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Summary 
Metamorphic malware propagation has persuaded the security 

society to consider about new approaches to confront this 

generation of malware with novel solutions. Control Flow Graph, 

CFG, has been successful in detection of simple malwares. By 

now, it needs to improve the CFG based detection methods to 

detect metamorphic malwares efficiently. Our Approach has 

improved the simple CFG with beneficial information by 

assuming called APIs on the CFG. Converting the resulted sparse 

graph to a vector to decrease the complexity of graph mining 

algorithms, a specific feature selection is utilized and different 

classification approaches has been qualified. The experimental 

results show the contribution of this approach in both accuracy 

and false detection rate measurements in comparison with the 

other simple graph modifications. Among different classifiers on 

our approach the best results were attained by random forest. On 

the computation complexity side also this work has decreased the 

elaboration regarding to the simple feature selection conducted 

before decision making. 
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1. Introduction 

In recent years, many researchers have focused on data 

mining methods for detecting unknown malwares. Data 

mining methods use statistical tools and machine learning 

algorithms, and by applying them on a set of features, can 

determine the malicious programs from benign programs. 

Most of data mining methods start their process by 

generating a feature set. These features, sometimes, can be 

n-grams, instruction sequences, API call sequences etc. 

Signature based approaches need signature of each seen 

malware to detect it. Therefore, detecting unknown 

malwares is not possible with classic static signature based 

methods, so we need semantic based detection methods, to 

detect them. One of the semantic based approaches uses 

control flow graphs to understand the semantic of 

malwares, whereas, we use control flow graph and API 

calls to have more semantical aspect of new malwares, 

hence can detect them.  

The structure of this paper as follows. Section 2 describes 

related works in semantic based malware detection. 

Section 3 discusses the proposed method, an overview of 

our malware detection system, feature selection methods 

and classification algorithms used in experiments. The 

system evaluation is presented in Section 4 that results are 

interpreted and commented in the same section. Section 5 

concludes our achievements, future works and summarizes 

the results. 

2. Related Work 

Gao et al. represented a new method to find semantic 

differences in binary programs. Syntactic differences 

indeed have the potentiality to cause noise, so finding the 

semantic differences would be challenging. They utilized a 

new graph isomorphism technique and symbolic execution 

to analyze the control flow graph of PE-files by identifying 

the maximum common sub graph. A PE-file is the 

standard executable (EXE) file format used by the 

Microsoft Windows operating systems. Their method 

found the semantic difference between a PE-file and its 

patched version, but with significantly worse execution 

speed [1]. 

Cesare and Xiang proposed a new classification 

method that used flow graphs to detect polymorphic 

malwares. They applied a heuristic algorithm for the flow 

graph matching to find graph isomorphisms, therefore, 

they can estimate similarity between PE-files, and finally 

they represented a classification algorithm based on their 

method [12]. 

Jeong and Lee, extract the control flow graph by the 

instructions with API calls as code graph. They did not use 

any disassemble tools; instead, they worked on binary files 

directly and fetched the jump and call instructions from 

that PE-file and created the code graph. Their method can 

detect 67% of unknown malwares [6]. 

Dullien and Rolles, assumed each function as a flow 

graph, and then drew call relation between them (i.e. from 

caller node to callee); consequently each PE-file is 

represented as a graph of graphs. Under this trend, they 

could have an improved isomorphism between the sets of 

basic blocks and sets of functions in two disassembled PE-

files; therefore, they could detect code theft [13]. 
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Abadi et al. formalized the semantic of Control Flow 

Integrity (CFI) by machine code rewriting. CFI represents 

a method to verify the execution proceeds within a given 

control flow graph which is derived from static program 

analysis. In the other words, CFI relies on dynamic checks 

for enforcing control flow integrity and has an efficient 

implementation of a program shadow call stack with high 

protection [9]. 

3. The Proposed Approach 

First, the system disassembles the PE-file then extracts the 

CFG from assembly file. After that, the system generates 

the API call graph with CFG and called APIs. In the final 

phase, system uses a classification algorithm to make a 

decision whether the PE-file is malicious or not. 

3.1 System overview 

Our system consists of three principal components, PE-file 

disassembler, API call graph generator and classification 

module that is illustrated in Figure 1. In the first step, the 

system disassembles the PE-file. After that, the system 

performs a preprocessing algorithm on assembly files, 

removing not necessary statements, and generates the 

control flow graph (CFG) from these instructions. A CFG 

is a connected and directed graph consisting of a set of 

vertices corresponds to the lines of disassembled file, a set 

of directed edges that corresponds to the execution 

sequence of program (e.g., normal sequence, conditional 

jump, unconditional jump, function call and return 

instruction), concurrently in the API repository, each API 

name is mapped to a global unique number. In the next 

steps, system performs the labeling algorithm on CFG and 

consequently API call graph would be generated. The 

graph is then converted into a feature vector. In the next 

step, we used a feature selection algorithm, because the 

number of generated features is very high and with this 

step we can reduce the number of features, therefore, we 

have a faster classification process. After feature selection, 

we get some of data items as training set and use those for 

the training phase, then the classifier generates a set of 

rules which are saved in the rule database. Finally, the 

testing set is given to decision module. This module 

utilizes rule database to decide whether a sample is 

malware or not. Therefore, it generates a report for each 

PE-file.  

3.2 Generating API call graph 

Based on our motivation, feature generation and feature 

selection are most significant phases in malware detection 

systems. Therefore, the key step of our presented approach 

focuses on these phases. According to Figure 1, the 

disassembling step uses PE-Explorer [10], for 

disassembling the PE-files, this tool cannot disassemble a 

number of files in batch mode, hence, the user must 

disassemble the PE-files one by one, so we made an 

auxiliary tool, that follows users‟ interactions with PE-

Explorer and then disassembling process for the huge 

dataset with PE-Explorer becomes more simplified. After 

disassembling step, the assembly file preprocessing starts, 

this step removes unnecessary assembly instructions from 

input assembly file, the necessary instructions are as 

followed: jump instructions, procedure calls, API calls and 

all lines which are targets of jump instructions. This step 

makes two lists, first, the list of needed instructions for 

making the control flow graph and the second, a list of 

called APIs, for API repository. In the next step, the 

system extracts the control flow graph of preprocessed 

assembly file. After that system creates the API call graph. 

In this step each API call graph consists of a control flow 

graph with a set of labels on its edges. Each label represent 

called API number that called on that situation. 

3.3 Selecting Appropriate Features 

The isomorphism problem of graphs is a well known NP-

complete problem, so we present a method to convert the 

API call graph to a feature vector; in this method we use a 

suitable property of API call graph. The API call graph is a 

sparse graph, and can be shown as a sparse matrix, on the 

other hand, we can convert a sparse matrix to a vector, 

saving only situation of nonzero items, we can obtain 

situation of nonzero items with Equation (1). 

 

( 1)mS i n j   
     (1) 

 

where i is the row number, j is column number, n is the 

number of nodes in API call graph and Sm is situation 

number of item [i , j] in sparse matrix that is saved in mth 

situation of list S. 

So we can convert each API call graph to a feature vector, 

as illustrated in Figure 2. In this feature vector, each item 

represents an edge and possibly an API call. We have a 

problem, we cannot use data mining methods for these 

feature vectors right now, because the number of nodes in 

different API call graphs are different, therefore, obtains 

different Sm for same [i , j] in different API call graphs. To 

solve this problem, we must resize all API call graphs to a 

fix same size, hence, we use the size of largest graph to 

satisfy this constraint. This is called padding. When we use 

a general n, in the Equation (1), the results are meaningful, 

for example, in Figure 2(c) number 20, in all graphs has 

same semantic. 
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Fig. 1  System perspective. The detection process which is shown here, 

includes the following phases, control flow graph extraction, API call 

graph generation, converting graph to feature vector, feature selection 

and in the final phase, system can performs any classification algorithms 

to decide whether the input file is malware or not. 

This process is represented in Algorithm 1. After this 

process, the system finds all distinct edges in API call 

graphs and use them as feature, then generates a nominal 

dataset, consists of API number as data-item and edge 

number as feature. The feature selection step of system 

uses best-first weight features the weight of each feature 

obtains with Equation (2). 

, ,

0
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W   
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where Wk is kth feature weight, n is the number of data 

items,   is API weight coefficient that would be obtained 

in experiments, ,k i
denotes the profitable function for kth 

feature that shows in Equation (3) and ,k i
represent the 

API exist function that shows in Equation (4). 
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where   is the value of the feature and   is the class 

label of ith
 data item. Notice that, in our system, the class 

label of malwares is 1 and the class label of benign files is 

0. 
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Algorithm 1. Convert API call graph to feature vector. 

INPUT: 

   APIGraph an API call graph; 

   N is an integer number that represents   

   the number of vertices of the biggest  

   graph; 

OUTPUT: 

   Vector is an empty queue; 

 

1: For each vector Vi in APIGraph do 

2:   For each outcome edge jiE of Vi do 

3:     jiValue = (label of Vi - 1) × N + (label  

of target vertex of jiE ); 

4:  
jiAPI = label of jiE ; 

5:  Add pair < jiValue , 
jiAPI > to Vector; 

6:   End for; 

7: End for; 

 

3.4 Malware detection models 

A decision stump is a machine learning model consisting 

of a one-level decision tree [15]. That is, it is a decision 

tree with one internal node (the root) which is immediately 

connected to the terminal nodes. A decision stump makes 

a prediction based on the value of just a single input 

feature. 

 Sequential minimal optimization (SMO) is an 

algorithm for solving large quadratic programming (QP) 
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(a) An API call graph. 

 

(b) Adjacency matrix of the graph. 

 

 

 

 

 

 

 

 

(c) Feature vector of that graph represents as sorted 

pair of edges and API calls. 

Fig. 2  Converting API call graph to feature vector by Algorithm 1. 

optimization problems, widely used for the training of 

support vector machines. SMO breaks up large QP 

problems into a series of smallest possible QP problems, 

which are then solved analytically [4]. 

A naive Bayes classifier assumes that the presence (or 

absence) of a particular feature of a class is unrelated to 

the presence (or absence) of any other feature. 

 

  Random forest is an ensemble classifier that consists of 

many decision trees and outputs the class that is the mode 

of the class‟s output by individual trees [7]. 

A random tree is a tree or arborescence that is formed by a 

stochastic process. Different types of random trees include 

uniform spanning tree, random minimal spanning tree, 

random binary tree, random recursive tree, treap or 

randomized binary search tree, rapidly exploring random 

tree, Brownian tree, random forest and branching process 

[14]. 

K-Star is an instance-based classifier, which is the class of 

a test instance is based upon the class of those training 

instances similar to it, as determined by some similarity 

function. It differs from other instance-based learners in 

that it uses an entropy based distance function [5]. 

4. Experimental Results 

4.1 Datasets in brief 

The intent of most malwares is to infect PE-files, therefore, 

this study focuses on PE-files and analyzing malware that 

infect them. Essentially malware researchers used an 

imbalanced dataset in their experiments in which number 

of malwares is much more than the number of benign files 

[2, 16, 3]. We thought, however, that the above 

assumption does not stand in the real world domain, in 

which numbers of malicious binaries are at most as much 

that of benign files. Clearly, it can be conclude that those 

methods, in which we have a considerable amount of 

malicious binaries compared to the benign ones, provide 

better accuracy. According to this thought we collect 2,140 

benign Windows PE-files and select 2,305 Windows 32-

bit network worms, randomly, from malware repository of 

APA malware research center at Shiraz University.  

4.2 Evaluation measures 

We define “Detection Rate” as the percentage of all 

PE-files labeled “malicious” that can receive correct label 

by the system, as illustrated in Equation (5). 
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TP
DetectionRate

TP FN


     (5) 

 

The “False Alarm Rate” is the percentage labeled 

“normal” that likewise receive the wrong label by the 

system, as illustrate in Equation (6). 

FP
FalseAlarmRate

TN FP


    (6) 

 

The “Accuracy” is the overall accuracy of the system 

to detect malwares and benign files, as illustrate in 

Equation (7). 

TP TN
Accuracy

TP TN FP FN




      (7) 

 

The “cross validation”, is a technique for assessing 

how the results of a statistical analysis will generalize to 

an independent data set. It is mainly used in settings where 

the goal is prediction, and one wants to estimate how 

accurately a predictive model will perform in practice. One 

round of cross validation involves partitioning a sample of 

data into complementary subsets, performing the analysis 

on one subset that called the training set, and validating the 

analysis on the other subset that called the testing set. To 

reduce variability, multiple rounds of cross validation are 

performed using different partitions, and the validation 

results are averaged over the rounds, we called each round 

as a fold [11]. 

The “ROC curve”, is a graphical plot of true positive rate, 

versus false positive rate, for a binary classifier system as 

its discrimination threshold is varied. The area under the 

“ROC curve”, called “AUC”. The “AUC” is equal to the 

probability that a classifier will rank a randomly chosen 

positive instance higher than a randomly chosen negative 

one [8]. 

4.3 Observations and analysis 

We illustrate the different detection rates and false alarm 

rates over different classification models in tabular form, 

as illustrate in Table 1. These results obtained with 10 fold 

cross validation test. The results indicate that the method 

based on API call graph classification provides excellent 

detection rate and lower false alarm rates than rival 

approaches proposed for unknown malwares. The “AUC” 

helps us to choose the best classifier in the classification 

phase. We find out with the “Random Forest” can have the 

best detection rate and the lowest false alarm rate among 

other experimented models. 

Table 1. Experimental results on mentioned dataset with different 

classifiers. 

 Detection 

rate 

False alarm 

rate 

Accuracy AUC 

Decision Stump 
93.81% 04.95% 94.42% 92.29% 

SMO 89.74% 08.20% 90.76% 87.23% 

Naive Bayes 95.23% 03.81% 95.70% 94.06% 

Random Tree 91.11% 07.11% 91.99% 88.94% 

Lazy K-Star 96.61% 02.71% 96.94% 95.78% 

Random Forest 97.53% 01.97% 97.77% 96.92% 

In the last experiment, we can detect 97.53% of unknown 

malwares, whiles Jeong and Lee in [6] can detect only 

67% of unknown malwares by their method. 

5. Conclusions and Future Work 

By using control flow graph, we are able to have a 

semantic aspect of the obfuscated or mutated PE-files, 

which can detect them with mining in these graphs. The 

CFG based approach improves the current approaches for 

detecting malwares by adding a behavioral attribute of 

malicious files into the detection model. On the other hand, 

as mentioned, the isomorphic problem in graphs is NP-

complete and hence a time consuming problem, therefore, 

we proposed a method to simplifying the control flow 

graphs. The proposed method converts each control flow 

graph to a feature vector, to have simpler data items and to 

have easier process in vector space. The number of edges 

in control flow graph are often too large, accordingly the 

number of features in vector space model, would be too 

large. To alleviate the problem, we utilized a feature 

selection in our approach. As a future work, we intent to 

study on imbalanced datasets that number of malwares are 

much less than the number of benign files. 
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