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Summary 
The delivery problem is that of minimizing the object 
delivery time from one place to another using n various 
speed robots. In this paper we propose two algorithms for the 
delivery problem. The first one is an optimal algorithm with 
some restriction in handover places. In this algorithm, we assume 
that the handover can be made at predefined spots called station. 
The second algorithm is a near optimal algorithm for general 
case delivery problem which is based on the previous algorithm. 
The second algorithm does not generate an optimal solution but 
we can make the result better than what we expect. 
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1. Introduction 

The delivery problem is that of minimizing the object 
delivery time from one place (we call this place as source) 
to another (destination) in m-dimensional space [1]. There 
are n robot agents with various velocities and various 
initial positions. Initially the object is placed at the source 
position. In this problem, n robot agents collaborate to 
deliver the object to the destination as fast as possible. For 
the sake of clarity, we will show the simple example of the 
problem. Figure 1 shows an example configuration of the 
2-dimensional delivery problem. 
 

 

Fig. 1 a sample configuration of delivery problem 

We assume that robot agent r1 is faster than r0 and the 
object is placed at s0 initially and should be delivered to 
s1. To minimize the delivery time, r0 pickup the object at 

s0 and carries to some place x, while r1 moves to x. At 
place x, r0 handovers the object to r1 and r1 carries the 
object to s1. If r0 placed at s0 initially, the x is on the 
Apollonian circle [2] defined by the position of r0 and r1 
and the speed ratio of two robots. The exact position of x 
on Apollonian circle is the point that minimizing the path 
length composed by r1, x and s1. Figure 2 shows an 
Apollonian circle defined by two points and ratio b [1]. 
 

 

Fig. 2 Apollonian circle defined by two points and ratio b 

Delivery problem can be considered as a path planning 
problem [3]. There are many results on the path planning 
problem with single robot results [4] and multi-agent 
results [5][6][7]. However, most researches focus on 
optimization of robot resources and average waiting time. 
This kind of path planning problem defined by Lee et al, 
and they suggested two algorithms for this problem. One 
is an optimal algorithm for 1-dimension delivery problem 
and the other is a genetic algorithm for 2-dimension 
delivery problem [1]. 
In this paper, we investigate the properties of the delivery 
problem and propose two algorithms for m-dimension 
delivery problem. The first algorithm produces optimal 
solution but, in this algorithm, handover can be made only 
at predefined spots. The second algorithm generates sub-
optimal result but there is no restriction and we can make 
the result better than what we expect. The rest of the paper 
is organized as follows. We will give a formalization of 
the delivery problem in section 2. In section 3 present the 
optimal algorithm and in section 4 present the near optimal 
algorithm. Finally, section 5 draws the conclusion. 
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2. Delivery Problem 

The delivery problem concerns the delivery an object in 
m-dimensional space. There are n mobile robots each of 
them has different constant velocity. The robots 
collaborate to deliver an object from one place to another 
as fast as possible. Because of each robot has various 
initial position and velocity and we try to minimize the 
delivery time, handovers are occurred while delivering. 
The delivery problem is finding a sequence of robots that 
participate the delivery and the exact point where 
handovers are occurred. 
For the sake of simplicity, we assume that no additional 
time is needed to pickup, to handover and to release the 
object. The problem can be formulated as follows. 
Basically, our formulation is same to that of lee et al [1], 
but we give slight modifications in notations. 
 
For given: 

niir <≤0),( : Robot agent, indexed i , 
nipir <≤0,).( : Initial position of )(ir , 
nisir <≤0,).( : Constant velocity of )(ir , each )(ir  

moves at speed sir ).(  or stay still. Without loss of 
generality, we assume that sirsir ).1().( +< , 
sp : Initial position of the only object, 
dp : Destination position that the object should be 
delivered. 

Decide the values of: 
nkkiirr <=<≤ ,0],[ : A sequence of robot that 

participate the delivery. 
kiip ≤≤0],[ : A sequence of handover positions on the 

space. Robot ][irr  carries the object from ][ip  to 
]1[ +ip . So,  spp =]0[  and dpkp =][ . 

To minimize the value of ][kc  where: 
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),( yxD  is the Euclidean distance between x  and y . 
Obviously, 10,].1[].[ −<≤+< kisirrsirr . 
 
We will denote the minimum time delivery sequence as 
follows: 

dpkpkrrkpprrprrpsp =−−= ][],1[],1[],...,2[],1[],1[],0[],0[  

3. Optimal Algorithm for the Restricted Case 

In the this section, we restrict the problem to the case in 
which each ][ip  is the one of m predefined positions 

mxxs <≤0),( , called stations. Our algorithm borrows the 

idea of Dijkstra’s shortest path algorithm [8]. First, we 
define 2 sets of nodes: Set A  is consists of the stations 
that the minimum time delivery path from sp  has 
computed. Initially, the set A  contains the station sp  only. 
Remaining stations compose set B . Similar to the 
Dijkstra’s algorithm, our algorithm runs iteratively. In 
each round, we will compute the expected delivery time 
for all the station  )(xs  of set B , and put the station with 
the minimum expected delivery time into the set A . Before 
going further, we will define some more notations: 

mxxs <≤0),( : Station, indexed x, 
mxpxs <≤0,).( : Position of )(xs  
mxbxs <≤0,).( : The last station before )(xs  in the 

minimum time delivery path. Remember that for each of 
stations of set A , the minimum time delivery path from 
sp  to the station )(xs  has computed already, 

mirxs <≤0,).( : Robot agent that delivers object from 
bxs ).(  to )(xs , 

mitxs <≤0,).( : Time consumed to deliver the object 
from sp  to )(xs  along the minimum time delivery path. 

 
To explain our algorithm, we will give a sample. Figure 1 
shows a configuration of the sample. 
 

 

Fig. 3 sample of delivery problem 

Table 1 and table 2 show the speeds of each robot agents 
and distances among robots and stations respectively. 
 

robot )0(r )1(r  )2(r
speed 1 unit/sec 2 unit/sec 3 unit/sec 

Table 1 Speeds of robots in Figure1 

 )0(r )1(r )2(r  )0(s  )1(s  )2(s
)0(r 0 - - 1 5 12 
)1(r - 0 - 3 3 12 
)2(r - - 0 13 8 2 
)0(s 1 3 13 0 4 11 
)1(s 5 3 8 4 0 9 
)2(s 12 12 2 11 9 0 

Table 2 Unit distances of robots and stations in Figure 1 
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Without loss of generality, we assume that the object is at 
the station )0(s  and should be delivered to the station )2(s . 
Now, we will show first 3 rounds of the algorithm: 
Round 0: In this round, we figure out the robot that comes 
first to the station. It will be the first deliverer. Each 
robot’s arrival time to station s(0) is shown in table 3. 
 

robot )0(r  )1(r  )2(r
arrival time 1 1.5 3⅓ 

Table 3 Speeds of robots in Figure1 

So, rs ).0(  will be )0(r  and ts ).0(  will be 1. bs ).0(  will be 
)0(s by assumption. 

Round 1: Compute expected minimum delivery time for 
stations in set B , i.e. )1(s  and )2(s . Table 4 shows all 
possible delivery time. 
 

object position time to 
current 

delivery 
robot 

time to 
next current next 

)0(s  )1(s  1(a) )0(r  1+4(b) 
)0(s  )1(s  1 )1(r  1.5+2 
)0(s  )1(s  1 )2(r  4⅓+1⅓
)0(s  )2(s  1 )0(r  1+11 
)0(s  )2(s  1 )1(r  1.5+5.5 
)0(s  )2(s  1 )2(r  4⅓+4⅔

(a) The time )0(r  is holding the object, this makes algorithm simple. 
(b) Robot goes to station )0(s  first and then pick up the object and then 
moves to )1(s . 

Table 4 Expected minimum delivery time to )1(s  and )2(s  

The minimum time (3.5 sec) appears at row 2. That means 
robot )1(r  should deliver the object from )0(s  to )1(s .  
Round 2: Compute the expected minimum delivery time 
for the station )2(s , the only station in Set B . Table 5 
shows all possible delivery time. 
 

object position time to 
current 

delivery 
robot 

time to 
next current next 

)0(s  )2(s  1 )0(r  1+11 
)0(s  )2(s  1 )1(r  1.5+5.5 
)0(s  )2(s  1 )2(r  4⅓+4⅔
)1(s  )2(s  3.5 )0(r  -(a) 
)1(s  )2(s  3.5 )1(r  3.5+4.5 
)1(s  )2(s  3.5 )2(r  3.5+3(b) 

(a) )0(r  is slower than )1(r . So, we don’t have to compute this. 
(b) )2(r  arrives at )1(s  at 2⅔sec, but object is not there. So, )2(r  
should wait until )1(r  arrives at )1(s  at time 3.5. 

Table 5 Expected minimum delivery time to )2(s  

The minimum time (6.5 sec) appears at row 6. That means, 
To deliver the object from )0(s  to )2(s  in minimum time,  

)1(r  delivers the object from )0(s  to )1(s  and handovers 
the object to )2(r  at station )1(s and then )2(r  delivers the 
object  from )1(s  to )2(s . Therefore, the minimum time 
delivery path will be )2()2()1()1()0( srsrs . 
Algorithm 1 shows the proposed algorithm. In the 
following description, we adopt the notational conventions 
of object oriented programming. That means, we use the 
notation tbxs .).(  to denote the time to deliver the object 
from sp  to bxs ).( . 
 
Algorithm RestrictedDelivery { 
    Set A = {ip}; 
    Set B = {all the stations except ip}; 
    for each Station s(x) in Set B { 
        Call Function EstimatedTime(s(x)); 
        Let Station s(z) is the station has minimum s(x).et 
            among stations s(x) in B. 
        s(z).t = s(z).et; 
        s(z).b = s(z).cb; 
        s(z).r = s(z).cr; 
        A = A + s(z); 
        B = B – s(z); 
    } 
    Print dp; 
    Call Function PrintDeliveryPath(dp); 
} 
 
Function EstimatedTime (Station s(x)) { 
    for each Station s(y) in Set A { 
    s(x).cr = s(y).r; 
    s(x).cb = s(y); 
    s(x).et = s(y).t + D(s(y).p, s(x).p)/s(y).r.s; 
        for each Robot r(i) with r(i).s>s(y).r.s { 
            Time t = D(s(y).p, r(i).p)/r(i).s; 
            t += D(s(y).p, s(t).p)/r(i).s; 
            if ((s(x).et > t) || (s(x).et==t &&s(x).cr.s<r(i).s) { 
                s(x).cr = r(i); 
                s(x).cb = s(y); 
                s(x).et = t; 
            } 
        } 
    } 
} 
 
Function PirntDeliveryPath (Station s(x)) { 
    if (s(x).b=sp) return; 
    Print s(x).p, s(x).r; 
    PrintDeliveryPath(s(x).b);  
} 
 

Algorithm 1 Optimal algorithm for restricted case 

Theorem 1. Algorithm RestrictedDelivery generates the 
minimum time delivery sequence. 
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Proof. The overall process of proof is similar to that of 
Dijkstra’s algorithm. Here, we describe only the key part 
of the proof. Note that for every station s(x), if robot s(x).r 
delivers the object from s(x).b to s(x) in a minimum time 
along the minimum time delivery path, then the algorithm 
generates the minimum time delivery sequence. Now 
consider the time when the s(x) moves into set A. Let’s 
assume that there is another delivery path to s(x) that is 
optimal then, this path only contains stations in set A. If 
not, it takes more time than the delivery path generated by 
the algorithm. Moreover, the delivery path generated by 
the algorithm is the minimum time delivery path among 
the delivery paths that constructed using station in set A. 
Therefore the algorithm generates the minimum time 
delivery sequence Q.E.D. 
The time complexity of the algorithm is )( 2nmO  when the 
number of robots is n  and the number of stations is m . 

4. Near-optimal Algorithm for General 
Delivery Problem 

This section presents a near optimal algorithm for delivery 
problem. The resulting delivery time is not optimal but we 
can control the bound of errors. In this section we will 
consider only 2-dimensional cases but the algorithm can 
be extended to m-dimension case easily. Proposed 
algorithm is as follows. 
 
Algorithm LatticeDelivery { 
    Draw a rectangle whose two corners are sp and dp; 
    Draw a Lattice within the rectangle; 
    Make a station on each lattice point; 
    Call restrictedDelivery; 
} 

Algorithm 2 Near-optimal algorithm for general delivery problem 

Figure 4 shows an example lattice for a delivery problem 
with 5 robot agents. 
 

 

Fig. 4 Example lattice of the algorithm 

The error of the algorithm is related to the size of the 
lattice and the number of handovers. Because of the 
maximum error occurs when the optimal handover point 
located at the center of the lattice, the maximum error in 
the length of path is bounded by 

elatticeSizndovernumberOfHa ××2 . Almost every case, 
we can regard the number of handover is a constant. So, 
the error is directly proportional to the size of the lattice. 

5. Conclusion 

In this paper, we propose two algorithms for the delivery 
problem. The first one generates optimal result in )( 2nmO  
time with restricted configuration. Here n is the number of 
robots is n  and m is the number of stations. The second 
algorithm has controllable errors but, there is no restriction 
on the configuration. In the course of constructing the 
second algorithm, we use only lattice. In the further 
research, we will try various dividing method including 
triangulation. 
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