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Summary 
Graphic Processing Unit (GPU), which was traditionally used for 
image processing, has been widely applied to general computa-
tion called GPGPU. Nowadays, a lot of studies using GPUs are 
progressing and various products are being developed. GPU has 
many processor cores, and thereby has low power consumption 
per unit volume. Even several developing environments are al-
ready provided, software developing cost remains high, due to 
the art of programing and a technical knowledge required for the 
implementation of GPGPU program of the target algorithm ex-
ploiting parallelism requires not only realization of the target 
algorithm, but also knowledge of architecture such as memory 
hierarchy. In this paper, we propose a framework which enables 
easy implementation of parallel computing on GPU. This frame-
work can popularize GPU programming. We confirm that we are 
able to do parallel computing on this framework by implement-
ing and evaluating simple genetic algorithms (SGA). We discuss 
the relationship between computational speed and execution 
condition. 
Key words: 
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1. Introduction 

Performance of computer has increased according to im-
provement of operating frequency of processor cores in 
CPU. However, as the power wall suppresses the ad-
vancement of operating frequency, the primary factor in 
performance advancement turns to parallel computing with 
many-core processor. On the other hand, GPUs (which 
stands for Graphical Processing Units) have widely been 
used in image processing. GPU has hundreds of tiny 
processing cores exploiting parallelism from graphics op-
eration. In recent years, a lot of researchers and developers 
utilize many cores in GPU as an accelerator of their own 
software other than graphics computing, and such way of 
utilization of GPU is called GPGPU (General Purpose 
computing on GPU). In high performance computing, sev-
eral supercomputers adopt GPU focusing on its potential. 
Three machines in the top five of top500 ranking embed 
GPU to achieve higher computing performance with low-
energy consumption. 

Program code of GPGPU is written in Shading 
Language. Shading Language requires the knowledge of 
graphics operation to write general computation program. 

In recent years, several extended languages of C language 
such as CUDA and OpenCL have reduced development 
cost for GPGPU. However, implementation of GPGPU 
still requires developers to learn specialized knowledge 
about GPU architecture including memory hierarchy and 
structure of processing core in order to achieve efficient 
parallel computation. 

To popularize GPGPU, easy way to utilize GPU 
may be required to shorten the developing period. Most 
beginners of GPU may struggle in two difficulties; (1) 
allocating memories in GPU and (2) overlapping multiple 
GPU functions and data-transfer. A way to lighten these 
problems may be a framework to wrap allocating memo-
ries and data-transfer. The framework enables Developers 
to focus on implementation of their GPU functions and 
applications excluding complicated problems around 
memories on GPU. 

This paper proposes a framework, which packs 
data-transfer and computation on GPUs. The implementa-
tions of Simple Genetic Algorithm are also evaluated and 
discussed with several parameters, such as the size of the 
problem, parallel granularity, or the number of GPU, as a 
case study of an application on the framework. 
 
2. CUDA 
 
2.1 The implementation of GPU program code by 
CUDA 
 
The framework proposed in this paper supports the 
GPGPU by CUDA, which is an integrated development 
environment provided by NVIDIA. CUDA enables a ma-
chine equips NVIDIA’s GPU to be a parallel computer. 
CUDA can be written as an extension of C language with 
several controlling functions such as memory allocation of 
the GPU device and data-transfer between host and GPU. 
 Fig. 1 shows an operating flow to utilize GPU 
device. CUDA divides operations in hosts and device ob-
viously. Only particular function called kernel function is 
executed on GPU device and other functions are operated 
on the host. Operating flow to control the device is as the 
follows; 
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(1) The host allocates the memory in the device, 
(2) transfers the data from the memory in the host to the 

memory in the device, 
(3) indicates the device to compute the data through 

executing kernel function, 
(4) writes back the computing result from the memory 

in the device to the memory in the host, and  
(5) frees the memory in the device. 
 
 Operations in the device and the host can be ex-
ecuted in parallel. When the transferring function from 
device to host is called, host waits transferring computing 
result until completion of the kernel function. The feature 
improves operating efficiency and maintains data consis-
tency. 
 
2.2 Architecture of GPU device and computing re-
sources 
 
Architecture of GPU consists of processing element and 
memory to store the data used in computation. GPU is 
regarded as the integration of several resources to execute 
parallel computing. 
 GPU consists of multiple Streaming Multiproces-
sors, which is abbreviated as MP. Each MP includes mul-
tiple Streaming Processors, which is abbreviated as SP. 
CUDA manages these computing resources as three types 
of units; grid, block and thread. grid and block are defined 
as assembly of block and thread, respectively. A grid cor-
responds to a GPU, a block corresponds to an MP, and a 
thread corresponds to an SP, respectively. As GPU instruc-
tions are issued in a unit of 32 threads called warp and 
executed simultaneously, computing efficiency is max-
imized when the number of thread is a multiple of 32. On 
the other hand, all block and thread cannot be allocated at 
a time when declared numbers of block and thread are 
greater than the number of MP and SP. In that case, the 

next idling block computation is allocated to the vacant 
MP after completion of the block computation. Similarly, 
idling thread is allocated to vacant SP which completed the 
computation. 
 
3. Related works 
 
A lot of studies report that GPU accelerates problems with 
highly parallelism such as N-body and molecular dynam-
ics. However, these results are derived from much tuning, 
investigation and adjustment by specialist of the target 
application. As technical knowledge is also required to 
tune CUDA code, developing cost of GPGPU should be 
high. Several mechanisms and frameworks are proposed to 
make utilizing GPGPU by CUDA easier. CuPP is a 
framework to easily integrate CUDA into the application 
written in C++. CuPP also provides two features; (1) easy 
access to memory management and kernel function call 
and (2) several libraries for C++ which can be imported to 
CUDA. 

Frameworks are released not only for GPGPU, 
but also for parallel computing environment by PC-
clusters. For example, our research group has been devel-
oping a study of framework in which an evaluation func-
tion of Genetic Algorithm (which is abbreviated as GA) is 
offloaded to remote nodes in the PC-cluster. As a large 
part of its computation can be exploited various paral-
lelism, GA is adopted for case study. A function call speci-
fied by the framework enables off-loading operations to 
nodes connected to the network. As the result of the report, 
the framework is confirmed both easy implementation of 
the parallel program and acceleration of the computing 
speed. As the framework focuses only on GA, operations 
in each remote node cannot be modified by the program-
mer. The framework proposed in this paper focuses on the 
flexible implementation maintaining advantages men-
tioned above.  

Besides some studies of accelerating existing al-
gorithm, the study to realize easy parallel operation is be-
ing excepted. 
 
 

Fig. 1  The order of Job off-load. 

Fig. 2  The way to manage the calculation resources. 
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4. Framework 
 
4.1 Overview of the framework 
 
The one of the most important features for GPGPU is that 
GPU accelerates a part of the operation by parallel compu-
ting. On the other hand, as users are required to learn tech-
nical knowledge of parallel computing and GPU architec-
ture, software development cost frequently becomes high. 
This section explains the framework which enables im-
plementation of GPGPU without technical knowledge. 
Popularization of GPGPU by reducing the difficulty of 
implementation is also the objective of the framework. 
 
4.2 Functions and constraints of the framework 
 
4.2.1 Functions of the framework 
 
The framework has functions which are allocating and 
deallocating memories, transferring data with the device 
and executing kernel function, instead of implementation 
by users. Operations in GPU can be completely free to 
shift by implementing the kernel function by the user.  
 
4.2.2 Constraints of the framework 
 
As input and output is limited to only a pointer referred to 
the data, the region stored in the intermediate data is com-
mon to the region of the result of the kernel function. The 
constraint requires transferring data in every call of the 
framework. For example, even executing iteration on the 
data, it is required to allocate, transfer, and deallocate data. 
In addition, the number of types of kernel function to off-
load GPU is limited to only one. 
 
4.2.3 The framework in multiple GPUs 
 
The user can use multiple GPUs by obtaining the number 
of GPU in the framework. A thread of the host program 
manages a status of the GPU in CUDA 3.2, which is the 
development environment of the framework. Therefore, it 
needs to generate the same number of thread as the num-
ber of GPU. The framework use OpenMP to the multith-
reading in the host program. 

An actual implementation to use multiple GPUs 
is as follows. At first, by supporting OpenMP, the same 
number of threads as the number of GPUs specified by the 
user is generated. Each ID of threads is associated to the 
ID of GPU to allocate GPU. Each thread performs opera-
tions such as allocating memories and executing kernel 
function mentioned above for its managing GPU.  
 However, the current implementation of the 
framework splits the data equally the number of GPUs to 
divide the operation. Therefore, it cannot be changed the 

load of computation or allocated variant kernel functions 
according to the potential of GPUs. As data communica-
tion among GPUs is also not provided, exchanging data 
among threads by multiple GPUs cannot also be imple-
mented. 
 
4.3 Structure of the framework 
 
Fig. 3. shows the structure of the framework. The frame-
work consists of three functions; throw_to_gpu, 
get_from_gpu, and kernel function. throw_to_gpu function 
submits a job to the GPU device. 
 
4.3.1 throw_to_gpu function 
 
List 1. Shows the codes of functions provided by the 
framework. The tasks throw_to_gpu function progresses 
following steps; 

 
(1) allocating memory to store data for input and output, 
(2) transferring data to the device memory, and  
(3) executing kernel function. 
 
 At the MallocDeviceMemory function, De-
vice_Data, which is memory in the GPU device, is allo-
cated by cudaMalloc function provided by CUDA library. 
Secondly, Host_Data which is memory in the host is also 
allocated by malloc function in MallocHostMemory func-
tion. Data in the argument indicates the address of input 
data to transfer to the device. Data is copied to Host_Data 
and Device_Data by LoadData function and Mem-
CopyH2D function, respectively. cudaMemcpy function is 
called to transfer Data from the host to the device inside 
MemCopyH2D function. At the last of the function, Ker-
nelLaunch function calls the predefined kernel function. 
As the kernel function is called as a non-blocking function, 
the host can progress its own calculation in parallel with 
the computation of the device. 

Fig. 3  Structure of the framework. 
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 As operations mentioned above are executed, data 
is always transferred when the function is called, even the 
data in the device can be reusable. 
 
4.3.2 get_from_gpu function  
 
The tasks get_from_gpu function progresses following two 
steps; 
 
(1) transferring result of kernel function to the memory 

in the host, and 
(2) deallocating memory  associated with kernel func-

tion. 
 
 MemCopyD2H function transfers the result of 
kernel function from Device_Data to Host_Data by cuda-
Memcpy function. The function waits until the completion 
of the device when the kernel function is executing. 
StoreData function transfers the data from Host_Data to 
Processed_Data, which is specified as argument by user. 

At this time, since Host_Data is managed by double 
pointer, it is transformed to single pointer. In the end, De-
vice_Data and Host_Data are deallocated. 
 
4.3.3 kernel function 
 
List 2. Shows an example of kernel function. Note that the 
kernel function is defined as the name of function and the 
file name of the code. The framework includes the file 
implements the kernel function. By constraints of the 
framework, the argument of the kernel function is desig-
nated as a pointer to data, which is corresponding to Data 
in the List 2. As the pointer is void, it is required to cast 
any type prior to use. In List 2., the pointer referenced to 
Data is casted to pointer of double type and stored CastDa-
ta. 
 
4.4 Method for utilization of the framework 
 
List 3. shows an example of the code when using the 
framework. User can accomplish operations on GPU 
through calling a couple of throw_to_gpu function and 
get_from_gpu function. The following parameters used in 
each function. 
・ Data: the pointer associated with the device memory 

which is stored data used in computation 
・ Number_of_Threads: the number of thread per a 

block 

1 void** Host_Data;  
2 void*** Device_Data;  
3  
4 ... 
5  
6 void throw_to_gpu(void* Data, int Data_Size, int Number_of_Threads, 

int Number_of_Blocks, int Number_of_Gpus){  
7    int Size = _msize(void* Data);  
8    int Size_per_Gpu = Size / Number_of_Gpus;  
9    Device_Data = MallocDeviceMemory(Number_of_Gpus, Data_Size);  
10    Host_Data = MallocHostMemory(Number_of_Gpus, Size_per_Gpu);  
11    LoadData(Host_Data, Data, Number_of_Gpus, Size_per_Gpu, Data_Size);  
12    MemCopyH2D(Host_Data, Device_Data, Number_of_Gpus, Size_per_Gpu);  
13    KernelLaunch(Device_Data, Number_of_Gpus, Size_per_Gpu, Number_of_Threads, Number_of_Blocks); 
14 }  
15   
16 void get_from_gpu(void* Processed_Data, int Data_Size, int Number_of_Gpus){  
17    int i;  
18    int Size = _msize(void* Processed_Data);  
19    int Size_per_Gpu = Size / Number_of_Gpus;  
20    MemCopyD2H(Host_Data, Device_Data, Number_of_Gpus, Size_per_Gpu);  
21    StoreData(Processed_Data, Host_Data, Number_of_Gpus, Size_per_Gpu, Data_Size);  
22    for(i = 0; i < Number_of_Gpus; i ++){  
23        free(Host_Data[i]);  
24    }  
25    free(Host_Data);  
26    free(*Device_Data);  
27    free(Device_Data);  
28 } 

List1 Code of the framework.

1 __global__ void KernelFunction(void* Data){ 
2     int tid = threadIdx.x;  
3     int bid = blockIdx.x;  
4     int bdm = blockDim.x;  
5     double * CastData;  
6     CastData = (double *)Data;  
7     CastData[bdm * bid + tid] = tid * bdm; 
8 } 

List2 Example of a code which uses the framework (kernel function). 
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・ Nuber_of_Blocks: the number of block per a grid 
・ Processed_Data: the pointer associated with the host 

memory which is stored the result of kernel function 
・ Number_of_Gpus: the number of GPU used for the 

computation 
Data is treated as the pointer of type void in throw_to_gpu 
function and get_from_gpu function. Therefore, the size of 
Data is specified by Data_Size to allocate memories and 
assign operations. A unit of Data_size is Byte. 
Processed_Data, which is a pointer of type void, is an ar-
gument of get_from_gpu function to assign the region 
stored the result of kernel function. Other arguments used 
in get_from_gpu function is specified as same as 
throw_to_gpu function. 
 
5. Implementation of GA 
 
5.1 Implementation of GA Using the Framework 
 
We evaluated the framework with a program that executes 
part of its GA computation in parallel on the GPU. GA is a 
heuristic algorithm for finding optimum or approximate 
solutions in optimization or search problems. As men-
tioned in the section on related studies, we chose this par-
ticular algorithm because it has a high parallelism. Fig.4 is 
the flowchart of the algorithm. 

 The Initialize step in Fig.4 provides a sufficiently 
large number of random individual solutions. The Genetic 
Operation, which is repeated until the termination condi-
tions are met, modifies the solutions in certain ways. The 
termination conditions determine whether the optimum or 
approximate solution is reached, or the process has been 
repeated a certain number of times. In the Evaluation step, 
each of the individual solutions is evaluated on its fitness, 
or how close it is to the optimum solution. More specifi-
cally, the individual solutions are applied to the problem 
formula and the results are used for fitness values. The 
more complex a problem the longer it will take to evaluate 
the individuals, and this could take up the majority of ex-
ecution time in GA. The evaluation process also has thread 
level parallelism because it is done for each of the distinct 
individuals; thus we speed up this process by offloading it 
to the GPU and parallelizing. 

We used the Rastrigin and Rosenbrock functions 
for evaluation, which are commonly used in GA testing. 
Their expressions are as follows: 

 

 

 
 
 x is an individual solution and consists of mul-
tiple design variables (xi). The dimension number n 
represents the number of design variables. Individuals (x) 
in SGA are binary, and we refer to the bit length as the 
individual length. For example, if n = 10, then x consists of 
x0 through x9, and if each of xi is 10 bits in length, the indi-
vidual length is 100 bits. A large number of individuals are 
provided in this form and each of them is to be evaluated. 
 Each computation in the Rastrigin and Rosen-
brock functions while computing the summation is self-
contained, so it has instruction-level parallelism in addi-
tion to the thread-level parallelism among individuals. We 
implemented the system so that each of the parallelisms 
corresponds to the two levels of the hardware parallelism. 
First, a single thread is responsible for one dimension of 
summation computation. Then a single block is responsi-
ble for one individual solution. We refer to allotting one 
individual to one block as the "basic implementation". In 
basic implementation, the number of individuals equals the 
number of blocks, and the number of dimensions equals 
the number of threads per block. Fig.5 shows how 

1 double Evaluation(double* Data, int Data_Size, int Number_of_Datas, double* Processed_Data) { 
2     throw_to_gpu(Data, Data_Size, Number_of_Threads, Number_of_blocks, Number_of_Gpus); 
3     get_from_gpu(Processed_Data, Data_Size, Number_of_Gpus); 
4 } 

List.3 Example of a code which uses the framework (host). 

Start

End

Initialize

Evaluation

Genetic
Operation

Terminate
Check

Evaluation

Yes

No Remaining Repeat
 Count is 0 ?

Fig. 4  Flowchart of GA. 
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individuals are allotted to blocks: the center box shows the 
basic implementation. 

Aside from the basic implementation, we can also 
allot multiple individuals to a single block, as shown in 
Fig.5 (right), or allot one individual to multiple blocks, as 
shown in Fig.5 (left). We shall refer to the former as being 
coarse in parallel granularity. Generally, parallel granulari-
ty represents the size of a single process when breaking up 
a larger process into parallel pieces. Allotting one individ-
ual to multiple blocks can be seen as fine in granularity. In 
other words, the coarseness of granularity is proportional 
to the number of individuals allotted to a single block. The 
number of individuals per block is determined by number 
of individual/number of blocks, and is inversely propor-
tional to the number of blocks. Specifying the number of 
blocks using the Number_of_Blocks argument allows us to 
adjust the parallel granularity. 
 
5.2. Comparison of Execution Time with CPU 
 
We compared the execution time between two settings: 
one done by the GPU with basic implementation, and one 
done by the CPU. The tests were done with a dimension 
number of 10 and a individual length of 100 bits. With 400, 
2000, and 4000 individuals, we measured the time taken to 
evaluate all individuals with both the Rastrigin and Rosen-
brock functions 100 times and took the average. Note that 
because these evaluation functions are light in workload, 
we made the computations run 1000 times per kernel func-
tion call to boost the workload. 
 Tables 1 and 2 show the hardware specs of the 
machines where the test was run. Machine 2 has two 
GTX460 GPUs installed, and we ran tests using one GPU 
and two GPUs respectively. Both of the two programs, one 
for the CPU and one for the GPU, have identical code ex-
cept for evaluation. The program for CPU was run on Ma-
chine 2. Figures 6 and 7 show the results. The bar graph 
shows the execution time, and the line graph shows the 
throughput, or the number of evaluations done per second.  

As a result, both functions showed higher per-
formance with the GPU. Also, aside of the results for dual 
GTX460 shown in Fig.7, when the number of individuals 
(or the number of blocks) increased from 400 to 2000, 
evaluation performance with the GPU rose proportionally. 

However, when the number increased from 2000 to 4000, 
there was neither a large gain nor degradation in perfor-
mance. 

This characteristic is conceivably caused by the 
overhead on the kernel function. The number of individu-
als does not affect this overhead, whereas the execution 
time of the kernel function rises linearly, in proportion to 
the number of individuals. When the throughput is meas-
ured as number of individuals/evaluation time, it appears 

 Tesla C2050 GeForce GTX 
460 

Memory 3GB 1GB 
Memory Band 

Width 
144 GBs 115.2GBs 

The number of SPs 448 336 
The bunber of MPs 14 7 

 Machine 1 Machine 2 
GPU Tesla C2050 GeForce GTX 

460 
CPU Xeon W3530 

2.8GHz 
Core i5 2400

3.1GHz 
Host Memory 6GB 8GB 

GPU code Compiler CUDA toolkit 3.2 
CPU code Compiler gcc 4.4.5-15ubuntu1 

Fig. 5 The Way to Allot Individuals to a Block 
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to become higher when there are more individuals because 
the kernel function overhead has a relatively smaller im-
pact. With 2000 and 4000 individuals, apparently the ef-
fect of the overhead was trivial enough to keep the per-
formance gain smaller. 

 
 
 
 

 

5.3. Correlation between Parallel Granularity and 
Execution Time 
 
We studied the correlation between parallel granularity 
and execution time. These tests were run with a dimension 
number of 10, an individual length of 100 bits, and indi-
vidual numbers of 400, 2000, and 4000. We measured the 
time taken to evaluate each of the individuals 1000 times 
using the Rastrigin function. We ran the test 100 times and 
took the average. Figures 8, 9, and 10 show the results. In 
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each of the cases, we saw better performance when granu-
larity was more coarse and worse performance when gra-
nularity was finer. However, this is not always true: there 
are drops in performance even with high granularity. The 
optimum number of blocks depends on the type of GPU 
and the number of GPUs installed. 
 
5.3.1. Correlation Between Execution Speed and 
Number of Threads 
 
One reason the execution time was better with more coarse 
granularity is that there were more threads per block. In 
basic implementation, the number of threads per block is 
10, which is fewer than 32, the number of threads per 
warp. This caused computations worth of 32 threads even 
when computing on 10 threads, which was ineffective and 
resulted in lower execution speeds. 
 
5.3.2. Correlation Between Execution Speed and 
Number of Blocks 
 
The number of blocks also affects the execution speed. 
When there are too many blocks, there is a bigger effect of 
context switch latencies. More blocks means more memo-
ry access, but when there is a sufficient number of blocks, 
memory access latencies can be hidden by executions of 
other blocks. That is to say, when there are too few blocks, 
there is a bigger effect of memory access latencies. Thus 
we need to strike a balance between context switch and 
memory access latencies. Because blocks are allotted to 
MPs, we can assume higher performance when the number 
of blocks is several times or several ten times larger than 
the number of MPs. For example, Fig.8 and Fig.9 show 
that performance degrades when the block count is 20 or 
less. However, as shown in Fig.9, when the block count is 
20, performance degrades with dual GTX460 and Tes-
laC2050 but not with single GTX460. The reason for this 
is that for the former, the MP count is 14 (making the 
block count 1.4 times the MP count), whereas for the latter, 
the MP count is 7 (making the block count 3 times the MP 
count). The latter was successful in hiding the memory 
access latencies.  
  The best performance can be seen in Fig.10 
where the block count is 80. When the number of individ-
uals is 4000, there are 40000 threads with 500 threads per 
block. The other case with 500 threads per block is when 
the block count is 8, as shown in Fig.8, but because 8 
blocks were not sufficient, it did not yield high perfor-
mance. Another case with 500 threads per block is in Fig.9 
where the block count is 40. The throughput is high due to 
the large number of blocks. However, as seen in the com-
parison with CPU, more blocks should yield higher per-
formance when the number of threads per block is identic-
al. This is why 4000 individuals for 80 blocks resulted in 
better performance than 2000 individuals for 40 blocks. 

  The effect of multiple GPUs became apparent 
when workload increased, rather than when there were 
more individuals. Note, however, that this resulted from 
using two of the same type of GPU. Using different GPUs 
with different capabilities may not give the same results; 
namely the one with lower performance may become a 
bottleneck for the whole process. 
 
6. Discussions 
 
We confirmed that GPU computation with CUDA is poss-
ible by invoking just two functions implemented in the 
framework. The kernel function is flexible as it can be 
written freely and finely tuned. However, there are many 
limitations as well. To avert the limitations, the kernel 
function needs more arguments. Also, by preparing a dedi-
cated storage for computation results, data transferred to 
the device can be stored for later use. This shall cut down 
on data transfer load when different computations must be 
done on the same set of data. More complex computations 
may be implemented once the framework is extended to 
use multiple types of kernel functions. Another enhance-
ment would be to allow multiple jobs to be offloaded at 
once and the results retrieved at given moments, which 
would allow for more flexible and efficient computations. 
 There are major limitations when computing with 
multiple GPUs as well. First, subject data is divided equal-
ly among GPUs, so workload balance is not optimal when 
the GPUs differ in performance. This calls for a feature 
where the user may specify workload balance, or other-
wise a feature where GPU info is collected and workload 
is balanced automatically. Also, GPUs should be able to 
communicate with each other. However, because inter-
GPU communication is more costly than intra-GPU com-
munication, the framework should allow different kernel 
functions to be executed for different GPUs so that there is 
a smaller need (or no need) for inter-GPU communication. 
Performance testing showed that by using the framework, 
better performance could be achieved compared to CPU-
only execution. By using a higher parallel granularity than 
the basic implementation, we saw even higher perfor-
mance. We shall see more improvements by tuning the 
memory access and reducing conditional branching. 
CUDA supports many features such as asynchronous 
communication between the device and host, and a feature 
that allows users to choose the type of host memory. By 
supporting these various CUDA features, the framework 
could be even more valuable. 
 
7. Conclusion 
 
This paper proposes a framework of parallel computing by 
CUDA, which handles memory allocation and data-
transfer. Developers can utilize GPU through only two 
functions. SGA is implemented to validate the framework 
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and discussed about potential of acceleration based on 
several parallel and application parameters. The evaluation 
of the relationship between parallel granularity and com-
puting time obtained that the number of thread and block 
in the kernel function influences the performance of GPU. 
In the future work, several features to introduce more flex-
ibility of tuning performance may be implemented and 
discussed. 
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