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Summary 
The hardware description and modeling of digital signal 
processing (DSP) algorithms and applications for implementing 
on Field Programmable Gate Array (FPGA) chips are 
challenging issues. In this paper, some practical Fast Fourier 
Transform (FFT) algorithms including Cooley-Tukey, Good-
Thomas, Radix-2 and Rader methods are modeled by Verilog 
hardware description language and their performance are 
compared in terms of chip area utilization and maximum 
frequency operation. The results of synthesizing FFT algorithms 
by ISE tool on XC3S5000 chip, from XILINX Inc. demonstrate 
that the Radix-2 FFT method uses the least number of Slices and 
the Cooley-Tukey and Good-Thomas approaches use the most 
number of Slices. In term of Flip-Flop utilization, the Cooley-
Tukey and Good-Thomas approaches use less than the Radix-2 
and Rader approaches. Furthermore, for all methods, the utilized 
FPGA chip area increases by increasing the number of FFT 
points. The Radix-2 is the fastest method for calculating FFT. 
The Good-Thomas method is faster than Cooley-Tukey where 
there are no coefficients between DFT blocks and the Rader 
method has the worst operating frequency on FPGA between all 
proposed FFT approaches.  
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1. Introduction 

The Orthogonal Frequency Division Multiplexing 
(OFDM) technique is one of the most important 
modulation approaches which is used in many schemes of 
communication systems such as wireless communications 
and networks [1,2]. The benefit of the OFDM approach 
rather than other modulation approaches is the efficient 
use of bandwidth using overlapping property. A typical 
OFDM system consists of two parts; receiver and 
transmitter. The receiver has four important blocks which 
are serial-to-parallel block, Inverse Fast Fourier Transform 
(IFFT), QAM table and the RF block. In the other hand, 
transmitter has RF block at the front end, Fast Fourier 
Transform (FFT), QAM table and parallel-to-serial block 
at the back end, shown in Figures 1(a) and 1(b).  
 
One of the most important blocks of an OFDM system is 
the FFT block where the number of Fourier points is 
related to the OFDM symbols. There are various methods 

for implementing FFT block. The methods differ from 
maximum operating frequency, power consumption and 
chip area occupation viewpoints and performance 
evaluating of FFT approaches helps to implement OFDM 
receiver and transmitter systems according to required 
characteristics. 
 
The hardware implementation of FFT approaches is a 
challenging issue where the digital signal processors 
(DSPs) and the field programmable gate array (FPGA) 
chips are two considering designing environments for 
implementing different schemes of FFT approaches.  
Recently, the FPGA technology [3] is quit mature for 
digital signal processing applications [4] due to fast 
progress in very large scale integration (VLSI) technology. 
The FPGA devices provide fully programmable system-
on-chip environments by incorporating the 
programmability of programmable logic devices and the 
architecture of gate arrays. They consist of thousands of 
logic gates and some configurable logic blocks which 
make them an appropriate solution for prototyping the 
application specific integrated circuits (ASIC) with 
dedicated architectures for specified digital signal 
processing applications. The introduction of Verilog 
Hardware Description Language (HDL) [5] provided a 
modeling and simulation environment for fast prototyping 
digital circuits and systems on FPGA.  
 
Implementing of different schemes of  FFT algorithms and 
applications received much attention in literature [6-10].  
The aim of this paper is to model and hardware description 
of different schemes of FFT approaches including Cooley-
Tukey, Good-Thomas, Radix-2 and Rader methods by Verilog 
HDL and realization of them on Xilinx FPGA chip. Then 
the performance of different algorithms is compared for 
chip area utilization and critical path time.   
 
The rest of the paper is as follows; Section 2 describes 
four well-known FFT approaches using mathematical 
models and block diagrams. FPGA implementation of FFT 
approaches and comparing their performance are 
presented in section 3 and finally the paper is concluded in 
section 4. 
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2. FFT Algorithms  

In this section four common FFT methods including 
Cooley-Tukey, Good-Thomas, Radix-2 and Rader are 
described in details and the mathematical models of them 
are reviewed. For this, the mathematical background of 
each method is presented and the block diagram of each 
approach for N-point FFT operation is provided.  

2.1 The Cooley-Tukey FFT Algorithm  

This method was proposed by Cooley and Tukey [11] and 
generally is used for computing FFT. In this approach, the 
number of FFT points can be divided into two factors [12], 
N1 and N2 as follows;  
 

21 NNN ×=   (1) 
 
Input indexes, n, are obtained from following expression; 
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Furthermore, the output indexes, k, are obtained from 
following expression; 
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For example, when N is 15 then N1 and N2 are chosen to be 
3 and 5 respectively.  According to (2) and (3) input and 
output indexes are described by following expressions; 
 

21 3kkk +=    where       
⎩
⎨
⎧

≤≤
≤≤

40
20

2

1

k
k

 
(4)

215 nnn +=    where       
⎩
⎨
⎧

≤≤
≤≤

40
20

2

1

n
n

  (5)

The block diagram of this method for N=15 is show 2. 

2.2 The Good-Thomas FFT Algorithm  

This method was suggested by good [13] and Thomas [14]. 
Considering Cooley-Tukey method shown in Figure 2, 
between two blocks at the front end and back end, some 
coefficients are placed. These coefficients can be 
eliminated by some assumptions and consequently for the 
same number of FFT points this method has less chip area 
occupation. Main supporting idea of this method is that N1 
and N2, those are two-factor of N, are prime to each other. 
Input and output index mapping is done according to 
equations (6) and (7), respectively. 
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AN2 and BN1 satisfy following equations: 
 

0mod12 =× NNAN    (8)
 

0mod21 =× NNBN    (9)
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Furthermore, in Good-Thomas method, in addition to 
equations (8) and (9), below assumptions must be 
established at the same time: 
 

2
2
2 mod NNAN =      (10)

 

1
2
1 mod NNBN =      (11)

 
 

 

 
 
For example for N=15, N1and N2 are 3 and 5 respectively 
and input and output indexes are: 
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The block diagram of Good-Thomas method for N=15 is 
presented in Figure 3. 

2.3 The Radix-2 FFT Algorithm 

This method is the subset of the Cooley-Tukey method. In 
this method, N1 or N2 is chosen to be 2 and the other one 

is
2
N . It is assumed that N is a power of 2 [15-17]. As an 

example, for N=16, N1=2 and N2 is 8 and the following 
equations describe the implementing approach of this 
method.  
The main expression of the Fourier transform is (14) and 
N=16 then 15,...,2,1,0=k . 
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is: 

∑∑ +++=
7

0
)12(

16
7

0
2

16 )12()2()( knnk WnyWnykY         (15) 

 
Considering nknk WW 8

2
16 = then: 

 

∑∑ +×+=
7

0 816
7

0 8 )12()2()( nkknk WnyWWnykY                (16) 

 
Furthermore when kk WW 16

8
16 −=+  then:  

))34()14((

)24()4()(
3

0
)12(

88
3

0
2

816

3

0
)12(

88
3

0
2

8

∑∑
∑∑

+

+

+×++×

++×+=

knknkk

knknk

WnyWWnyW

WnyWWnykY
 (17) 

 
and eventually; 
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The block diagram of Radix-2 FFT method for N=16 is 
presented in Figure 3. 

2.4 The Rader FFT Algorithm 

This method was introduced by Rader [18, 19] where it is 
assumed that N is prime. According to [20, 21], each 
prime number has one or more primitive root, here called 
p. Selecting one of the primitive root and using (19), the 
input index sequence can be obtained so that the FFT 
operation is calculated with the cyclic convolution. The 
output indexes of the convolution are 1 to N-1 and the 0 
index must be calculated separately.  
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Npn mod           20 −≤≤ Nn                                      (19) 
 

For example when N=17, the primitive roots are 3, 5, 6, 7, 
10, 11, 12, and 14. Choosing number 3 as primitive root 
the order of inputs is obtained from Table 1. 
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In addition to input indexes, the coefficients must be 
arranged like inputs indexes.  
Figure 5 shows the cyclic convolution part of Rader FFT 
method. The entries come into the rotational part and go 
forward with each clock pulse.  
In the other hand, these entries are multiplied by the 
coefficient weights and added with x[0] finally to make 
the output. 
 

Table 1: The Index Number of Rader FFT Algorithm 
n Index number n Index number 
0 1 8 16 
1 3 9 14 
2 9 10 8 
3 10 11 7 
4 13 12 4 
5 5 13 12 
6 15 14 2 
7 11 15 6 

 
3. FPGA Implementing and Comparison 
Study 

In this section the simulation results of realization the FFT 
algorithms on a single FPGA chip are presented and the 

performances of FFT algorithms are compared in terms of 
chip area utilization and maximum operating frequency on 
target chip. The FFT algorithms are modeled by Verilog 
HDL and implemented on XC3S5000 chip from Xilinx 
Inc. [14]. The specification of the test bench chip is listed 
in Table 2. The ISE software is used for synthesize and 
simulation of Verilog codes. 
In the proposed study, the prime numbers for Rader 
method are 7, 17, 31 and 61, for radix-2 algorithm the 
two-powered numbers are 4, 8, 16, 32 and 64 and for 
Cooley and Good methods the numbers 10, 15, 20 and 63 
are considered.   
The results of FPGA chip area occupation including 
number of utilized Slices and Flip Flops by FFT 
algorithms are compared in Figures 6 to 8.  
As shown in Figures 6 and 7, the Radix-2 method uses the 
least number of Slices. While the Cooley and Good 
approaches use the most number of Slices. In term of Flip-
Flop utilization, the Cooley and Good approaches use less 
than Radix-2 and Rader approaches. Furthermore, for all 
methods, the chip area utilization is increased by 
increasing the number of FFT points.  
 

 
The reason that Cooley has less chip area rather than Good 
method is that in Good method, in addition to DFT block, 
some coefficients are placed between DFT blocks. 
In Figure 8, performance of FFT methods is compared for 
maximum frequency operating viewpoint. As shown, the 
Radix-2 is the fastest method for calculating FFT due to 
less processing in the calculating path. The Good-Thomas 
method is faster than Cooley-Tukey where there are no 
coefficients between DFT blocks. The Rader method has 

the worst operating frequency due to calculating time in 
this method takes more time.  
 

Table 2: The specification of test bench chip 
Slices 33280 

Slice Flip Flop 66560 

LUTs 66560 
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4. Conclusion 

Modeling and hardware description of some FFT 
approaches such as Cooley-Tukey, Good-Thomas, Radix-
2 and Rader FFT algorithms by Verilog hardware 
description language and realization of them on Xilinx 
FPGA chip was proposed. The results demonstrated that 
the Radix-2 FFT method used the least number of Slices 
and the Cooley-Tukey and Good-Thomas approaches used 
the most number of Slices. 
The Good-Thomas method was faster than Cooley-Tukey 
and the Rader method had worst operating frequency on 
FPGA between all proposed FFT approaches. In term of 
Flip-Flop utilization, the Cooley-Tukey and Good-Thomas 
approaches used less than the Radix-2 and Rader 

approaches. Furthermore, for all methods, the utilized 
FPGA chip area increased by increasing the number of 
FFT points. 
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