
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

167

Manuscript received November 5, 2011
Manuscript revised November 20, 2011

Towards Quality Attributes Decision Modeling Approach for a
Product Line Architecture

I Made Murwantara

Research and Development Computer Lab., Informatics Dept. Universitas Pelita Harapan, Indonesia

Summary
Hybrid Formal Concept Analysis – Analytical Hierarchy Process
(HFA) for decision modeling the product line architecture
development give hints to the initiation of the software
architecture design. It enables the software architecture to have
clear view of variabilities and dependencies in the architecture of
a product line. Further, architecture stability which is the issue
that arises during architecture configuration, can be coped with
this approach. In this approach, the Formal Concept Analysis acts
as the cluster manager, that grouping the components to have
specific functionality relationship. Then, the Analytical Hierarchy
Process calculates the priority of each components. In the case of
quality attributes, the HFA groups the components that related to
specific quality attributes and its combination. However, some
challenges on cross-cutting components and error design may
arise in this process. To this, the product line architecture is
layered and managed using the Consistency and Variability
Manager. However, during product configuration in the Product
Line Architecture, software architect have to make decision for
components with variability. Furthermore, the software architect
must know exactly what will happen to the final product,
especially to the quality attributes. To this, this paper proposed
the HFA, which support the software architecture of product line
to have clear expectation of specific architecture that being
configure. The proposed approach demonstrated in a eLearning
Product Line.
Key words:
Decision Modeling, Product Line Architecture, Variability,
Formal Concept Analysis, Analytical Hierarchy Process

1. Introduction

Software Product Line (SPL) is a new paradigm of
software development that heavily reuse the whole artifacts
of member products of a product line. It aims to leverage
the extensive reuse of software development, and to reduce
costs, time of production by maintaining its high quality. In
the SPL developments, there are two processes that are
Domain Engineering and Application Engineering. Domain
Engineering, mainly, identifies the commonalities and
variabilities within a given domain. It exploits the reusable
artifacts of member product that will be reused for
engineering new products in the specific domain.
Meanwhile, Application Engineering derives the Domain
Engineering result to form the reference architecture.
Product Line Architecture (PLA) is the key success factor
of SPL development. PLA compose the artifacts of
member products to produce specific architecture. The

configuration of specific architecture, mostly, by selecting
the components of member products. During selection of
components several issues arise, such as relationship and
dependency. The dependency may arise as a result of
intersection between the software components from
different group members, that form the quality attributes.
Furthermore, the quality attribute is the prominent issue of
dependencies between components. Where, the quality
attributes corrrespond to the architecture stability of
software architecture design. The change of quality
attributes affect the architecture structure. This happens as
the product line architecture develops specific architecture
by configure the artifacts of member products, that
ultimately, affect the whole architecture.
Decision modeling simulates the component composition
by taking into account several factors, such as Quality
Attributes and Functionalities. Decision modeling also
models the components to have the suitable software
architecture configuration to answer the requirements.
Where, the new product specifications arrive as
requirement, that established by querying the architecture
elements of member products. In the product line
architecture, functionalities derives as the software
components. One or more functionalities may exist in one
components, and sometimes, it need a group of
components to correspond for a functionality. In general,
the relationship between components or groups of
components resulted on specific or common quality
attributes. This, makes the selection of components during
product configuration, hard to implement it. In this case,
the decision of component selection must taking into
account the changes of architecture structures as a result of
software architecture configuration.
Decision modeling, in SPL, supports the variability
modeling. It presents the analysis of complexity and
diversity of products in a specific domain, that efficiently
achieve product derivation process. According [1], in the
basic model structures, decision model share
commonalities. The decision is represented as a set of
choices, that comprises of a set of references that forms the
decision model. It reveals the decision as unique attributes,
and it has dependencies among decisions.
The PLA includes the artifacts of member products of a
product line, and develop the architecture for specific
product by configuring the components. Primarily,
components relates via interaction elements, e.g. connector,

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

168

ports. The components configuration establish the software
architecture. Further, the component relationships are
represented by the interaction elements. The SPL derive
into PLA, by mapping a feature model into groups of
components. Variant components build the constraints for
specific product. If more than one variant components, that
groups on different component category. Then, software
architect needs to decide whether one composition may
change the component specification. If the groups of
components are the representation of quality attributes,
then, they need to make a decision model that able to
include quality attributes as the decision value.
Quality Attributes affects system design. When, the quality
attribute considered in the architecture configuration, it
give significant impact to the architecture structure. In the
product line architecture, quality attributes may emerge as
the dependencies of components that address specific goals,
such as security, reliability or usability. In addition, the
Product line architecture differs to the traditional
architecture in terms of quality attributes. Where, the
traditional software architecture do not deal with variability.
Further, Complex dependencies of components that emerge
in the product line architecture need to be clarify. It pin
points the presence of variability in the specific software
architecture.
Groups of components establish the quality attributes.
Where, the modification of components composition
change the quality attribute. The decision of which
alternatives should be included into the composition affect
the whole architecture. For example, if there are two
optional components, which are “Interaction Resources”
and “Evaluation Resources”. When one of those optional
component is composed to the component “Participant
Management”, then it will form two quality attributes
possibilities, which are “Reliability” and “Usability”. The
composition of “Interaction Resources” and “Participant
Management” form “Reliability”. Similarly, the
composition of “Evaluation Resources” and “Participant
Management” establish “Usability”. However, how do the
software architect knows the best composition that answer
the requirement, and How to help the architect engineer to
select the suitable alternatives. To address these
shortcomings, modeling the alternatives in a compact form
is essential. Further, the decision dependencies may
emerge in a complex architecture, and to model this
dependencies as well.
This paper investigated the decision modeling of software
architecture design via hybrid Formal Concept Analysis -
Analytical Hierarchy Process (HFA) for a product line
architecture. It aim to capture and evolve a SPL's assets so
as to gain insight into architecture elements diversity,
efficiently.

1.1 Decision Modeling in Product Line Architecture

Decision modeling in PLA manages and supports the
choices of development path by composing or
decomposing software architecture elements. Development
path reveals the software architecture composition in a
concise manner. In general, the software architecture
comprises of components and its relationships. Regardless
the interaction elements that build the relationship, the
software component is the main elements that compose the
software architecture.

Decision modeling in PLA consists of two parts [5],
firstly, defines the structures and elements to build the
decision model. And, specifies the decision characteristics.
In the first part, the decision groups into sets of decision
model. Then, it is organized into tree form to determine the
type of decision that found in the decision model.
In the Component-based Software Engineering (CBSE),
the reuse of components is the key success factor [3]. Thus,
the reusable components must be developed from the
application domain point of view, not from a specific
application does. In this case, decision should pinpoint the
functionalities as the orchestration of components.
Decision that coming from an instantiation process,
therefore, generate the component instantiation which is
different to the original one. Above all, the decision model
only in the build level components, and the logical
composition [4] can be achieved via the functionality
within component.
The decision can be differentiated into restricted and
unrestricted [5]. The restricted decision contains
restrictions specification. While, the unrestricted decision
have the constraints specification that do not support other
constraints, which differs to its data constraints. Both, the
restricted and the unrestricted decision may exist in the
same specification of decision model. The key success
factor of decision process is a stable architecture, that won't
change the structure and logic of software architecture, in
the PLA, during architecture design activity.

1. 2 Related Work

In the component-based development, Kobra [2] uses a
tabular notation as their decision model. Kobra have
separate decision level, from simple decisions to advanced
decisions. The resolution of those level specify the
selection for each product instances. The Kobra approaches
using UML as their modeling tool and the model is
configured to have specific architecture structure. A
decision can be mapped to more than one architecture, and
the decision type may vary, based on the variability type,
e.g. Optional and Variant. Dependencies is captured as the
resolution of decision.
DOPPLER [1] decision model comprises of a set of
decision and their dependencies. The decision process

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

169

begins by answering the question that asked to the
customer, where each decision have a unique name. And,
the answer depend on the type of the decision (Boolean,
string). The range of allowed answer is restricted by
validity condition. Further, the decision hierarchically
depend to the other decision and it must be resolve before
other decision logically accepted.

2. Research Method

In this research, several decision modeling approaches and
its related works have been analyzed. After carefully
reviewing the existing approaches, there are chances to
support the decision model by presenting the quality
attributes. In a product line architecture, the quality
attributes involve many components that cross-cuts, which
is uneasy to resolve for a product line architecture design.
It is frequently the case however that the design error
sometimes emerge when the alternatives do not have, both,
its value and rank of importance. In this case, if the
alternatives can be pre-computed, the decision will be
concise. Both, Analytical Hierarchy Process (AHP) and
Formal Concept Analysis (FCA) can be used to support a
decision model in a product line architecture, by
composing or decomposing groups of components and
their relationship in an architecture design. AHP [7] aims
to have best decision that suits the goals, that using pair
method. The AHP compose the decision into hierarchy,
that each sub-composition can be examined independently.
The elements of hierarchy corresponds to any quality
attributes elements, that are groups of software components.
Subsequently, each quality attributes are valued based on
the evaluation of critical, effective, and impact. After that,
the AHP convert those value into numerical value, and
compared to entire range of component compositions. The
result is the representation of alternatives that is offered to
the architecture designer.
In the FCA [8], it aims to have natural clusters of attributes
and object input data. Where, the set of all the share
common attributes are clustered as object cluster, and the
set of all attributes that shared to object cluster as property
cluster. The property cluster correspond one-to-one with
object cluster, and a pair comprising of object cluster and
property cluster forms a concept. This concept build from
the mathematical axiom that is called lattice, and well
known as concept lattice.
In this decision model approach, as depicted in Figure 1,
the FCA analyzes the possibility of components cluster to
answer the requirement question, and the AHP forms the
range of critical decision..
The AHP Quality attributes affect the architecture design
of a PLA, it reveals the importance of components that
forms the architecture as a unique collaboration of
functionality. Each component may have more than one

functionalities, depend on its relationship to other
components. The proposed approach includes the
following elements:
1] Identifying the relevant component variant to specific

quality attributes.
2] Predicting the significance of each variable

components that identified in quality attributes.
3] Defines the architecture design for quality attributes in

component model.

Figure 1. Hybrid Formal Concept Analysis – Analytical Hierarchy
Process Approach (HFA)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

170

This paper introduces a decision modeling method: the
Hybrid Formal Concept Analysis - Analytical Hierarchy
Process (HFA). It aims to offer solutions for complex
problem and automate the suitable alternatives selection.
The basic process of HFA is shown in Figure 1. (a) The
general idea of HFA in this research is that an initial
parameter of components and quality attributes are created
at the beginning, and (b)used as an initial parameter input
into FCA. (c) FCA will terminate if the alternative is
satisfied (d), in terms of grouping the components against
the quality attributes after the generated lattice graph (e),
otherwise, (f) the selection of pairwise alternatives will be
obtained. In addition, it computes the pairwise alternatives
to get factor priorities. After that, the factor weight
priorities are computed. The result of weight priorities are
computed, to have the overall decision priorities, and then,
consistency ratios are determined. Subsequently, if the
alternatives that is provided by this approach satisfied, the
process is finished. Otherwise, (g) the components can be
added some more or reduced, and the Quality Attributes
may have modification. Then, the process start from the
lattice creation.

3. Results and Discussion

A e-Learning Product Line Architecture (el-PLA) based on
MOODLE [9] was used to show the feasibility of this
approach, that is depicted in Figure 3. In the el-PLA,
several Quality Attributes exists, such as Security,
Reliability, and Usability. The deployment that involved
the Internet and Intranet create the high risk of the system
in terms of security. In this case, Security is handled by
several components, which are component “Authorization
Controller”, “User Account Manager”, “Key Generator”,
and “Roles Access Manager”. In general, if High Security
is implemented into a system, then the network speed will
be low, low process speed or too many credential must be
provided. In the Reliability, the readiness of the system to
serve users is the biggest challenge. The system have to be
able to cope all operational in routine circumstances. The
components that correspond to this quality attributes are
“Course Manager”, “Participant Manager”, “User Account
Manager”, “Display Controller” and “Roles Access
Manager”. Meanwhile, the usability that correspond to the
easiness to use and to learn is handled, primarily, by the
following components; “Display Controller”, “Course
Manager”, “Event Trigger”, “User Account Manager” and
“Content Manager”. It found that many cross-cut
components corresponds to the quality attributes which is
difficult to configure during architecture design.

3.1. Identifying the component variable for quality
attributes.

Identification of pertinent components, primarily, derive
from the feature model [10]. Where, the domain expert
defines the quality attributes of correspond feature models,
already. Each components that represent groups of features
will be influenced from the functional features that
correspond to quality attributes. In this case, the domain
expert's knowledge and experience play an important role
in the identification process. In particular, quality attributes
may be cross cut the architecture. In this case, one
component may be included for more than one quality
attributes [11]. For example, the component “Content
Manager” and “Participant Manager” are included for the
quality attributes of secure learning. The component
“Content Manager” have two optional alternatives. The
first, in term of content that the alternatives are Single or
Share. The second, in term of learning content resources
location that it may be stored internal in the same server or
external on different server. The component “Participant
Manager” also have alternatives, that are closed participant
which means only specific users are allowed to join, or
open participant that everyone may join to the learning
system. And, if the decision is high security, then the
alternatives of closed participant in the “Participant
Manager”, and single content and the internal content
resources of “Content Manager” should be appeared as
alternatives. On the other hand, when quality attributes of
Usability Learning is decided. Then, the relevant
alternatives are open participant of “Participant Manager”,
and single content and the internal content resources of
“Content Manager” will be represented as alternatives
elements. Both usability learning and high security,
showed us that the quality attributes may cross-cut the
architecture decision. In another word, the quality
attributes should be simulated and pre-computed to have a
good decision.

3.2. Predicting the Significance of Components for
Quality Attributes

In the product line architecture, components cross-cut
among the architecture [12]. In order to have quality
attributes in the configuration, the components must be
represented explicitly. For example, as illustrated in Figure
2, relationship between component “Participation
Management” and “Evaluation Resources” will create a
managed learning functionality. Meanwhile, the
relationship between component “Participant
Management” and “Course Manager” represent the
restricted user functionality. Further, if both functionalities
are collaborated, then the reliability will be cultivated,
which is a quality attributes. From this perspective,
functionalities relationship of components may be grouped

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

171

as a quality attributes. The problems emerge when there is
a separation of the group of functionality within
components. It may change the quality attributes, logically,
and also change the functional structure of software
architecture. However, the value of functionalities that
impact into quality attributes can be measured, by
qualifying groups of components [13]. The prominent
problem in the decision model for a PLA, is to find the
most suitable or matching components [14]. Furthermore,
it should answer the quality attributes by grouping the
components, dynamically [15]. As shown by the FCA
result, the quality attributes still have problems on how the
group of components answer the quality attributes. To
address this shortcomings, a hybrid approach of the FCA
and AHP is formed. As shown in Figure 2, the hybrid of
the FCA and elements are mapped to each location of
cluster that match to the present of quality attributes and
components. Then, all highest values in the FCA graph are
structured, hierarchically, from the highest to the lowest,
for example {a,b}R,A means the component “Participant
Management” and “Course Manager” cluster into
“Reliability” and “Availability” which values are {aR, aA,
bR, bA} . After that, all cluster's value are ranked. The
highest value of the result shows the best decision that
match to the quality attributes need.

Figure 2. The e-Learning Product Line Architecture Component Model

There are still ambiguous on specific quality attributes
decision as seen on Figure 2. To address this shortcoming,
we need to analyze the cross product of clusters in the FCA.
Indeed, the perfect match of component composition to
quality attributes may differ significantly, if it correspond
to the component functionalities. This approach propose to
use challenge and conquer method. For example, each
clusters in the FCA graph have functional and quality
attribute map. If functional composition affect the quality
attributes, then, component should have its best match to
the quality attributes information. The AHP sharpening the
alternatives of Quality Attributes by decomposing the FCA
result into specific comparison matrix. The comparison

matrix have their values from the domain expert. Each
matrix may forms a simple or complex matrix. If it is a
complex matrix, the priorities result must be evaluated, as
seen on table 1. In prominent, the complex matrix
comprises of more than one quality attributes. The initial
idea to address this problem is by creating similar value to
the quality attributes element. After that, qualifying the
other matrix that correspond to the same quality attributes,
or straightforward gives the comparison value. If it is a
simple matrix, the result of priorities may be used as
alternatives for the software architect, straightforward, as

shown on table 2. The priorities signs the significant of
component to address the quality attributes.
Table Legend:
a Participant Management e Evaluation Resources
b Course Manager f Report Generator
c Resource Manager g Learning Assessment
d Interaction Resources h Participant Mgmt

R Reliability U Usability
S Security A Availability

Figure 3. e-Learning Product Line Architecture Formal Concept Analysis
Graph

Figure 4. Security and Availability Hierarchy Structure

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

172

Based on the Formal Concept Analysis result, the groups of
component are build into hierarchy structure. In the e-
Learning Product Line case, the quality attribute may have
specific or mixed specification, i.e. Security mixed with
Availability. In this case, the mixed hierarchy structure can
be seen in Figure 4.
In the mixed quality attributes, the software component do
not have its specific quality attributes. As depicted in
Figure 4, although one component may arrive as mixed
quality attributes, on the other configuration it also act as
other specific quality attributes. As seen in Figure 5. The
quality attribute Usability also have component
“Participant Mgmt” , that previously mention as the
member of mixed quality attributes in the Security and
Availability. Therefore, this component may have internal
variability. To make it crystal clear, the component model
is the reference. As seen in Figure 1, the component model
have the component “Participant Mgmt”, which have
optional and closed as its internal variability. And, the
clustering process in the Formal Concept Analysis have
identified it as a component. However, when the Analytic
Hierarchy Process did its job, the internal variability
emerge as a decision. On the other hand the component
“Participant Management” did not explicitly define its
variability in the component model. Then, it must have
something missing during component derivation from the
feature model, and this problem resolve during architecture
design process. Ultimately, this approach explicit the
internal variability by reviewing the groups of component
to correspond the quality attributes.

Figure 5. Usability Hierarchy Structure

Table 1. Pairwise comparison matrix for the alternatives of Security and
Availability

 Participant
Management

Learning
Assessment

Participant
Mgmt

Priorities

Participant
Management

1 5 3 0.658

Learning Assessment 1/5 1 1 0.156

Participant Mgmt 1/3 1 1 0.185

In Table 1, the priorities of the component
“Participant Management” is the highest to establish the
security and availability, therefore, this component must be
included in the architecture configuration. However, the
internal variability of component “Participant Mgmt” need

further investigation, whether to include “Open” or “Close”
options. In this case, an experts' knowledge must be
considered as a decision. Meanwhile, in the usability, the
component “Interaction Resources” reach second priorities
(0,246), and the “Resources Manager” on the next
priorities (0,123), as illustrated in Table 2. It indicates that
the usability should include both “Resources Manager” and
“Interaction Resources” because of its relations to the
external variability. As the “Interaction Resources” is the
alternative component, then this comparison have
sharpening the configuration process.

Table 2. Pairwise comparison matrix for the alternatives of Usability
 Participant

Management
Resources
Manager

Interaction
Resources

Participant
Mgmt

Priorities

Participant
Management

1 5 3 7 0.571

Resources
Manager

1/5 1 1/3 3 0.123

Interaction
Resources

1/3 3 1 3 0.246

Participant
Mgmt

1/7 1/3 1/3 1 0.064

3.3. The Architecture Design

The composition of components forms the quality
attributes. Representing the component with internal
variability should also taking it into account. In this
approach, the internal variability explicit by grouping one
or more components to single or mixed quality attributes.
By clustering the software components, the functionality
of the component with internal variability that forms the
quality attributes can be selected clearly. To this, the
quality attributes in the architecture design may have a
stable architecture. This condition supports the software
architecture to configure the specific architecture of
member products of a product line without changing the
architecture structure.
However, the selection of components to be included in an
architecture of product line need to have clear information,
of how the internal and external variability within
component can be configured explicitly. The Formal
Concept Analysis already grouped the components which
correspond to specific or mixed quality attributes. In the
specific quality attribute, a group of component can be
pairwise compared to have its priorities using Analytical
Hierarchy Approach. If in a group of component have
mixed quality attributes. Then, the components have more
than one quality attributes membership. To this, the
component may have internal variability, or it may have
different point of view when it combined to different
components.
In this research goals, software architect defines its
decision based on the information of the importance of
components to the quality attributes. So, this approach will

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.11, November 2011

173

not proposed the best component for the architecture
design. Where, the final decision is on the software
architect judgment.

4. Conclusion

In this paper, the hybrid Analytical Hierarchy Process –
Formal Concept Analysis (HFA) to automate the decision
of component composition in a Product Line Architecture
already explained. The software architecture can be
organized to have quality attributes without changing the
functionalities of the components. The FCA has grouped
the components to the specific or compound quality
attributes, and the AHP measure the priorities of each
group of components that correspond to one or more
quality attributes. This approach have sharpen the decision
of components by taking into account the quality attributes.
In addition, the impact of a decision may be predicted and
error design can be reduced.

In the future, formalizing the decision model is the
next research objective.

Acknowledgement

This research was funded by Lembaga Penelitian dan
Pengabdian Masyarakat Universitas Pelita Harapan (LPPM
UPH) research grant under the project number P-002-
FIK/IX/2011.

References

[1] K. Schmid, R.Rabiser, P. Grunbacher. Comparison of
Decision Modeling Approaches in Product Lines.
Proceeding Variability Modeling of Software Intensive
Systems, ACM, 2011.

[2] C. Atkinson. Component-Based Product Line
Development: The KobrA Approach. LNCS 1234,
Springer, 2000.

[3] K. Kang. Issues in Component-Based Software
Engineering. International Workshop on Component-
Base Software Engineering, 21st ICSE, Los Angeles,
1999.

[4] C. Park, S. Hong, K. Son, J. Kwon. A Component
Model Supporting Decomposition and Composition.
Proceeding of SPLC, Kyoto, Japan, 2007.

[5] J. X. Mansell, D. Sellier. Decision Model and Flexible
Component Definition Based on XML Technology.
Proceeding of PFE, LNCS 3014, Springer, 2003.

[6] R. Mazo. Using Constraint Programming to Verify
DOPPLER Variability Model. Proceeding of
Variability Modeling of Software Intensive Systems,
ACM, 2011.

[7] T. L. Saaty. Decision Making with AHP. International
Journal Services Sciences. 2008.

[8] B.A. Davey. Formal Concept Analysis: Introduction to
Lattices and Orders. Cambridge University Press,
2002.

[9] W. Rice. Moodle. Packt Publishing. 2006.
[10] K. Pohl, G. Bockle, F. van der Linden. Software

Product Line Engineering: Foundation, Principles,
and Techniques. Springer-Verlag, Berlin, 2005.

[11] I. M Murwantara. Initiating Layers Architecture
Design for Product Line Architecture. Proceeding of
URKE, Bali, 2011.

[12] P. J. Clemente, J. Hernández, J. M. Conejero, and G.
Ortiz, “Managing crosscutting concerns in component
based systems using a model driven development
approach,” Journal of Systems and Software, vol. 84,
no. 6, pp. 1032-1053, Jun. 2011.

[13] T. M. Dao, H. Lee, and K. C. Kang, “Problem Frames-
Based Approach to Achieving Quality Attributes in
Software Product Line Engineering,” 2011 15th
International Software Product Line Conference, pp.
175-180, Aug. 2011.

[14] F. Gilson and V. Englebert, “Towards Handling
Architecture Design , Variability and Evolution with
Model Transformations,” Architecture, pp. 39-48,
2011.

[15] T. C. Harrison and a P. Campbell, “Attempting to
Understand the Progress of Software Architecture
Decision-Making on Large Australian Defence
Projects,” 2011 Ninth Working IEEE/IFIP Conference
on Software Architecture, pp. 42-45, Jun. 2011.

I Made Murwantara received the M.S.
degrees in Computer Science from the
University of Indonesia in 2002. During
2004-now, he stayed in Informatics
Department, Faculty of Computer Science,
Universitas Pelita Harapan. He now with
Research and Development Computer
Lab., Informatics Dept, Universitas Pelita
Harapan, Indonesia.

