
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

29

Manuscript received December 5, 2010

Manuscript revised December 20, 2010

An Implementation and Evaluation of CUDA-based GPGPU
Framework by Genetic Algorithms

Masato Yoshimi† and Yuki Kurano† and Mitsunori Miki† and Tomoyuki Hiroyasu††,

†Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
††Faculty of Department of life and Medical Science, Doshisha University, Kyoto, Japan

Summary
Graphic Processing Unit (GPU), which was traditionally used for
image processing, has been widely applied to general computa-
tion called GPGPU. Nowadays, a lot of studies using GPUs are
progressing and various products are being developed. GPU has
many processor cores, and thereby has low power consumption
per unit volume. Even several developing environments are al-
ready provided, software developing cost remains high, due to
the art of programing and a technical knowledge required for the
implementation of GPGPU program of the target algorithm ex-
ploiting parallelism requires not only realization of the target
algorithm, but also knowledge of architecture such as memory
hierarchy. In this paper, we propose a framework which enables
easy implementation of parallel computing on GPU. This frame-
work can popularize GPU programming. We confirm that we are
able to do parallel computing on this framework by implement-
ing and evaluating simple genetic algorithms (SGA). We discuss
the relationship between computational speed and execution
condition.
Key words:
GPGPU, CUDA, Parallel Computing, Genetic Algorithm

1. Introduction

Performance of computer has increased according to im-
provement of operating frequency of processor cores in
CPU. However, as the power wall suppresses the ad-
vancement of operating frequency, the primary factor in
performance advancement turns to parallel computing with
many-core processor. On the other hand, GPUs (which
stands for Graphical Processing Units) have widely been
used in image processing. GPU has hundreds of tiny
processing cores exploiting parallelism from graphics op-
eration. In recent years, a lot of researchers and developers
utilize many cores in GPU as an accelerator of their own
software other than graphics computing, and such way of
utilization of GPU is called GPGPU (General Purpose
computing on GPU). In high performance computing, sev-
eral supercomputers adopt GPU focusing on its potential.
Three machines in the top five of top500 ranking embed
GPU to achieve higher computing performance with low-
energy consumption.

Program code of GPGPU is written in Shading
Language. Shading Language requires the knowledge of
graphics operation to write general computation program.

In recent years, several extended languages of C language
such as CUDA and OpenCL have reduced development
cost for GPGPU. However, implementation of GPGPU
still requires developers to learn specialized knowledge
about GPU architecture including memory hierarchy and
structure of processing core in order to achieve efficient
parallel computation.

To popularize GPGPU, easy way to utilize GPU
may be required to shorten the developing period. Most
beginners of GPU may struggle in two difficulties; (1)
allocating memories in GPU and (2) overlapping multiple
GPU functions and data-transfer. A way to lighten these
problems may be a framework to wrap allocating memo-
ries and data-transfer. The framework enables Developers
to focus on implementation of their GPU functions and
applications excluding complicated problems around
memories on GPU.

This paper proposes a framework, which packs
data-transfer and computation on GPUs. The implementa-
tions of Simple Genetic Algorithm are also evaluated and
discussed with several parameters, such as the size of the
problem, parallel granularity, or the number of GPU, as a
case study of an application on the framework.

2. CUDA

2.1 The implementation of GPU program code by
CUDA

The framework proposed in this paper supports the
GPGPU by CUDA, which is an integrated development
environment provided by NVIDIA. CUDA enables a ma-
chine equips NVIDIA’s GPU to be a parallel computer.
CUDA can be written as an extension of C language with
several controlling functions such as memory allocation of
the GPU device and data-transfer between host and GPU.
 Fig. 1 shows an operating flow to utilize GPU
device. CUDA divides operations in hosts and device ob-
viously. Only particular function called kernel function is
executed on GPU device and other functions are operated
on the host. Operating flow to control the device is as the
follows;

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

30

(1) The host allocates the memory in the device,
(2) transfers the data from the memory in the host to the

memory in the device,
(3) indicates the device to compute the data through

executing kernel function,
(4) writes back the computing result from the memory

in the device to the memory in the host, and
(5) frees the memory in the device.

 Operations in the device and the host can be ex-
ecuted in parallel. When the transferring function from
device to host is called, host waits transferring computing
result until completion of the kernel function. The feature
improves operating efficiency and maintains data consis-
tency.

2.2 Architecture of GPU device and computing re-
sources

Architecture of GPU consists of processing element and
memory to store the data used in computation. GPU is
regarded as the integration of several resources to execute
parallel computing.
 GPU consists of multiple Streaming Multiproces-
sors, which is abbreviated as MP. Each MP includes mul-
tiple Streaming Processors, which is abbreviated as SP.
CUDA manages these computing resources as three types
of units; grid, block and thread. grid and block are defined
as assembly of block and thread, respectively. A grid cor-
responds to a GPU, a block corresponds to an MP, and a
thread corresponds to an SP, respectively. As GPU instruc-
tions are issued in a unit of 32 threads called warp and
executed simultaneously, computing efficiency is max-
imized when the number of thread is a multiple of 32. On
the other hand, all block and thread cannot be allocated at
a time when declared numbers of block and thread are
greater than the number of MP and SP. In that case, the

next idling block computation is allocated to the vacant
MP after completion of the block computation. Similarly,
idling thread is allocated to vacant SP which completed the
computation.

3. Related works

A lot of studies report that GPU accelerates problems with
highly parallelism such as N-body and molecular dynam-
ics. However, these results are derived from much tuning,
investigation and adjustment by specialist of the target
application. As technical knowledge is also required to
tune CUDA code, developing cost of GPGPU should be
high. Several mechanisms and frameworks are proposed to
make utilizing GPGPU by CUDA easier. CuPP is a
framework to easily integrate CUDA into the application
written in C++. CuPP also provides two features; (1) easy
access to memory management and kernel function call
and (2) several libraries for C++ which can be imported to
CUDA.

Frameworks are released not only for GPGPU,
but also for parallel computing environment by PC-
clusters. For example, our research group has been devel-
oping a study of framework in which an evaluation func-
tion of Genetic Algorithm (which is abbreviated as GA) is
offloaded to remote nodes in the PC-cluster. As a large
part of its computation can be exploited various paral-
lelism, GA is adopted for case study. A function call speci-
fied by the framework enables off-loading operations to
nodes connected to the network. As the result of the report,
the framework is confirmed both easy implementation of
the parallel program and acceleration of the computing
speed. As the framework focuses only on GA, operations
in each remote node cannot be modified by the program-
mer. The framework proposed in this paper focuses on the
flexible implementation maintaining advantages men-
tioned above.

Besides some studies of accelerating existing al-
gorithm, the study to realize easy parallel operation is be-
ing excepted.

Fig. 1 The order of Job off-load.

Fig. 2 The way to manage the calculation resources.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

31

4. Framework

4.1 Overview of the framework

The one of the most important features for GPGPU is that
GPU accelerates a part of the operation by parallel compu-
ting. On the other hand, as users are required to learn tech-
nical knowledge of parallel computing and GPU architec-
ture, software development cost frequently becomes high.
This section explains the framework which enables im-
plementation of GPGPU without technical knowledge.
Popularization of GPGPU by reducing the difficulty of
implementation is also the objective of the framework.

4.2 Functions and constraints of the framework

4.2.1 Functions of the framework

The framework has functions which are allocating and
deallocating memories, transferring data with the device
and executing kernel function, instead of implementation
by users. Operations in GPU can be completely free to
shift by implementing the kernel function by the user.

4.2.2 Constraints of the framework

As input and output is limited to only a pointer referred to
the data, the region stored in the intermediate data is com-
mon to the region of the result of the kernel function. The
constraint requires transferring data in every call of the
framework. For example, even executing iteration on the
data, it is required to allocate, transfer, and deallocate data.
In addition, the number of types of kernel function to off-
load GPU is limited to only one.

4.2.3 The framework in multiple GPUs

The user can use multiple GPUs by obtaining the number
of GPU in the framework. A thread of the host program
manages a status of the GPU in CUDA 3.2, which is the
development environment of the framework. Therefore, it
needs to generate the same number of thread as the num-
ber of GPU. The framework use OpenMP to the multith-
reading in the host program.

An actual implementation to use multiple GPUs
is as follows. At first, by supporting OpenMP, the same
number of threads as the number of GPUs specified by the
user is generated. Each ID of threads is associated to the
ID of GPU to allocate GPU. Each thread performs opera-
tions such as allocating memories and executing kernel
function mentioned above for its managing GPU.
 However, the current implementation of the
framework splits the data equally the number of GPUs to
divide the operation. Therefore, it cannot be changed the

load of computation or allocated variant kernel functions
according to the potential of GPUs. As data communica-
tion among GPUs is also not provided, exchanging data
among threads by multiple GPUs cannot also be imple-
mented.

4.3 Structure of the framework

Fig. 3. shows the structure of the framework. The frame-
work consists of three functions; throw_to_gpu,
get_from_gpu, and kernel function. throw_to_gpu function
submits a job to the GPU device.

4.3.1 throw_to_gpu function

List 1. Shows the codes of functions provided by the
framework. The tasks throw_to_gpu function progresses
following steps;

(1) allocating memory to store data for input and output,
(2) transferring data to the device memory, and
(3) executing kernel function.

 At the MallocDeviceMemory function, De-
vice_Data, which is memory in the GPU device, is allo-
cated by cudaMalloc function provided by CUDA library.
Secondly, Host_Data which is memory in the host is also
allocated by malloc function in MallocHostMemory func-
tion. Data in the argument indicates the address of input
data to transfer to the device. Data is copied to Host_Data
and Device_Data by LoadData function and Mem-
CopyH2D function, respectively. cudaMemcpy function is
called to transfer Data from the host to the device inside
MemCopyH2D function. At the last of the function, Ker-
nelLaunch function calls the predefined kernel function.
As the kernel function is called as a non-blocking function,
the host can progress its own calculation in parallel with
the computation of the device.

Fig. 3 Structure of the framework.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

32

 As operations mentioned above are executed, data
is always transferred when the function is called, even the
data in the device can be reusable.

4.3.2 get_from_gpu function

The tasks get_from_gpu function progresses following two
steps;

(1) transferring result of kernel function to the memory

in the host, and
(2) deallocating memory associated with kernel func-

tion.

 MemCopyD2H function transfers the result of
kernel function from Device_Data to Host_Data by cuda-
Memcpy function. The function waits until the completion
of the device when the kernel function is executing.
StoreData function transfers the data from Host_Data to
Processed_Data, which is specified as argument by user.

At this time, since Host_Data is managed by double
pointer, it is transformed to single pointer. In the end, De-
vice_Data and Host_Data are deallocated.

4.3.3 kernel function

List 2. Shows an example of kernel function. Note that the
kernel function is defined as the name of function and the
file name of the code. The framework includes the file
implements the kernel function. By constraints of the
framework, the argument of the kernel function is desig-
nated as a pointer to data, which is corresponding to Data
in the List 2. As the pointer is void, it is required to cast
any type prior to use. In List 2., the pointer referenced to
Data is casted to pointer of double type and stored CastDa-
ta.

4.4 Method for utilization of the framework

List 3. shows an example of the code when using the
framework. User can accomplish operations on GPU
through calling a couple of throw_to_gpu function and
get_from_gpu function. The following parameters used in
each function.
・ Data: the pointer associated with the device memory

which is stored data used in computation
・ Number_of_Threads: the number of thread per a

block

1 void** Host_Data;
2 void*** Device_Data;
3
4 ...
5
6 void throw_to_gpu(void* Data, int Data_Size, int Number_of_Threads,

int Number_of_Blocks, int Number_of_Gpus){
7 int Size = _msize(void* Data);
8 int Size_per_Gpu = Size / Number_of_Gpus;
9 Device_Data = MallocDeviceMemory(Number_of_Gpus, Data_Size);
10 Host_Data = MallocHostMemory(Number_of_Gpus, Size_per_Gpu);
11 LoadData(Host_Data, Data, Number_of_Gpus, Size_per_Gpu, Data_Size);
12 MemCopyH2D(Host_Data, Device_Data, Number_of_Gpus, Size_per_Gpu);
13 KernelLaunch(Device_Data, Number_of_Gpus, Size_per_Gpu, Number_of_Threads, Number_of_Blocks);
14 }
15
16 void get_from_gpu(void* Processed_Data, int Data_Size, int Number_of_Gpus){
17 int i;
18 int Size = _msize(void* Processed_Data);
19 int Size_per_Gpu = Size / Number_of_Gpus;
20 MemCopyD2H(Host_Data, Device_Data, Number_of_Gpus, Size_per_Gpu);
21 StoreData(Processed_Data, Host_Data, Number_of_Gpus, Size_per_Gpu, Data_Size);
22 for(i = 0; i < Number_of_Gpus; i ++){
23 free(Host_Data[i]);
24 }
25 free(Host_Data);
26 free(*Device_Data);
27 free(Device_Data);
28 }

List1 Code of the framework.

1 __global__ void KernelFunction(void* Data){
2 int tid = threadIdx.x;
3 int bid = blockIdx.x;
4 int bdm = blockDim.x;
5 double * CastData;
6 CastData = (double *)Data;
7 CastData[bdm * bid + tid] = tid * bdm;
8 }

List2 Example of a code which uses the framework (kernel function).

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

33

・ Nuber_of_Blocks: the number of block per a grid
・ Processed_Data: the pointer associated with the host

memory which is stored the result of kernel function
・ Number_of_Gpus: the number of GPU used for the

computation
Data is treated as the pointer of type void in throw_to_gpu
function and get_from_gpu function. Therefore, the size of
Data is specified by Data_Size to allocate memories and
assign operations. A unit of Data_size is Byte.
Processed_Data, which is a pointer of type void, is an ar-
gument of get_from_gpu function to assign the region
stored the result of kernel function. Other arguments used
in get_from_gpu function is specified as same as
throw_to_gpu function.

5. Implementation of GA

5.1 Implementation of GA Using the Framework

We evaluated the framework with a program that executes
part of its GA computation in parallel on the GPU. GA is a
heuristic algorithm for finding optimum or approximate
solutions in optimization or search problems. As men-
tioned in the section on related studies, we chose this par-
ticular algorithm because it has a high parallelism. Fig.4 is
the flowchart of the algorithm.

 The Initialize step in Fig.4 provides a sufficiently
large number of random individual solutions. The Genetic
Operation, which is repeated until the termination condi-
tions are met, modifies the solutions in certain ways. The
termination conditions determine whether the optimum or
approximate solution is reached, or the process has been
repeated a certain number of times. In the Evaluation step,
each of the individual solutions is evaluated on its fitness,
or how close it is to the optimum solution. More specifi-
cally, the individual solutions are applied to the problem
formula and the results are used for fitness values. The
more complex a problem the longer it will take to evaluate
the individuals, and this could take up the majority of ex-
ecution time in GA. The evaluation process also has thread
level parallelism because it is done for each of the distinct
individuals; thus we speed up this process by offloading it
to the GPU and parallelizing.

We used the Rastrigin and Rosenbrock functions
for evaluation, which are commonly used in GA testing.
Their expressions are as follows:

 x is an individual solution and consists of mul-
tiple design variables (xi). The dimension number n
represents the number of design variables. Individuals (x)
in SGA are binary, and we refer to the bit length as the
individual length. For example, if n = 10, then x consists of
x0 through x9, and if each of xi is 10 bits in length, the indi-
vidual length is 100 bits. A large number of individuals are
provided in this form and each of them is to be evaluated.
 Each computation in the Rastrigin and Rosen-
brock functions while computing the summation is self-
contained, so it has instruction-level parallelism in addi-
tion to the thread-level parallelism among individuals. We
implemented the system so that each of the parallelisms
corresponds to the two levels of the hardware parallelism.
First, a single thread is responsible for one dimension of
summation computation. Then a single block is responsi-
ble for one individual solution. We refer to allotting one
individual to one block as the "basic implementation". In
basic implementation, the number of individuals equals the
number of blocks, and the number of dimensions equals
the number of threads per block. Fig.5 shows how

1 double Evaluation(double* Data, int Data_Size, int Number_of_Datas, double* Processed_Data) {
2 throw_to_gpu(Data, Data_Size, Number_of_Threads, Number_of_blocks, Number_of_Gpus);
3 get_from_gpu(Processed_Data, Data_Size, Number_of_Gpus);
4 }

List.3 Example of a code which uses the framework (host).

Start

End

Initialize

Evaluation

Genetic
Operation

Terminate
Check

Evaluation

Yes

No Remaining Repeat
 Count is 0 ?

Fig. 4 Flowchart of GA.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

34

individuals are allotted to blocks: the center box shows the
basic implementation.

Aside from the basic implementation, we can also
allot multiple individuals to a single block, as shown in
Fig.5 (right), or allot one individual to multiple blocks, as
shown in Fig.5 (left). We shall refer to the former as being
coarse in parallel granularity. Generally, parallel granulari-
ty represents the size of a single process when breaking up
a larger process into parallel pieces. Allotting one individ-
ual to multiple blocks can be seen as fine in granularity. In
other words, the coarseness of granularity is proportional
to the number of individuals allotted to a single block. The
number of individuals per block is determined by number
of individual/number of blocks, and is inversely propor-
tional to the number of blocks. Specifying the number of
blocks using the Number_of_Blocks argument allows us to
adjust the parallel granularity.

5.2. Comparison of Execution Time with CPU

We compared the execution time between two settings:
one done by the GPU with basic implementation, and one
done by the CPU. The tests were done with a dimension
number of 10 and a individual length of 100 bits. With 400,
2000, and 4000 individuals, we measured the time taken to
evaluate all individuals with both the Rastrigin and Rosen-
brock functions 100 times and took the average. Note that
because these evaluation functions are light in workload,
we made the computations run 1000 times per kernel func-
tion call to boost the workload.
 Tables 1 and 2 show the hardware specs of the
machines where the test was run. Machine 2 has two
GTX460 GPUs installed, and we ran tests using one GPU
and two GPUs respectively. Both of the two programs, one
for the CPU and one for the GPU, have identical code ex-
cept for evaluation. The program for CPU was run on Ma-
chine 2. Figures 6 and 7 show the results. The bar graph
shows the execution time, and the line graph shows the
throughput, or the number of evaluations done per second.

As a result, both functions showed higher per-
formance with the GPU. Also, aside of the results for dual
GTX460 shown in Fig.7, when the number of individuals
(or the number of blocks) increased from 400 to 2000,
evaluation performance with the GPU rose proportionally.

However, when the number increased from 2000 to 4000,
there was neither a large gain nor degradation in perfor-
mance.

This characteristic is conceivably caused by the
overhead on the kernel function. The number of individu-
als does not affect this overhead, whereas the execution
time of the kernel function rises linearly, in proportion to
the number of individuals. When the throughput is meas-
ured as number of individuals/evaluation time, it appears

 Tesla C2050 GeForce GTX
460

Memory 3GB 1GB
Memory Band

Width
144 GBs 115.2GBs

The number of SPs 448 336
The bunber of MPs 14 7

 Machine 1 Machine 2
GPU Tesla C2050 GeForce GTX

460
CPU Xeon W3530

2.8GHz
Core i5 2400

3.1GHz
Host Memory 6GB 8GB

GPU code Compiler CUDA toolkit 3.2
CPU code Compiler gcc 4.4.5-15ubuntu1

Fig. 5 The Way to Allot Individuals to a Block

0

100

200

300

400

500

600

700

800

0.1

1

10

100

400 2000 4000

th
ro

ug
hp

ut
 [i

nd
v.

/s
ec

]

tim
e

[m
se

c]

the number of individuals

GTX460 1

GTX460 2

Tesla 1

CPU

GTX460 1

GTX460 2

Tesla 1

CPU

Fig. 7. Execution speed comparison between CPU and GPU.
(Rosenbrock)

Table2 Spec of the GPUs.

0

100

200

300

400

500

600

700

800

0.1

1

10

100

1000

400 2000 4000

th
ro

ug
hp

ut
 [i

nd
v.

/s
ec

]

tim
e

[m
se

c]

the number of individuals

GTX460 1

GTX460 2

Tesla 1

CPU

GTX460 1

GTX460 2

Tesla 1

CPU

Fig. 6. Execution speed comparison between CPU and GPU.(Rastrigin)

Table1 Systems used in experimentation.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

35

to become higher when there are more individuals because
the kernel function overhead has a relatively smaller im-
pact. With 2000 and 4000 individuals, apparently the ef-
fect of the overhead was trivial enough to keep the per-
formance gain smaller.

5.3. Correlation between Parallel Granularity and
Execution Time

We studied the correlation between parallel granularity
and execution time. These tests were run with a dimension
number of 10, an individual length of 100 bits, and indi-
vidual numbers of 400, 2000, and 4000. We measured the
time taken to evaluate each of the individuals 1000 times
using the Rastrigin function. We ran the test 100 times and
took the average. Figures 8, 9, and 10 show the results. In

0

100

200

300

400

500

600

700

800

900

1000

0.1

1

10

100

4000 2000 800 400 200 100 80 50 40 20 10 8 5 4

th
ro

ug
hp

ut
 [i

nd
v.

/s
ec

]

tim
e

[m
se

c]

the number of blocks

GTX460 1

GTX460 2

Tesla C2050 1

GTX460 1

GTX460 2

Tesla C2050 1

Fig. 9. Relationship between execution speed and changing parallel particle size.(2000individuals)

0

500

1000

1500

2000

2500

3000

3500

0.1

1

10

100

20000 10000 4000 2000 1000 500 400 250 200 100 50 40 25 20

th
ro

ug
hp

ut
 [i

nd
v.

/s
ec

]

tim
e

[m
se

c]

the number of blocks

GTX460 1

GTX460 2

Tesla C2050 1

GTX460 1

GTX460 2

Tesla C2050 1

Fig. 10. Relationship between execution speed and changing parallel particle size.(4000individuals)

0

500

1000

1500

2000

2500

3000

3500

1

10

100

1000

40000 20000 8000 4000 2000 1000 800 500 400 200 100 80 50 40

th
ro

ug
hp

ut
 [i

nd
v.

/s
ec

]

tim
e

[m
se

c]

the number of blocks

GTX460 1

GTX460 2

Tesla C2050 1

GTX460 1

GTX460 2

Tesla C2050 1

Fig. 8. Relationship between execution speed and changing parallel particle size.(400individuals)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

36

each of the cases, we saw better performance when granu-
larity was more coarse and worse performance when gra-
nularity was finer. However, this is not always true: there
are drops in performance even with high granularity. The
optimum number of blocks depends on the type of GPU
and the number of GPUs installed.

5.3.1. Correlation Between Execution Speed and
Number of Threads

One reason the execution time was better with more coarse
granularity is that there were more threads per block. In
basic implementation, the number of threads per block is
10, which is fewer than 32, the number of threads per
warp. This caused computations worth of 32 threads even
when computing on 10 threads, which was ineffective and
resulted in lower execution speeds.

5.3.2. Correlation Between Execution Speed and
Number of Blocks

The number of blocks also affects the execution speed.
When there are too many blocks, there is a bigger effect of
context switch latencies. More blocks means more memo-
ry access, but when there is a sufficient number of blocks,
memory access latencies can be hidden by executions of
other blocks. That is to say, when there are too few blocks,
there is a bigger effect of memory access latencies. Thus
we need to strike a balance between context switch and
memory access latencies. Because blocks are allotted to
MPs, we can assume higher performance when the number
of blocks is several times or several ten times larger than
the number of MPs. For example, Fig.8 and Fig.9 show
that performance degrades when the block count is 20 or
less. However, as shown in Fig.9, when the block count is
20, performance degrades with dual GTX460 and Tes-
laC2050 but not with single GTX460. The reason for this
is that for the former, the MP count is 14 (making the
block count 1.4 times the MP count), whereas for the latter,
the MP count is 7 (making the block count 3 times the MP
count). The latter was successful in hiding the memory
access latencies.
 The best performance can be seen in Fig.10
where the block count is 80. When the number of individ-
uals is 4000, there are 40000 threads with 500 threads per
block. The other case with 500 threads per block is when
the block count is 8, as shown in Fig.8, but because 8
blocks were not sufficient, it did not yield high perfor-
mance. Another case with 500 threads per block is in Fig.9
where the block count is 40. The throughput is high due to
the large number of blocks. However, as seen in the com-
parison with CPU, more blocks should yield higher per-
formance when the number of threads per block is identic-
al. This is why 4000 individuals for 80 blocks resulted in
better performance than 2000 individuals for 40 blocks.

 The effect of multiple GPUs became apparent
when workload increased, rather than when there were
more individuals. Note, however, that this resulted from
using two of the same type of GPU. Using different GPUs
with different capabilities may not give the same results;
namely the one with lower performance may become a
bottleneck for the whole process.

6. Discussions

We confirmed that GPU computation with CUDA is poss-
ible by invoking just two functions implemented in the
framework. The kernel function is flexible as it can be
written freely and finely tuned. However, there are many
limitations as well. To avert the limitations, the kernel
function needs more arguments. Also, by preparing a dedi-
cated storage for computation results, data transferred to
the device can be stored for later use. This shall cut down
on data transfer load when different computations must be
done on the same set of data. More complex computations
may be implemented once the framework is extended to
use multiple types of kernel functions. Another enhance-
ment would be to allow multiple jobs to be offloaded at
once and the results retrieved at given moments, which
would allow for more flexible and efficient computations.
 There are major limitations when computing with
multiple GPUs as well. First, subject data is divided equal-
ly among GPUs, so workload balance is not optimal when
the GPUs differ in performance. This calls for a feature
where the user may specify workload balance, or other-
wise a feature where GPU info is collected and workload
is balanced automatically. Also, GPUs should be able to
communicate with each other. However, because inter-
GPU communication is more costly than intra-GPU com-
munication, the framework should allow different kernel
functions to be executed for different GPUs so that there is
a smaller need (or no need) for inter-GPU communication.
Performance testing showed that by using the framework,
better performance could be achieved compared to CPU-
only execution. By using a higher parallel granularity than
the basic implementation, we saw even higher perfor-
mance. We shall see more improvements by tuning the
memory access and reducing conditional branching.
CUDA supports many features such as asynchronous
communication between the device and host, and a feature
that allows users to choose the type of host memory. By
supporting these various CUDA features, the framework
could be even more valuable.

7. Conclusion

This paper proposes a framework of parallel computing by
CUDA, which handles memory allocation and data-
transfer. Developers can utilize GPU through only two
functions. SGA is implemented to validate the framework

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

37

and discussed about potential of acceleration based on
several parallel and application parameters. The evaluation
of the relationship between parallel granularity and com-
puting time obtained that the number of thread and block
in the kernel function influences the performance of GPU.
In the future work, several features to introduce more flex-
ibility of tuning performance may be implemented and
discussed.

References

[1] Lo, Y.-T., Tsai, Y.-L., Wang, H.-W., Hsu, Y.-P. and Pai, T.-

W.: Using Solid Angles to Detect Protein Docking Regions
by CUDA Parallel Algorithms, 2010 International Sympo-
sium on Parallel and Distributed Processing with Applica-
tions (ISPA), pp.536–541 (2010).

[2] Oiso, M., Yasuda, T., Ohkura, K. and Matumura, Y.: Acce-
lerating steady-state genetic algorithms based on CUDA ar-
chitecture, 2011 IEEE Congress on Evolutionary Computa-
tion (CEC), pp.687–692 (2011).

[3] Phillips, E. and Fatica, M.: Implementing the Himeno
benchmark with CUDA on GPU clusters, 2010 IEEE Inter-
national Symposium on Parallel Distributed Processing
(IPDPS), pp.1–10 (2010).

[4] Top500 Supercomputing Sites, http://www.top500.org/.
[5] Li, X. and Xu, M.: Water simulation based on HLSL, 2009

IEEE International Conference on Network Infrastructure
and Digital Content (IC-NIDC), pp.1066–1069 (2009).

[6] Belleman, R.G., Geldof, P.M. and Zwart, S. F.P.: High per-
formance direct gravitational N-body simulations on graph-
ics processing units II: An implementation in CUDA, New
Astronomy, Vol.13, pp.103–112 (2008).

[7] Meel, J.A., Arnold, A., Frenkel, D., Zwart, S.F.P, and
Belleman, R.G.: Harvesting graphics power for MD simula-
tions, Molecular Simulation, Vol.34, No.3, pp.259-266
(2008).

[8] Breitbart,J.: CuPP - A framework for easy CUDA integra-
tion, IEEE International Symposium on Parallel Distributed
Processing(IPDPS),pp.1–8 (2009).

[9] T.Hiroyasu, R.Yamanaka, M.Yoshimi and M.Miki: A
Framework for Genetic Algorithms in Parallel Environ-
ments, The 2011 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA), pp.751–756 (2011).

Masato Yoshimi recieved the B.E. and
M.E., and Ph.D. degrees from Keio Uni-
versity, Japan, in 2004, 2006, and 2009. He
is currently Assistant Professor in Doshisha
University. His research interests include
the areas of intelligent systems, reconfigur-
able computing and parallel processing.

Yuki Kurano is currently studying in
Faculty of Engineering and Science in
Doshisha University. His research interests
in-clude the high performance computing
using graphic processor and productive
computing systems.

Mitsunori Miki received Ph.D. degree
from Osaka City University, Japan in 1978.
He was Research Fellow in Osaka Munic-
ipal Technical Research Institute, Asso-
ciate Professor in Kanazawa Institute of
Technology, and Associate Professor in
Osaka Prefecture University. He is cur-
rently Professor in graduate school of Do-
shisha University. His current research

topics are creative office environment and intelligent lighting
systems based on intelligent parallel and distributed optimization.

Tomoyuki Hiroyasu received Ph.D. de-
gree from Waseda University, Japan in
1997. He was Research Associate in Wa-
seda University and Assistant Professor in
Doshisha University. He is currently Pro-
fessor in Doshisha University. His research
interests include the areas of evolvable
computing, optimum design, and medical
image engineering.

