ). Seeing that the “obligatory that” is the 

“forbidden that not” and the “forbidden that” is the 

“obligatory that not”; this characteristic also corresponds 

to the formulas: 

￢(F ^ F￢  ) and ￢(O ^ F ).  

Furthermore, using the equivalences ￢O￢  $ E￢  

and ￢F￢  $    P￢  , we can  deduce that O ! 

E￢  and F ! P￢  . The modal operators P (“it is 

permitted that . . .”) and E (“it is elective that . . .”) keep up 

similar relations: the “permission that” is the “elective that 

not” and the “elective that” is the “permission that not”. 

Hence, we can deduce the following formulas: 

O ! P and F  ! E.  

However, none of the previous modalities is able to 

directly capture the notion of  “recommendation”. 

Subsequently, we introduce the modal operator R (“it is 

recommended that . . .”) and we use it to extend the 

previous set of deontic logic formulas. In fact, let us now 

consider the set of formulas given by the rule: 

 

•  ::= p | ￢ | (_ ) | O | R . 

 

Let us take a simple example. If we assume that (Read, 
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Bob, UserGuide) is a formula expressing the fact that Bob 

reads the user guide, in our language we can express  

formulas such as R(Read, Bob, UserGuide); meaning that: 

it is recommended that Bob reads the user guide. 

Moreover, to be able to express rules / sentences such as 

“it is inadvisable that . . .”, we supplement the language by 

the modal operator I: I = R￢. E.g., the formula 

I(Execute, Bob, OldVersion) means that executing the old 

version of the program is inadvisable; i.e., it is 

recommended to not execute the old version.  

In this respect, our new set of formulas allows us to give 

an account of the consistency of a set of recommendations 

by means of the formula ￢(R  ^ R￢). In fact, seeing 

that the “recommended that” is the “inadvisable that not” 

and the “inadvisable that” is the “recommended that not”, 

this formula corresponds to the following formulas: 

￢(I ^       I￢  ) and ￢(R ^ I ), it is not 

possible that something being both recommended and 

inadvisable. 

The question that arises now is: what are the relations 

between the “obligatory that”, the “recommended that” 

and the “permitted that” on one hand, and the “forbidden 

that”, the “inadvisable that” and the “elective that” , on the 

other hand. The semantics and the axiomatics of the two 

next subsections will allow us to show, among others, that 

the formulas O ! R , R ! P, F ! I and I ! 
E express indisputable obvious deontic facts. 

2.2 Semantics 

The most elementary model of obligations is composed of 

a non-empty set W of states and a relation R on W. Therefore, 

a deontic frame will be an ordered pair F = (W, R) where W 

is a nonempty set of states and R is a binary relation on W 
called accessibility relation: for all states x, the states y 

such that xRy are those states in which all the obligations 
in x are satisfied. For this reason, we may also consider 

that for  all states x, the set R(x) = {y: xRy} characterizes 
the set of all permissions in x. Actually, the formulas of 

deontic logic are valued at states. The valuation of the 

formula O at state x depends on the valuation of  at 

states y such that xRy. In this respect, a deontic model is an 

ordered triple M = (W, R, V) where F = (W, R) is a deontic 

frame and V is a valuation on W , i.e., a function assigning 

to each state x in W a subset V(x) of the set PV of all 

propositional variables. V(x) can thus be considered as the 
set of propositional variables that x verifies. Subsequently, 

in the deontic model M , the function V can be extended to 

the function V defined as follows: 

• p 2V(x) iff p 2 V(x); and ￢ 2V       (x) 

iff   ∉ V(x); 

•  _      2V(x) iff  2V(x) or  

2V(x); 

• O 2V(x) iff for all states y such that xRy,  2 

V(y). 
 

Furthermore, according to the relationships between 

obligations, permissions, prohibitions, it is a simple matter 

to check that: 

• F 2   V(x) iff for all states y such that xRy, 

  ∉ V(y), 

• P 2V(x) iff for some state y with xRy,  2  

V(y), 

• E 2   V(x) iff for some state y with xRy,    
∉ V(y). 

Let us now define the notions of ”satisfiability” 

and ”validity” in our model. Let  be any formula. We 

say that  is valid in the model M = (W, R, V ) iff   

V(x)  for all states x; whereas  is said to be valid in 

the frame F = (W, R) iff  is valid  in every model M = (W, 

R, V) based on F. Furthermore, we say that  is satisfiable 

in M = (W, R, V) iff ￢ is not valid in M = (W, R, V); whereas 

 is said to be satisfiable in frame F = (W, R) iff  is  

satisfiable in some model M = (W, R, V) based on F.  
Actually, the definitions of satisfiability and validity come 

from the semantics for modal logic. The reader may easily 

verify that in all models M = (W, R, V): 

• O V (x) iff R(x)  {y:  V(y)} = R(x), 

i.e. {y:   V(y)} entirely covers  R(x) 

• P V(x) iff R(x) {y:  V(y)} 

 , i.e. {y:  V(y)} partially covers 

R(x). 
Seeing that we would like the formulas O   R  and 

RP to be valid, the interpretation of the 

recommendation modal operator R in a model M = (W, R, V) 
should actually be halfway between the interpretations of 

O and P, i.e. it should correspond to the following 

interpretation: 

 

• R V(x) iff {y:   V(y)} covers a large 

part of R(x). 

In this respect, the interpretation of I in M = (W, R, V) should 

correspond to I V(x) iff {y:  V(y)} covers a 

small part of R(x). Note that the notions entirely cover 
(obligations), partially cover (permissions) and cover a 

large part (recommendations) perfectly reflect that 

recommendations are stronger than permissions but not as 

restricting as obligations. Following our reasoning, we 

consider that a frame for recommendation is an ordered 

triple  F = (W, R, N) where (W, R) is a deontic frame and N is 

a neighborhood function on W , i.e. a function assigning to 
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each state x in W a set N(x) of subsets of R(x). For all states 

x, we will think of N(x) as the set of large subsets of R(x). 
Such large subsets will characterize the set of all 

recommendations in x.  

Now, with the recommendation notion, our model is an 

ordered 4-tuple M = (W, R, N, V) where F = (W, R, N ) is a 

frame for recommendation and V is a valuation on W. In 

this respect, the function V can be extended (in M) to the 

function V as follows: 

• R  V (x) iff R(x)  {y:   V (y)}  N 
(x). 

We will say that a frame F = (W, R, N) is -stable iff for all 

states x in W , the set N(x) of all large subsets of R(x) is 
closed for the set-theoretical operation of intersection. We 

will say that a -stable frame F = (W, R, N) is filtered iff 

for all states x in W , the set N(x) of all large subsets of R(x) 

is closed upward, i.e.: for all subsets S, T of R(x), if S is in 

N(x) and S  T then T is in N(x) too. 
In the sequel, we always consider that frames of 

recommendation are fitted out with a serial relation, (for 

all states x, there exists a state y such that xR y) and with a 

neighborhood function N such that for all states x, R(x)   

N(x),   N(x), N(x) of all large subsets of R(x) is closed 
for the set-theoretical operation of intersection and closed 

upward.  

Note that correspondence theory in modal logic teaches us 

the ways the validity of the modal formula ￢(O  

O￢) considered above is related to the condition of  

seriality. 

 

Proof. Assume that the formula ￢(O  O￢ ) is not 

valid, then there exists a model M and world x in all 

possible worlds of M such that  M, x  ⊭￢(O  

O￢), so (O  O￢V (x).  In otherwise, 

the condition of seriality means that there exists y  W  
such that xR y then   V y), therefor ￢ V(y)      
we conclude that O￢ V(x) 
 

Let see that the validity of ￢(R  R￢ ) considered 

above is related to the condition saying that a 

neighborhood function N is such that for all states x, N (x) 

of  all large subsets of R(x) is closed for the set-theoretical 

operation of intersection  and   N (x). 
Proof. Assume that the formula ￢(R  R￢) is not 

valid then there exists a model M = (W, R, V) and world x in 

all possible worlds of M  such that M, x  ⊭  ￢(R  R
￢), so (R  R￢  V(x), then  

R(x)  {y:  V(y)}  N(x) and R(x)  {y: ￢   

V(y)}  N(x). As  N(x) is closed for intersection,  

 R(x)  {y:  V(y)}  {y: ￢  V(y)}  N(x), 
so 

 R(x)  {y: (  ￢ ) V(y)}  N(x), as   

N(x), we conclude that z  W such that 

(￢ ) V(y)  absurd by definition of V . 

2.3 Axiomatization/completeness 

The previous section presents the semantics of our 

specification and representation language for obligations 

and recommendations. This is certainly a first step in  

building a global and robust logical framework; but it 

remains not sufficient as we need a mean to derive new 

informations and to reason (e.g., by verification) on our 

language. Moreover, it seems necessary to give axioms 

and rules that define the relationships between the 

different access modalities (obligations, recommendations 

and permissions) and to give proofs of our axiomatization. 

To achieve these tasks, we define in this section the 

axiomatic system LR of our Logic of Recommendation. In 

addition to the classical axioms of propositional logic, we 

define the following axioms of LR: 

 

• O( )  (O  O), 

• O  P, 

• O()  (R  R), 

• O  R , 

• R  P . 

• R  R  R(  ). 

• O(  )  (R  R) 

• R(  )  R  R 

 

• The axiom O(  )  (O  O) is called 

axiom (K). It intuitively corresponds to the fact 

that the modal operator O is interpreted in models 

by means of a binary relation. 

 

Proof. Let x be a world in all possible worlds of model  

M. We must show that at least one of the following 

conditions is satisfied: 

(C1) 

  M, x  ⊭  O(  ) 

(C2) M, x  ⊨  (O  O) 
  
Suppose that neither (C1) or (C2) is satisfied in x. 

We then have M, x  ⊨  O(), so for all y  in 
W such that xRy,  M, y  ⊨ (f ® y). And M, x  ⊨ Of and  

M, x  ⊭  O(C2 not satisfied), so for all  y  W  such 

that xRy,  M, y ⊨  and there exists at least one y0 

such that xR y0  and M, y0  ⊭  then there exists  

y0  such that xR y0  , M, y0 ⊨  and M, y0 ⊭   

we conclude that such y0 satisfies both  () ,  

f and  Ø wish absurd. 
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• The axiom O P (axiom D) intuitively 

corresponds to the fact that in every frame F = (W, 

R, N), R is such that for all states x, there exists a 

state y such that xR y. 
Proof. Let x be a world in all possible worlds of model  

M. We Suppose that M, x  ⊨ Of , so for all y such that  

xR y we have M, y  ⊨  As R is serial then there 

exists z  W  such that xR z, so  M, z ⊨  then M, 
x ⊨  P 

• The axiom O()  (RR) 

intuitively corresponds to the fact that the modal 

operator R is interpreted in models by means of a 

neighborhood function. 

 

Proof. Let x be a world in all possible worlds of model  

M. 

Suppose that M, x ⊨ O(),  so for all worlds y 

such that xRy,  we have M, y  ⊨ (), wish 

means that for all y such that xRy, we have M,  y 
⊨iff M, y ⊨ . Then in particular, for the set in 

N(x) contained y such that xRy, we have M, y ⊨ iff M, y 
⊨ . We conclude that M, x  ⊨  (R  R)  

 

• The axiom O  R intuitively corresponds to 

the fact that for all states x, RRRR(x)  NNNN(x). 

Proof. Let x be a world in all possible worlds of model  M . 
Suppose that M, x  ⊨  Oso we have for all y such 

that xRy , M, y ⊨ . As R(x)  N(x), then the set of all y 

such that  xRy and M, y ⊨  is in N(x). We conclude that 

M, x  ⊨ R 

 

• The axiom R  P intuitively corresponds to 

the fact that for all states x,  NNNN(x) 

Proof. Let x be a world in all possible worlds of model  M . 
Suppose that M, x ⊨  R then the set of all y such that 

xRy and My⊨  is in N(x) and it is not empty 

asNxThen there exists y such that 

xRy and M, y ⊨   . We conclude that M, x ⊨ P . 

 

• The axiom (R  R  R(  ) 

intuitively corresponds to the fact that for all 

states x, NNNN(x) of all large subsets of R(x) is closed 
for the set-theoretical operation of intersection . 

 

Proof. Let x be a world in all possible worlds of model  

M. We Suppose that M, x  ⊨ (R   R ), so the set of 

all  y in W  such that xR y and M, y  ⊨ , is in N(x) and 

the set of all y in W such that xR y and M, y  ⊨  is 

inNxAs N(x) is closed for the 

set-theoreticaloperation of intersection, then the set of 

all y inW such that xR y and M, y  ⊨  and M, y  

⊨  is  inNx 

Then the set of all y inW such that xR y and M, y ⊨  ( 

 is inNx We conclude that  M, x ⊨  
R(   ) . 

 

• The axiom O( )  (R  R) 

intuitively corresponds to the fact that for all 

states  x, NNNN(x) of all large subsets of RRRR(x) is 
closed upward. 

Proof. Let x be a world in all possible worlds of model. 

We Suppose that M, x  ⊨ O () and  M, x  ⊨ 

R 

and show that M, x  ⊨  R . 

M, x  ⊨  R means that the set of all y such that  xR y 
andM, y  ⊨ is in N(x). And M, x  ⊨  O( 

) means that for all y such that xR y, M, y  ⊨  ( 

), then the set of y such that xR y and  M, y  ⊨  

is included in the set of y such that xR y and  M, y  ⊨  
s N(x) is closed upward, we deduce that the set of 

y such that xR y and M, y ⊨  is in N(x) 
wish means M, x ⊨  R  

• The axiom R( )  R  R 

intuitively corresponds to the fact that for all 

states x, NNNN(x) of all large subsets of RRRR(x) is closed 
upward. 

Proof. Let x be a world in all possible worlds of model. 

We Suppose that M,  x ⊨ R(),  so the set of y 

such that xRy and M, y ⊨ () is in N(x). Then the 

intersection of the set of y such that xRy and M, y ⊨  

and the set of y such that  xR y and M, y ⊨   is in N (x), 
this intersection is included both in the set of y such that x 

R y and M, y ⊨ and in the set of y such that xRy and M, 

y ⊨   

As the frame F = (W, R, N ) -stable is filtred, we deduce 

that the set of y such that xR y and M, y ⊨  is 

inN(x)and  the set of y such that xR y and M, y ⊨  
is inN(x). We deduce that M, x ⊨  (R  

R). 

 

Besides that, in addition to the classical inference rules of 

propositional logic, the inference rules of LR is: “from  , 

infer O ”. 

Now, let us give proofs of the most important formulas 

derivable from axioms and inference rules of LR. Each 

line of proof is either an instance of an axiom schema, or 

the application of the inference necessitation rule or the 

inference Modus Ponens rule 

 

• O Oψ 
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•   O( ), 

 

Proof. First show that 

A B C

OA OB OC  

 

A B C 

A  (B  C) (propositional language) 

O(A  (B  C)) (LR inference rule) 

OA  O(B  C) (axiom K) 

OA  (OB  OC) (axiom K) 

OA  OB  OC (propositional language) 

 

Consequently, from     , we can 

deduce  

O Oψ 

 O( ) by applying the inference rule 

deduced  above. 

 

• O  Rψ  R( ), 

 

Proof. First show that:

A B C

OA RB RC  

 

 A B C 

A  (B  C) (propositional language) 

O(A  (B  C)) (LR inference rule) 

OA  O(B  C) (axiom K) 

OA  (RB RC) (LR axiom) 

OA  RB  RC (propositional language) 

 

As conclusion from 

we can deduce 

ORψ  R( ψ) by applying the inference 

rule demonstrated above. 

 

• O P  P(). 

 

Proof.  First show that O(B C) PBPC 

 

O(￢C ￢B) ￢C￢B) 

(axiom K) 

 

O(B C) ￢PC￢PB) (PA = ￢O￢
A by definition) 

O(B C) PBPC)  

 

Let show that  

A B C

OA PB PC  

 

A B C 

A  (B  C) (propositional language) 

O(A  (B  C)) (LR inference rule) 

OA  O(B  C) (axiom K) 

OA  (PB PC) (The formula just demonstrated 

above) 

OA  PB  PC (propositional language) 

 

As conclusion  from 

wecan deduce 

OPψ  P( ψ) by applying the inference 

rule demonstrated above. 

 

Let us now proof that our logical system is sound and 

complete. 

 

Proposition 1. (soundness property) All formulas 

derivable from the axioms and inference rules of LR are 

valid in all frames. 

 

Proof. It is actually sufficient to prove that the axioms are 

tautologies and the inference rules are valid. Afterwards, 

we can use proof by induction on the length of the 

derivation of  in LR to proof that “if  is derivable in 

LR then is valid in all frames‘”. 

Note that we have already shown that the axioms are valid. 

Now, let us see that the rule “ infers O “ is also valid. 

Let x be a world in all possible worlds of model  

M. If M, x  ⊨   , then for all y  W  such that xRy, 
M, y  ⊨   . By definition of the validity of the obligation, 

we can deduce that M, x  ⊨  O  and then   ⊨  

O 

Proposition 2. (completeness property) 

All formulas valid in all frames are derivable from the 

axioms and inference rules of LR. 

 

 

Proof. The proof is done by means of a canonical model 

construction. Let MMMM = (WWWW, RRRR, NNNN, VVVV ) be the model defined as 

follows: 

 

• WWWW is the set of all maximal LR-consistent sets of 

formulas, 

• RRRR is the binary relation on WWWW , for all x, y in W , 

xRRRRy iff { : O  x}  y, 

• NNNN is the neighborhood function such that for all x 

in W and for all subsets S of RRRR(x), S is in NNNN(x) iff 
there exists a formula  such that R  x and 

S = {y  WWWW : x RRRRy and   y}, 

• VVVV is the valuation function such that for all x in WWWW , 

VVVV(x) = {p: p  x}. 

Let prove that in our canonical model, RRRR is serial, for all 

states x in WWWW , RRRR(x)  NNNN(x),   NNNN(x),  NNNN(x) is closed 
for intersection and closed upward. 
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• RRRR is serial. 

First show that any set of consisting formulas is contained 

in some set of formulas maximum-consistent. 

Let  be a set of consistent formulas. Consider an 

enumeration, starting with 1, of formulas of the language. 

We denote the k-th formula according to this enumeration, 

Ak. We construct a series (k)kN of set of formulas as 

follows: 

 

1. =   

2. k+1 = k  {Ak+1 } if k  {A k+1} is consistent, 

and k+1 = k  {￢A k+1 } if not. 

 k, if   {Ak+1} is not consistent, then  k  {￢A 

k+1 }is as well. 

Consequently,  k, if k is consistent, then k+1 is as 

well. 

As = is consistent hypothetically, all the k 

are consistent. 

Let G the union of all k. 

 =   G by construction, G is consistent (if it is not 

the case, one of  k should be inconsistent) and G is 

maximal by construction. 

 

Now let prove that R is serial. 

Let x  W 

If  , ￢  {  : O  x}, then O , O￢  x 

As x is LR-consistent, we conclude that { : O  x} is 

LR-consistent tow. So there exists y LR-consistent maximal 

such that { : O  x}  y 

 

• RRRR(x)  NNNN (x) 

Let x  W , x is not empty, so there exists   x, and then 

O  x wish means that for all  y  W such that xRy,  

 y, then R(x) = {y  W such that x Ry,   y }, 

therefor there exists    such that O  x and R(x) = 

{y  W such that x Ry,   y} and then there exists   

such that R  x and R(x) = {y  W such that x Ry,   

y } as x is LR-consistent maximal and O  R We 

conclude that R(x)  N (x). 
 

•  NNNN(x) 

We assume that  N(x), then there existssuch 

that R x and {y such that xRy and  y} = 

so there exists such that R x and for all 

y such that  

xRy,   y or R(x) = Or R is serial, so there exists 

  such that R  x and for ally such that x Ry, ￢ 

 y. We conclude that there exists such that R 

x and O￢ x, absurd because x is LR-consistent. 

 

• NNNN (x) is closed for intersection. 

 

First show that: (R  R)  x  R( )  x 

We suppose that R  x, R  x and R( ) 

x 

As x is LR maximal, we have ￢R( )  x 

we have  R  R R( ), so R( ) 

belongs to the closure of x, which is absurd because x is 

consistent. 

 

Let now see that NNNN(x) is closed for intersection. 

Let S1 , S2  NNNN(x), then there exists 1 such that R1  

x and S1 = {y  WWWW, x RRRRy and   y} and there exists 

 such that R  x and S2 = {y  WWWW, x RRRRy and 

  y}, so there exists  ,  such that R 

 R  x and S  S = {y   WWWW, x RRRRy and  

   y}, then there exists ,  such that 

R(    x and S  S = {y   WWWW, x RRRRy 
and     y}. We conclude that S1  S2   

NNNN(x). 
 

• NNNN (x) is closed upward. 

Let S, T  R(x) such that S  T and S  N (x). 
S  N (x) then there exists  such that R x and {y : 

x Ry,   y}  N (x). 
Suppose that T  N (x), then there exists z  T such that  

xR z and ￢  z  as z is LR maximal. 

As  infer O and z is LR maximal consistent, O(￢) 

 z, then  O(￢ )  V (z), so for all y  W such that 

z Ry, ￢  V(y), and then for all y  W such that zRy, 
￢  y. 

If R  x then  O(R )  x and then for all y such that 

xRy, R  y, so  R  z, then  R V(z), so there  

exists  y0 such that zRy0 and   y0.  

Absurd because y0 is LR consistent. We deduce that  

T  N (x) and then N(x) is closed upward. 

• Let now see that, by using a proof by induction 

on the complexity of the formula  ,  for all 

states x  WWWW ,   x iff  VVVV(x) 
 

Let  a formula of length 0 (atomic) 

We have   x iff  V (x). 
We suppose that   x iff  V(x) is true for all 

formula of length smaller or equal than a given number n 

and let  a formula of length n+1. We have the following 

cases: 

1. has the form ￢  with  is of length n 

2. has the form     with  and   are 

of length smaller or equal than n 

3. has the form O  with   is of length n 

4. has the form R  with   is of length n 
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The first two cases are obvious by definition of  V 
For the third case: 

O  x means that for ally such that xRy,   y, then 

for ally such that xRy,   V(y) and then  O 

V(x). 
we suppose that O  x and O V(x). 
so￢O  x and and for ally such that xRy,  

V(y). 
So P￢  x and for ally such that xRy,   y. Then 

there exists z such that xRz and ￢  z and   z. 

absurd because z is LR-consistent. So O  x iff O 

V (x) 
For the last case: 

 

R  x iff { y such that xRy,   y}  N (x)  
 iff {y such that xRy, V (y) }  N (x) 
 iff RV(x). 
As a result, if  is a formula not derivable in LR ( does 

not belong to the closure of ￢), then￢is 

LR-consistent and there is x  W such that ￢  x. 

Therefore,   x and  V(x). It follows that  is 

not valid in all frames. 

3. Using our formalism 

3.1 Specification of the security policy 

The axiomatic system defined in the last section, coupled 

with classical logic axioms could be used for several aims. 

In this section, two of the possible uses are explained: 

 

(1) query a given policy in order to know which rules 

apply to a given situation; and 

(2) Check the security policy consistency. 

To achieve these tasks, it is first necessary to specify the 

operational rules, the security policy, and the security 

objectives. In our view, operational rules can be described 

by means of the propositional logic operators (non modal). 

For example, to specify that users play roles in their 

organizations, we can introduce the play predicate between 

the constant symbols: organizations, users and roles. An 

instance of this predicate could be for instance 

Play(Hospital1, Alice, Physician). 

Besides that, we suggest expressing security objectives by 

using modal operators. For example, the R(Nurse, Read, 

notice) security objective means that it is  recommended 

that the Nurse reads the notice. Finally, we propose 

expressing security rules using modal formula with at least 

a non-modal clause (e.g., f  Rq). It  describes the link 

between the permissions, prohibitions, obligations, or 

recommendations and the state of the system. For example, 

the security rule: “if the patient is minor, it is inadvisable 

that he/she read its medical file” can be specified by:  

Age(p) 18  I(p, read, MedicalFile(p). In this rule 

we have considered that p is a variable of type ”‘patient”’; 

Age (resp. MedicalFile) is a function that returns the age 

(resp. the medical file) of a certain patient).  

3.2 Querying the security policy 

Once we have specified the operational rules, the security 

policy, and the security objectives of the studied 

application, we can use our axiomatic to develop a tool  

which enables a user to query the security policy. For 

instance, let us assume that security administrator wants to 

know who is recommended to read a notice? This query is 

translated in the following logical formula: “ n, Notice(n) 

 R(x, Read, n)”. 

Note that there are two ways to program this formula in 

logical-based languages such as PROLOG. The first one 

lists the persons who are actually recommended to read a 

notice; while the second method answers by a formula 

which corresponds to a sufficient condition that satisfies 

the query. This second technique of query answering is 

called intentional answer in [25]. 

3.3 Checking the security policy consistency 

Different techniques can be used to check the security 

policy consistency, in particular, we can use: 

 

• Axiom-based methods, called Frege-Hilbert 

methods. The idea is to derive new rules by 

applying the inference rules to the set of axioms 

until demonstrating the  intended property. 

• Natural deduction methods: these techniques are 

closed to the reasoning used by mathematicians to 

demonstrate their theorems. In this kind of 

calculus, every derivation starts by some 

hypothesis and assumptions. 

In our context, it is important to choose the method that (1) 

gives enough information about the reasons of success or 

failure while demonstrating a certain security property, (2) 

identifies the system state that is responsible (3) identifies 

some resident vulnerabilities in the system or a certain 

weakness in the security policy specification. This will 

greatly enhance the system security and rigorously help to 

refine the security objectives. For these reasons, we 

suggest using a constructive verification technique such as 

the ”Tableau method” or its variant ”Gentzen sequence 

calculus”. In order to prove a certain formula  , the main 

idea is to assume that￢is true and to derive a 

contradiction by successively splitting up ￢  in each of 

its derived sub-formulas, until obtaining a state satisfying a 

formula and its negation. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011 

 

 

137 

Actually, in this method, we draw a graph where the initial 

node contains an initial secure state (e.g., a state where 

certain security objectives are true/satisfied). Then,  we 

progressively apply some derivation rules (specific to this 

method). At each state we also apply one of the security 

rules (rules that specify how the system can, must  or 

should evolve). The demonstration is ended when 

attending a non-secure state (a state where a contradiction 

is detected). The ”Tableau method” can also be used to 

detect conflicting situations, e.g., if, from a secure state, 

and by applying the security rules as well as the derivation 

rules, we reach a state where a certain user has the 

permission/obligation/recommendation and the prohibition 

to carry out a certain action on the same object); This 

problem comes to draw our graph and to look for nodes 

where one of the following formulas are true: Rp  Fq or 

Pp  Fq or Op  Fq or Ip  Fq or Ip  Rq or Ip  Oq. 

4. Conclusion 

A security policy specifies, usually in a textual form, who 

has access to what, when and in which conditions? 

Nevertheless, the security policy does not guarantee a 

secure and correct functioning of the system. Consequently, 

it is important to associate a model to: abstract the policy 

and handle its complexity; represent the secure states of a 

system as well as the way in which the system may evolve; 

verify the coherence of the security policy and detect 

possible conflicting situations; guarantee that all the 

security objectives are covered by the security mechanisms 

implementing the policy; etc. Deontic logic is a good 

candidate to model several security properties and  

modalities. However, none of the existing works have 

studied the recommendation and inadvisable access 

modalities, while these concepts are unavoidable in many 

applications. Several regulations are in fact in the form of 

recommendations and directives, and these regulations 

should be reflected in security policies. Modeling  

recommendations is thus a new challenge in the security 

policies and models field. 

In this paper we first develop further our Recommendation 

Specification Language.  Then, in order to be able to 

reason on the security policy and to derive new rules, we 

give more details about our new recommendation-based 

axiomatic. Finally, we prove that our new formal system is 

semantically complete and sound. Currently, we are 

developing mechanisms to integrate our recommendation 

access modality in existing tools and languages such as 

Prolog. We also hope extending this work  to distributed 

systems by considering several authorities claiming 

different kind of statements. Finally, we also expect 

applying our work to a representative case study. 
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