
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

1

Manuscript received December 5, 2011

Manuscript revised December 20, 2011

Metamorphic Malware Detection

using Control Flow Graph Mining

Mojtaba Eskandari
†
 and Sattar Hashemi

††,

†APA Malware Research Center, Shiraz University, Iran

†† Department of Computer Science & Engineering, Shiraz University, Iran

Summary
Metamorphic malware propagation has persuaded the security

society to consider about new approaches to confront this

generation of malware with novel solutions. Control Flow Graph,

CFG, has been successful in detection of simple malwares. By

now, it needs to improve the CFG based detection methods to

detect metamorphic malwares efficiently. Our Approach has

improved the simple CFG with beneficial information by

assuming called APIs on the CFG. Converting the resulted sparse

graph to a vector to decrease the complexity of graph mining

algorithms, a specific feature selection is utilized and different

classification approaches has been qualified. The experimental

results show the contribution of this approach in both accuracy

and false detection rate measurements in comparison with the

other simple graph modifications. Among different classifiers on

our approach the best results were attained by random forest. On

the computation complexity side also this work has decreased the

elaboration regarding to the simple feature selection conducted

before decision making.

Key words:
malware, detection, metamorphic, obfuscated, PE-file, CFG, API,

ACFG.

1. Introduction

In recent years, many researchers have focused on data

mining methods for detecting unknown malwares. Data

mining methods use statistical tools and machine learning

algorithms, and by applying them on a set of features, can

determine the malicious programs from benign programs.

Most of data mining methods start their process by

generating a feature set. These features, sometimes, can be

n-grams, instruction sequences, API call sequences etc.

Signature based approaches need signature of each seen

malware to detect it. Therefore, detecting unknown

malwares is not possible with classic static signature based

methods, so we need semantic based detection methods, to

detect them. One of the semantic based approaches uses

control flow graphs to understand the semantic of

malwares, whereas, we use control flow graph and API

calls to have more semantical aspect of new malwares,

hence can detect them.

The structure of this paper as follows. Section 2 describes

related works in semantic based malware detection.

Section 3 discusses the proposed method, an overview of

our malware detection system, feature selection methods

and classification algorithms used in experiments. The

system evaluation is presented in Section 4 that results are

interpreted and commented in the same section. Section 5

concludes our achievements, future works and summarizes

the results.

2. Related Work

Gao et al. represented a new method to find semantic

differences in binary programs. Syntactic differences

indeed have the potentiality to cause noise, so finding the

semantic differences would be challenging. They utilized a

new graph isomorphism technique and symbolic execution

to analyze the control flow graph of PE-files by identifying

the maximum common sub graph. A PE-file is the

standard executable (EXE) file format used by the

Microsoft Windows operating systems. Their method

found the semantic difference between a PE-file and its

patched version, but with significantly worse execution

speed [1].

Cesare and Xiang proposed a new classification

method that used flow graphs to detect polymorphic

malwares. They applied a heuristic algorithm for the flow

graph matching to find graph isomorphisms, therefore,

they can estimate similarity between PE-files, and finally

they represented a classification algorithm based on their

method [12].

Jeong and Lee, extract the control flow graph by the

instructions with API calls as code graph. They did not use

any disassemble tools; instead, they worked on binary files

directly and fetched the jump and call instructions from

that PE-file and created the code graph. Their method can

detect 67% of unknown malwares [6].

Dullien and Rolles, assumed each function as a flow

graph, and then drew call relation between them (i.e. from

caller node to callee); consequently each PE-file is

represented as a graph of graphs. Under this trend, they

could have an improved isomorphism between the sets of

basic blocks and sets of functions in two disassembled PE-

files; therefore, they could detect code theft [13].

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

2

Abadi et al. formalized the semantic of Control Flow

Integrity (CFI) by machine code rewriting. CFI represents

a method to verify the execution proceeds within a given

control flow graph which is derived from static program

analysis. In the other words, CFI relies on dynamic checks

for enforcing control flow integrity and has an efficient

implementation of a program shadow call stack with high

protection [9].

3. The Proposed Approach

First, the system disassembles the PE-file then extracts the

CFG from assembly file. After that, the system generates

the API call graph with CFG and called APIs. In the final

phase, system uses a classification algorithm to make a

decision whether the PE-file is malicious or not.

3.1 System overview

Our system consists of three principal components, PE-file

disassembler, API call graph generator and classification

module that is illustrated in Figure 1. In the first step, the

system disassembles the PE-file. After that, the system

performs a preprocessing algorithm on assembly files,

removing not necessary statements, and generates the

control flow graph (CFG) from these instructions. A CFG

is a connected and directed graph consisting of a set of

vertices corresponds to the lines of disassembled file, a set

of directed edges that corresponds to the execution

sequence of program (e.g., normal sequence, conditional

jump, unconditional jump, function call and return

instruction), concurrently in the API repository, each API

name is mapped to a global unique number. In the next

steps, system performs the labeling algorithm on CFG and

consequently API call graph would be generated. The

graph is then converted into a feature vector. In the next

step, we used a feature selection algorithm, because the

number of generated features is very high and with this

step we can reduce the number of features, therefore, we

have a faster classification process. After feature selection,

we get some of data items as training set and use those for

the training phase, then the classifier generates a set of

rules which are saved in the rule database. Finally, the

testing set is given to decision module. This module

utilizes rule database to decide whether a sample is

malware or not. Therefore, it generates a report for each

PE-file.

3.2 Generating API call graph

Based on our motivation, feature generation and feature

selection are most significant phases in malware detection

systems. Therefore, the key step of our presented approach

focuses on these phases. According to Figure 1, the

disassembling step uses PE-Explorer [10], for

disassembling the PE-files, this tool cannot disassemble a

number of files in batch mode, hence, the user must

disassemble the PE-files one by one, so we made an

auxiliary tool, that follows users‟ interactions with PE-

Explorer and then disassembling process for the huge

dataset with PE-Explorer becomes more simplified. After

disassembling step, the assembly file preprocessing starts,

this step removes unnecessary assembly instructions from

input assembly file, the necessary instructions are as

followed: jump instructions, procedure calls, API calls and

all lines which are targets of jump instructions. This step

makes two lists, first, the list of needed instructions for

making the control flow graph and the second, a list of

called APIs, for API repository. In the next step, the

system extracts the control flow graph of preprocessed

assembly file. After that system creates the API call graph.

In this step each API call graph consists of a control flow

graph with a set of labels on its edges. Each label represent

called API number that called on that situation.

3.3 Selecting Appropriate Features

The isomorphism problem of graphs is a well known NP-

complete problem, so we present a method to convert the

API call graph to a feature vector; in this method we use a

suitable property of API call graph. The API call graph is a

sparse graph, and can be shown as a sparse matrix, on the

other hand, we can convert a sparse matrix to a vector,

saving only situation of nonzero items, we can obtain

situation of nonzero items with Equation (1).

(1)mS i n j   
 (1)

where i is the row number, j is column number, n is the

number of nodes in API call graph and Sm is situation

number of item [i , j] in sparse matrix that is saved in mth

situation of list S.

So we can convert each API call graph to a feature vector,

as illustrated in Figure 2. In this feature vector, each item

represents an edge and possibly an API call. We have a

problem, we cannot use data mining methods for these

feature vectors right now, because the number of nodes in

different API call graphs are different, therefore, obtains

different Sm for same [i , j] in different API call graphs. To

solve this problem, we must resize all API call graphs to a

fix same size, hence, we use the size of largest graph to

satisfy this constraint. This is called padding. When we use

a general n, in the Equation (1), the results are meaningful,

for example, in Figure 2(c) number 20, in all graphs has

same semantic.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

3

Fig. 1 System perspective. The detection process which is shown here,

includes the following phases, control flow graph extraction, API call

graph generation, converting graph to feature vector, feature selection

and in the final phase, system can performs any classification algorithms

to decide whether the input file is malware or not.

This process is represented in Algorithm 1. After this

process, the system finds all distinct edges in API call

graphs and use them as feature, then generates a nominal

dataset, consists of API number as data-item and edge

number as feature. The feature selection step of system

uses best-first weight features the weight of each feature

obtains with Equation (2).

, ,

0

(.)
n

k k i k i

i

W   


  (2)

where Wk is kth feature weight, n is the number of data

items,  is API weight coefficient that would be obtained

in experiments, ,k i
denotes the profitable function for kth

feature that shows in Equation (3) and ,k i
represent the

API exist function that shows in Equation (4).

1 if

1 if
i

 


 

 
 

 
 (3)

where  is the value of the feature and  is the class

label of ith
 data item. Notice that, in our system, the class

label of malwares is 1 and the class label of benign files is

0.

th1 if have an API on this feature of i data item

0 Otherwise
i


 


 (4)

Algorithm 1. Convert API call graph to feature vector.

INPUT:

 APIGraph an API call graph;

 N is an integer number that represents

 the number of vertices of the biggest

 graph;

OUTPUT:

 Vector is an empty queue;

1: For each vector Vi in APIGraph do

2: For each outcome edge jiE of Vi do

3: jiValue = (label of Vi - 1) × N + (label

of target vertex of jiE);

4:
jiAPI = label of jiE ;

5: Add pair < jiValue ,
jiAPI > to Vector;

6: End for;

7: End for;

3.4 Malware detection models

A decision stump is a machine learning model consisting

of a one-level decision tree [15]. That is, it is a decision

tree with one internal node (the root) which is immediately

connected to the terminal nodes. A decision stump makes

a prediction based on the value of just a single input

feature.

 Sequential minimal optimization (SMO) is an

algorithm for solving large quadratic programming (QP)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

4

(a) An API call graph.

(b) Adjacency matrix of the graph.

(c) Feature vector of that graph represents as sorted

pair of edges and API calls.

Fig. 2 Converting API call graph to feature vector by Algorithm 1.

optimization problems, widely used for the training of

support vector machines. SMO breaks up large QP

problems into a series of smallest possible QP problems,

which are then solved analytically [4].

A naive Bayes classifier assumes that the presence (or

absence) of a particular feature of a class is unrelated to

the presence (or absence) of any other feature.

 Random forest is an ensemble classifier that consists of

many decision trees and outputs the class that is the mode

of the class‟s output by individual trees [7].

A random tree is a tree or arborescence that is formed by a

stochastic process. Different types of random trees include

uniform spanning tree, random minimal spanning tree,

random binary tree, random recursive tree, treap or

randomized binary search tree, rapidly exploring random

tree, Brownian tree, random forest and branching process

[14].

K-Star is an instance-based classifier, which is the class of

a test instance is based upon the class of those training

instances similar to it, as determined by some similarity

function. It differs from other instance-based learners in

that it uses an entropy based distance function [5].

4. Experimental Results

4.1 Datasets in brief

The intent of most malwares is to infect PE-files, therefore,

this study focuses on PE-files and analyzing malware that

infect them. Essentially malware researchers used an

imbalanced dataset in their experiments in which number

of malwares is much more than the number of benign files

[2, 16, 3]. We thought, however, that the above

assumption does not stand in the real world domain, in

which numbers of malicious binaries are at most as much

that of benign files. Clearly, it can be conclude that those

methods, in which we have a considerable amount of

malicious binaries compared to the benign ones, provide

better accuracy. According to this thought we collect 2,140

benign Windows PE-files and select 2,305 Windows 32-

bit network worms, randomly, from malware repository of

APA malware research center at Shiraz University.

4.2 Evaluation measures

We define “Detection Rate” as the percentage of all

PE-files labeled “malicious” that can receive correct label

by the system, as illustrated in Equation (5).

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

5

TP
DetectionRate

TP FN


 (5)

The “False Alarm Rate” is the percentage labeled

“normal” that likewise receive the wrong label by the

system, as illustrate in Equation (6).

FP
FalseAlarmRate

TN FP


 (6)

The “Accuracy” is the overall accuracy of the system

to detect malwares and benign files, as illustrate in

Equation (7).

TP TN
Accuracy

TP TN FP FN




   (7)

The “cross validation”, is a technique for assessing

how the results of a statistical analysis will generalize to

an independent data set. It is mainly used in settings where

the goal is prediction, and one wants to estimate how

accurately a predictive model will perform in practice. One

round of cross validation involves partitioning a sample of

data into complementary subsets, performing the analysis

on one subset that called the training set, and validating the

analysis on the other subset that called the testing set. To

reduce variability, multiple rounds of cross validation are

performed using different partitions, and the validation

results are averaged over the rounds, we called each round

as a fold [11].

The “ROC curve”, is a graphical plot of true positive rate,

versus false positive rate, for a binary classifier system as

its discrimination threshold is varied. The area under the

“ROC curve”, called “AUC”. The “AUC” is equal to the

probability that a classifier will rank a randomly chosen

positive instance higher than a randomly chosen negative

one [8].

4.3 Observations and analysis

We illustrate the different detection rates and false alarm

rates over different classification models in tabular form,

as illustrate in Table 1. These results obtained with 10 fold

cross validation test. The results indicate that the method

based on API call graph classification provides excellent

detection rate and lower false alarm rates than rival

approaches proposed for unknown malwares. The “AUC”

helps us to choose the best classifier in the classification

phase. We find out with the “Random Forest” can have the

best detection rate and the lowest false alarm rate among

other experimented models.

Table 1. Experimental results on mentioned dataset with different

classifiers.

 Detection

rate

False alarm

rate

Accuracy AUC

Decision Stump
93.81% 04.95% 94.42% 92.29%

SMO 89.74% 08.20% 90.76% 87.23%

Naive Bayes 95.23% 03.81% 95.70% 94.06%

Random Tree 91.11% 07.11% 91.99% 88.94%

Lazy K-Star 96.61% 02.71% 96.94% 95.78%

Random Forest 97.53% 01.97% 97.77% 96.92%

In the last experiment, we can detect 97.53% of unknown

malwares, whiles Jeong and Lee in [6] can detect only

67% of unknown malwares by their method.

5. Conclusions and Future Work

By using control flow graph, we are able to have a

semantic aspect of the obfuscated or mutated PE-files,

which can detect them with mining in these graphs. The

CFG based approach improves the current approaches for

detecting malwares by adding a behavioral attribute of

malicious files into the detection model. On the other hand,

as mentioned, the isomorphic problem in graphs is NP-

complete and hence a time consuming problem, therefore,

we proposed a method to simplifying the control flow

graphs. The proposed method converts each control flow

graph to a feature vector, to have simpler data items and to

have easier process in vector space. The number of edges

in control flow graph are often too large, accordingly the

number of features in vector space model, would be too

large. To alleviate the problem, we utilized a feature

selection in our approach. As a future work, we intent to

study on imbalanced datasets that number of malwares are

much less than the number of benign files.

References
[1] D. Gao, M. K. Reiter, and D. Song, 2008, “BinHunt:

Automatically Finding Semantic Differences in Binary

Programs,” Technical report, School of Information

Sciences, Singapore Management University.

[2] G. Bonfante, M. Kaczmarek, and J. Marion, 2007, “Control

Flow to Detect Malware,” Inter-Regional Workshop on

Rigorous System Development and Analysis.

[3] G. Bonfante, M. Kaczmarek, and J. Marion, Sep 2008,

“Architecture of a morphological malware detector,”

Journal of Computer Virology.

[4] J.C. Platt, 1999, “Fast training of support vector machines

using sequential minimal optimization,” In Advances in

kernel methods, pp. 185-208, MIT Press, Cambridge, MA,

USA.

[5] J.G. Cleary and L. E. Trigg, 1995, “K*: An Instance-based

Learner Using an Entropic Distance Measure,” In 12th

International Conference on Machine Learning, 108-114.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

6

[6] K. Jeong and H. Lee, 2008, “Code Graph for Malware

Detection,” Information Networking, ICOIN 2008,

International Conference on, pp.1-5.

[7] L. Breiman, 2001, “Random Forests,” Machine Learning,

vol. 45, no. 1, pp. 5-32.

[8] L.E. Dodd and M.S. Pepe, 2003, “Partial AUC Estimation

and Regression,” Biometrics, pp. 614-623.

[9] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, Nov

2005, “Control-Flow Integrity: Principles, Implementations,

and Applications,” In Proceedings of the ACM Conference

on Computer and Communications Security (CCS).

[10] PE-Explorer, 2011, www.pe-explorer.com/peexplorer-

download.htm (version 1.99 R6).

[11] R. Picard and D. Cook, 1984, “Cross-Validation of

Regression Models,” Journal of the American Statistical

Association, pp. 575-583.

[12] S. Cesare, and Y. Xiang, 2010, “A Fast Flowgraph Based

Classification System for Packed and Polymorphic Malware

on the Endhost,” Advanced Information Networking and

Applications (AINA), 2010 24th IEEE International

Conference on, pp. 721-728.

[13] T. Dullien and R. Rolles, Jun 2005, “Graph-based

comparison of Executable Objects,” In Symposium sur la

Securite des Technologies de l„Information et des

Communications (SSTIC).

[14] T.G. Dietterich, 2000, “An Experimental Comparison of

Three Methods for Constructing Ensembles of Decision

Trees: Bagging, Boosting, and Randomization,” Machine

Learning, vol. 40, no. 2, pp. 139-157.

[15] W. Iba and P. Langley, 1992, “Induction of One-Level

Decision Trees,” Proceedings of the Ninth International

Conference on Machine Learning.

[16] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, Feb 2008, “An

intelligent PE-malware detection system based on

association mining,” Journal of Computer Virology.

