
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No12, December 2011

25

Manuscript received December 5, 2011
Manuscript revised December 20, 2011

Near Optimal Algorithm for Delivery Problem

KwangEui Lee

Department of Multimedia Engineering, Dongeui University, Busan, Korea

Summary
The delivery problem is that of minimizing the object
delivery time from one place to another using n various
speed robots. In this paper we propose two algorithms for the
delivery problem. The first one is an optimal algorithm with
some restriction in handover places. In this algorithm, we assume
that the handover can be made at predefined spots called station.
The second algorithm is a near optimal algorithm for general
case delivery problem which is based on the previous algorithm.
The second algorithm does not generate an optimal solution but
we can make the result better than what we expect.

Key words:
Robot collaboration, Optimization, Delivery problem, Dijkstra’s
shortest path algorithm.

1. Introduction

The delivery problem is that of minimizing the object
delivery time from one place (we call this place as source)
to another (destination) in m-dimensional space [1]. There
are n robot agents with various velocities and various
initial positions. Initially the object is placed at the source
position. In this problem, n robot agents collaborate to
deliver the object to the destination as fast as possible. For
the sake of clarity, we will show the simple example of the
problem. Figure 1 shows an example configuration of the
2-dimensional delivery problem.

Fig. 1 a sample configuration of delivery problem

We assume that robot agent r1 is faster than r0 and the
object is placed at s0 initially and should be delivered to
s1. To minimize the delivery time, r0 pickup the object at

s0 and carries to some place x, while r1 moves to x. At
place x, r0 handovers the object to r1 and r1 carries the
object to s1. If r0 placed at s0 initially, the x is on the
Apollonian circle [2] defined by the position of r0 and r1
and the speed ratio of two robots. The exact position of x
on Apollonian circle is the point that minimizing the path
length composed by r1, x and s1. Figure 2 shows an
Apollonian circle defined by two points and ratio b [1].

Fig. 2 Apollonian circle defined by two points and ratio b

Delivery problem can be considered as a path planning
problem [3]. There are many results on the path planning
problem with single robot results [4] and multi-agent
results [5][6][7]. However, most researches focus on
optimization of robot resources and average waiting time.
This kind of path planning problem defined by Lee et al,
and they suggested two algorithms for this problem. One
is an optimal algorithm for 1-dimension delivery problem
and the other is a genetic algorithm for 2-dimension
delivery problem [1].
In this paper, we investigate the properties of the delivery
problem and propose two algorithms for m-dimension
delivery problem. The first algorithm produces optimal
solution but, in this algorithm, handover can be made only
at predefined spots. The second algorithm generates sub-
optimal result but there is no restriction and we can make
the result better than what we expect. The rest of the paper
is organized as follows. We will give a formalization of
the delivery problem in section 2. In section 3 present the
optimal algorithm and in section 4 present the near optimal
algorithm. Finally, section 5 draws the conclusion.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No12, December 2011

26

2. Delivery Problem

The delivery problem concerns the delivery an object in
m-dimensional space. There are n mobile robots each of
them has different constant velocity. The robots
collaborate to deliver an object from one place to another
as fast as possible. Because of each robot has various
initial position and velocity and we try to minimize the
delivery time, handovers are occurred while delivering.
The delivery problem is finding a sequence of robots that
participate the delivery and the exact point where
handovers are occurred.
For the sake of simplicity, we assume that no additional
time is needed to pickup, to handover and to release the
object. The problem can be formulated as follows.
Basically, our formulation is same to that of lee et al [1],
but we give slight modifications in notations.

For given:

niir <≤0),(: Robot agent, indexed i ,
nipir <≤0,).(: Initial position of)(ir ,
nisir <≤0,).(: Constant velocity of)(ir , each)(ir

moves at speed sir).(or stay still. Without loss of
generality, we assume that sirsir).1().(+< ,
sp : Initial position of the only object,
dp : Destination position that the object should be
delivered.

Decide the values of:
nkkiirr <=<≤ ,0],[: A sequence of robot that

participate the delivery.
kiip ≤≤0],[: A sequence of handover positions on the

space. Robot][irr carries the object from][ip to
]1[+ip . So, spp =]0[and dpkp =][.

To minimize the value of][kc where:

⎪⎩

⎪
⎨

⎧
=][ic

][/])1[],[(
}].[/)].[],[(],1[max{

0

irripipD
sirrpirripDic

++
−

ki

i

<=<

=

1

0

),(yxD is the Euclidean distance between x and y .
Obviously, 10,].1[].[−<≤+< kisirrsirr .

We will denote the minimum time delivery sequence as
follows:

dpkpkrrkpprrprrpsp =−−=][],1[],1[],...,2[],1[],1[],0[],0[

3. Optimal Algorithm for the Restricted Case

In the this section, we restrict the problem to the case in
which each][ip is the one of m predefined positions

mxxs <≤0),(, called stations. Our algorithm borrows the

idea of Dijkstra’s shortest path algorithm [8]. First, we
define 2 sets of nodes: Set A is consists of the stations
that the minimum time delivery path from sp has
computed. Initially, the set A contains the station sp only.
Remaining stations compose set B . Similar to the
Dijkstra’s algorithm, our algorithm runs iteratively. In
each round, we will compute the expected delivery time
for all the station)(xs of set B , and put the station with
the minimum expected delivery time into the set A . Before
going further, we will define some more notations:

mxxs <≤0),(: Station, indexed x,
mxpxs <≤0,).(: Position of)(xs
mxbxs <≤0,).(: The last station before)(xs in the

minimum time delivery path. Remember that for each of
stations of set A , the minimum time delivery path from
sp to the station)(xs has computed already,

mirxs <≤0,).(: Robot agent that delivers object from
bxs).(to)(xs ,

mitxs <≤0,).(: Time consumed to deliver the object
from sp to)(xs along the minimum time delivery path.

To explain our algorithm, we will give a sample. Figure 1
shows a configuration of the sample.

Fig. 3 sample of delivery problem

Table 1 and table 2 show the speeds of each robot agents
and distances among robots and stations respectively.

robot)0(r)1(r)2(r
speed 1 unit/sec 2 unit/sec 3 unit/sec

Table 1 Speeds of robots in Figure1

)0(r)1(r)2(r)0(s)1(s)2(s
)0(r 0 - - 1 5 12
)1(r - 0 - 3 3 12
)2(r - - 0 13 8 2
)0(s 1 3 13 0 4 11
)1(s 5 3 8 4 0 9
)2(s 12 12 2 11 9 0

Table 2 Unit distances of robots and stations in Figure 1

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No12, December 2011

27

Without loss of generality, we assume that the object is at
the station)0(s and should be delivered to the station)2(s .
Now, we will show first 3 rounds of the algorithm:
Round 0: In this round, we figure out the robot that comes
first to the station. It will be the first deliverer. Each
robot’s arrival time to station s(0) is shown in table 3.

robot)0(r)1(r)2(r
arrival time 1 1.5 3⅓

Table 3 Speeds of robots in Figure1

So, rs).0(will be)0(r and ts).0(will be 1. bs).0(will be
)0(s by assumption.

Round 1: Compute expected minimum delivery time for
stations in set B , i.e.)1(s and)2(s . Table 4 shows all
possible delivery time.

object position time to
current

delivery
robot

time to
next current next

)0(s)1(s 1(a))0(r 1+4(b)
)0(s)1(s 1)1(r 1.5+2
)0(s)1(s 1)2(r 4⅓+1⅓
)0(s)2(s 1)0(r 1+11
)0(s)2(s 1)1(r 1.5+5.5
)0(s)2(s 1)2(r 4⅓+4⅔

(a) The time)0(r is holding the object, this makes algorithm simple.
(b) Robot goes to station)0(s first and then pick up the object and then
moves to)1(s .

Table 4 Expected minimum delivery time to)1(s and)2(s

The minimum time (3.5 sec) appears at row 2. That means
robot)1(r should deliver the object from)0(s to)1(s .
Round 2: Compute the expected minimum delivery time
for the station)2(s , the only station in Set B . Table 5
shows all possible delivery time.

object position time to
current

delivery
robot

time to
next current next

)0(s)2(s 1)0(r 1+11
)0(s)2(s 1)1(r 1.5+5.5
)0(s)2(s 1)2(r 4⅓+4⅔
)1(s)2(s 3.5)0(r -(a)
)1(s)2(s 3.5)1(r 3.5+4.5
)1(s)2(s 3.5)2(r 3.5+3(b)

(a))0(r is slower than)1(r . So, we don’t have to compute this.
(b))2(r arrives at)1(s at 2⅔sec, but object is not there. So,)2(r
should wait until)1(r arrives at)1(s at time 3.5.

Table 5 Expected minimum delivery time to)2(s

The minimum time (6.5 sec) appears at row 6. That means,
To deliver the object from)0(s to)2(s in minimum time,

)1(r delivers the object from)0(s to)1(s and handovers
the object to)2(r at station)1(s and then)2(r delivers the
object from)1(s to)2(s . Therefore, the minimum time
delivery path will be)2()2()1()1()0(srsrs .
Algorithm 1 shows the proposed algorithm. In the
following description, we adopt the notational conventions
of object oriented programming. That means, we use the
notation tbxs .).(to denote the time to deliver the object
from sp to bxs).(.

Algorithm RestrictedDelivery {
 Set A = {ip};
 Set B = {all the stations except ip};
 for each Station s(x) in Set B {
 Call Function EstimatedTime(s(x));
 Let Station s(z) is the station has minimum s(x).et
 among stations s(x) in B.
 s(z).t = s(z).et;
 s(z).b = s(z).cb;
 s(z).r = s(z).cr;
 A = A + s(z);
 B = B – s(z);
 }
 Print dp;
 Call Function PrintDeliveryPath(dp);
}

Function EstimatedTime (Station s(x)) {
 for each Station s(y) in Set A {
 s(x).cr = s(y).r;
 s(x).cb = s(y);
 s(x).et = s(y).t + D(s(y).p, s(x).p)/s(y).r.s;
 for each Robot r(i) with r(i).s>s(y).r.s {
 Time t = D(s(y).p, r(i).p)/r(i).s;
 t += D(s(y).p, s(t).p)/r(i).s;
 if ((s(x).et > t) || (s(x).et==t &&s(x).cr.s<r(i).s) {
 s(x).cr = r(i);
 s(x).cb = s(y);
 s(x).et = t;
 }
 }
 }
}

Function PirntDeliveryPath (Station s(x)) {
 if (s(x).b=sp) return;
 Print s(x).p, s(x).r;
 PrintDeliveryPath(s(x).b);
}

Algorithm 1 Optimal algorithm for restricted case

Theorem 1. Algorithm RestrictedDelivery generates the
minimum time delivery sequence.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No12, December 2011

28

Proof. The overall process of proof is similar to that of
Dijkstra’s algorithm. Here, we describe only the key part
of the proof. Note that for every station s(x), if robot s(x).r
delivers the object from s(x).b to s(x) in a minimum time
along the minimum time delivery path, then the algorithm
generates the minimum time delivery sequence. Now
consider the time when the s(x) moves into set A. Let’s
assume that there is another delivery path to s(x) that is
optimal then, this path only contains stations in set A. If
not, it takes more time than the delivery path generated by
the algorithm. Moreover, the delivery path generated by
the algorithm is the minimum time delivery path among
the delivery paths that constructed using station in set A.
Therefore the algorithm generates the minimum time
delivery sequence Q.E.D.
The time complexity of the algorithm is)(2nmO when the
number of robots is n and the number of stations is m .

4. Near-optimal Algorithm for General
Delivery Problem

This section presents a near optimal algorithm for delivery
problem. The resulting delivery time is not optimal but we
can control the bound of errors. In this section we will
consider only 2-dimensional cases but the algorithm can
be extended to m-dimension case easily. Proposed
algorithm is as follows.

Algorithm LatticeDelivery {
 Draw a rectangle whose two corners are sp and dp;
 Draw a Lattice within the rectangle;
 Make a station on each lattice point;
 Call restrictedDelivery;
}

Algorithm 2 Near-optimal algorithm for general delivery problem

Figure 4 shows an example lattice for a delivery problem
with 5 robot agents.

Fig. 4 Example lattice of the algorithm

The error of the algorithm is related to the size of the
lattice and the number of handovers. Because of the
maximum error occurs when the optimal handover point
located at the center of the lattice, the maximum error in
the length of path is bounded by

elatticeSizndovernumberOfHa ××2 . Almost every case,
we can regard the number of handover is a constant. So,
the error is directly proportional to the size of the lattice.

5. Conclusion

In this paper, we propose two algorithms for the delivery
problem. The first one generates optimal result in)(2nmO
time with restricted configuration. Here n is the number of
robots is n and m is the number of stations. The second
algorithm has controllable errors but, there is no restriction
on the configuration. In the course of constructing the
second algorithm, we use only lattice. In the further
research, we will try various dividing method including
triangulation.

References
[1] KwangEui Lee and JiHong Kim, “Genetic Algorithm for

Delivery Problem,” IJCSNS, V9, N2, February 2009, pp
248-251

[2] http://en.wikipedia.org/wiki/Circles_of_Apollonius
[3] http://en.wikipedia.org/wiki/Motion_planning
[4] S. M. Lavalle, Planning Algorithms. Cambridge University

Press, 2006
[5] D.K. Liu, D. Wang, G. Dissanayake, “A force field method

based multi-robot collaboration,” Proc. IEEE Int. Conf. on
Robotics, Automation and Mechatronics, Bangkok,
Thailand, April 2006, 662–667.

[6] Y. Guo, L.E. Parker, A distributed and optimal motion
planning approach for multiple mobile robots, in: Proc.
IEEE Int. Conf. on Robotics Automation, 2002, pp. 2612-
2619.

[7] K. Azarm and G. Schmidt, “Conflict-Free Motion of
Multiple Mobile Robots Based on Decentralized Motion
Planning and Negotiation,” IEEE Int. Conf. on Robotics and
Automation, 1997, pp 3526-3533

[8] R. Neapolitan and K. Naimipour, Foundations of
Algorithms Using C++ Pseudocode, 3rd Ed., Addison
Wesley, 2003

KwangEui Lee received his B.S., M.S.
and Ph.D. degrees from Sogang University,
Seoul, Korea in 1990, 1992, and 1997,
respectively. From 1997 to 2001, he joined
ETRI as a senior research member. Since
2001, He has been an associate professor
of Dongeui University. His research
interests include computation theory,
artificial life and their applications.

