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Summary 
In this paper parallel algorithms are presented for enumeration 

and unranking of t–ary trees with n internal nodes. Generation 

algorithms are designed in the associative computing model ASC 

that belongs to a broad category of SIMD models. Tree 

sequences are generated in lexicographical order, with O(1) time 

per object, in a new representation, as combinations with 

repetitions with restricted growth. The resulting full t–ary trees in 

the form of z–sequences and x–sequences appear in lexico-

graphical and decreasing lexicographical order, respectively. 

Sequential O(n) ranking and O(nt) unranking algorithms for      

t–ary trees with n internal nodes are also described on the basis 

of dynamic programming paradigm. Parallel implementations of 

ranking and unranking algorithms are discussed. O(n) parallel 

unranking algorithm is derived in the ASC SIMD model. 

Key words: 
ASC SIMD, t-ary trees, t-sequence, parallel enumeration, 

parallel generation;  

1. Introduction 

Combinatorial generation is one of fundamental problems 

in computer science [1,2]. Combinatorial objects are 

involved as test or problem instances in numerous 

important application areas. Many generation algorithms 

has been developed for such combinatorial objects like    

n–tuples, combinations, permutations, numerical and set 

partitions, trees, graphs etc.  

 

Binary and t–ary trees are important combinatorial 

structures. Their representation, enumeration and ranking 

techniques are of great interest from both a theoretical and 

practical point of view [3,4].  

The number of t–ary trees with n internal nodes is  

( ) ( ) ( 1)B n t tn n tn n . The number of binary trees 

( 2)B n  is known as the Catalan number ( )C n . There are 

well known equivalence relations between such objects as 

binary trees, full binary trees, ordered trees, well-formed 

parentheses, standard tableaux and ballot sequences [5].  

Many different representations were invented and used for 

sequential generation of binary and t–ary trees, for instance 

x–sequences, (bitstrings), y–sequences, w–sequences,       

z–sequences, Gray codes etc. [6,7,8,9,10,11,12,13,14,15, 

16, 17,18,19,20,21].  

 

 

Parallel generation algorithms for t–ary trees were 

developed in various SIMD models, providing paralleli-

zation of the generation process on the single object level.  

The first parallel generation algorithm for the linear array 

model with N  processors ( N n ) was proposed by Akl 

and Stojmenović in [22]. In fact one more processor is 

needed as a master unit what leads to an irregularity of the 

model with either N  or 1N  processors. The inversion 

table representation of t–ary trees is used and subsequent 

trees are generated with a constant delay. Partial results 

concerning applications of associative SIMD models with 

1N  processors for enumeration of t–ary trees in the form 

of z–sequences and x–sequences were presented in [23,24]. 

For the above generation methods parallelization of 

computations on the level of the set of objects is possible 

by partitioning the full set of objects into k disjoint subsets 

and concurrent subset generation by an adaptive parallel 

algorithm.  

In the paper [25] a parallel adaptive algorithm for genera-

ting t–ary trees as z–sequences in decreasing lexico-

graphical order (A–order) in CREW SM SIMD model was 

presented, with the processor number N , N n . The 

parallelization of computations on the level of single 

objects was provided, although the object is generated in 

parts (except the case when N n ).  

Sequential ranking and unranking algorithms were 

developed for binary trees [9] and t–ary trees [8,14,17, 

21,25]. Ranking and unranking of combinatorial 

configurations is applied in adaptive and random genera-

tion algorithms, genetic algorithms, enumeration coding 

etc. [26,27,28].  

One interesting application of generators of combinatorial 

configurations is associative processing [29,30]. 

Associative machine models have been shown to have 

applications in many different areas of parallel computing 

including processing of data bases, computational 

geometry, expert systems, artificial intelligence, solving 

NP–complete and polynomial problems etc. [29,30,31, 

32,33,34]. Many efficient algorithms developed in these 

areas exploit the power of massive associative processing.  

Associative processors designed for processing 

combinatorial problems require additional hardware 

components, which are able to perform generation of 

mask/comparand vectors efficiently: a fast interconnection 

network generating pattern permutations and generators of 

mailto:zk@pk.edu.pl


IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011 

 

39 

 

combinatorial objects (preferably in bitstring 

representation). A versatile hardware generator of 

permutations, combinations and partitions was designed 

that combines a complex parallel counter as the control 

unit and a cellular interconnection network [35,36]. 

Parallel associative algorithms for generation of combi-

nations and partitions in conventional and bitstring 

representations with O(1) time per one generated object 

[37,38,39] were also designed.  

In the present paper a new representation of t–ary trees is 

proposed in the form of t–sequences. Then, a new parallel 

algorithm for the generation of t–ary trees is designed. 

Consecutive objects are generated in a lexicographic order, 

corresponding to reverse A–order [20], with O(1) time per 

object.  

Computations run in the an associative SIMD model called 

ASC with 1n  processors and constant–time basic 

associative operations [40,41]. In this model parallel 

processors perform word–parallel bit–serial associative 

operations.  

Sequential algorithms for ranking and unranking t–ary 

trees are also described on the basis of a dynamic 

programming technique, where tables of pre–computed 

coefficients are used. The complexity of our new ranking 

algorithm is only O(t) in comparison to O(nt) ranking 

algorithms given in [14,21] and the same as the ranking 

algorithm in [25]. An O(nt) unranking algorithm is also 

given. Although unranking problems are inherently 

sequential, a portion of the computations can be 

parallelized and a new O(n) parallel algorithm for un-

ranking t–ary trees is constructed in the ASC model. The 

unranking algorithm given in [25] is ( log )O nt n .  

The dynamic programming technique was successfully 

employed in many combinatorial algorithms including 

unranking combinations [42], partitions [36] and some 

other combinatorial objects [43,44]. Parallel dynamic 

programming algorithms were proposed for unranking 

combinations [45].  

Sequential simulation programs for all presented 

algorithms have been implemented in Pascal and success-

fully tested for various input data.  

The rest of the paper is organized as follows. The next 

section introduces representations of combinatorial 

objects. Section 3 describes the ASC SIMD model of 

computation used throughout this paper. Associative 

algorithms for generation of t–ary trees in two different 

representations are presented in section 4. Sequential 

ranking and unranking algorithms for t–ary trees together 

with simple proofs of their correctness are described in 

section 5. A parallel unranking algorithm is given in 

section 6. Section 7 contains concluding remarks.  

2. Representations and properties of t–ary 

trees 

Let us introduce basic notions used throughout this paper 

and a new representation of t–ary trees by means of choice 

functions of indexed families of sets.  

Let 
i i IA  denote an indexed family of sets 

iA A , 

where: 1A { …m} , 1I { … n} , 1 m n . Any mapping 

f  which "chooses" one element from each set 
1 nA … A  is 

called a choice function of the family 
i i IA  [46].  

With additional restrictions we can model by choice 

functions various classes of combinatorial objects  

[35,37,43].  

Any choice function 
i i Ia  of the indexed family 

i i IA  that satisfies the supplementary condition: 

i ja a , for i j , and i j I , is called a nondecreasing 

choice function of this family (l–sequence). All 

nondecreasing choice functions are representations of all 

n–subsets with repetitions (combinations with repetitions) 

of the m–element set A . In conventional representation of 

combinations with repetitions we deal in fact with indexed 

sets  1 1i iL { … m n } A  [37].  

Any choice function 
i i Ia  of the indexed family 

i i IA  that satisfies the supplementary conditions:       

1. ( 1)( 1) 1m n t ; 2. 
i ja a , for i j , and i j I , 

and 3. 1 ( 1)( 1) 1ia { … i t } , for i I , is called non-

decreasing choice function with restricted growth of this 

family (t–sequence). In the above mappings we deal in fact 

with indexed sets  1 ( 1)( 1) 1i iT { … i t } A .  

For given n  and t , the number of all choice functions  

is the fraction nt

nC /(nt-n+1) 1nt t

nC  of the number of all 

choice functions .  

There exist bijections between the set of choice functions 

 and the set of t–ary trees with n  internal nodes in other 

widely used representations. Below we define choice 

functions  and  corresponding to the notions of         

z–sequences and  x–sequences known from the literature.  

Any choice function 
i i Ia  of the indexed family 

i i IA  that satisfies the supplementary conditions: 1. 

( 1) 1m n t ; 2. 
i ja a , for i j  and i j I ; and 3. 

1 ( 1) 1ia { … i t } , for i I , is called increasing 

choice function with restricted growth of this family       

(z–sequence [20]). In the above mappings we deal in fact 

with indexed sets 1 ( 1) 1i iZ { … i t } A .  

Any choice function 
i i Ia  of the indexed family 

i i IA ,  where  
i iA X {0,1}  and   1I { … tn} ,   is                                 
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Fig. 1  Representations of t-ary trees in A-order; n=3, t=4 and B(3,4)=22. 

 

 

called binary choice function of this family (x–sequence 

[20]). All binary choice functions such that 

1 ia … a i t , for 1 i tn , are bitstring 

representations of the corresponding t–ary trees.  

Simple transformations convert choice functions  into 

choice functions  and  . For instance, [ ] [ ] 1i i i , 

1 i n , and [ [ ]] 1i , 1 i n , and otherwise 

[ ] 0j , for 1 j nt .  

The t–ary trees and their selected representations are 

depicted  in  Fig.1.  

Let us introduce now lexicographical orders on the set of 

all choice functions of the family 
i i IA .  

For given choice functions 
1 kd … d  and 

1 kg … g , we say that  is less then  according 

to the increasing lexicographical order, if and only if there 

exists 1i i { … k} , satisfying 
i id g , and 

j jd g , for 

every j i .  

For given choice functions 
1 kd … d  and 

1 kg … g , we say that  is less then  according 

to the decreasing lexicographical order, if and only if there 

exists 1i i { … k}  satisfying 
i id g  and 

j jd g , for 

every j i .  

The following proposition is immediate from the previous 

definitions:  

 

P r o p o s i t i o n  

Any given choice function 
p

, 1 ( )p B n t , may be 

obtained from the choice function 
1p
, preceding it in the 

increasing lexicographical order, by incrementing the 

rightmost element satisfying 
1[ ] ( 1)( 1) 1p g g t , and 

setting all elements 
1[ ]p h , h g , to the same value 

1[ ] 1p g .  □ 

 

 

The above proposition is a validation of the generation 

algorithm for t–sequences and its basic multicast operation 

as well as the associative model of computation described 

in section 3.  

The number of all t–ary trees with n internal nodes is 

denoted by ( ) ( ) ( 1)B n t tn n tn n . The number of 

binary trees ( 2)B n  is known as Catalan number ( )C n .  

Let us introduce now the concept of Ruskey numbers [14], 

which is used in our dynamic programming 

ranking/unranking algorithms.  

The number of different ( )n t –trees (i.e. trees with n 

internal nodes) less then or equal to  

1 1 2n i n i n i i Iz … z z … z T  with fixed 

1 1n iz … z  (in the increasing lexicographical order) is 

called a Ruskey number. The Ruskey numbers can be 

computed recursively by the following formulas:  

 

( )t

nR i j j                                (1) 

for 1i , and 0 ( 1)( 1) 1j n t  ;  

 

( ) ( 1) ( 1 )t t t

n n nR i j R i j R i j            (2) 

for 1 i n , and   ( 1)( 1) 1 ( 1)( 1) 1i t j n t .  

 

The above recursive formulas describe construction of 

Ruskey tables for different values n and t. Three tables RT, 

containing parts of the Ruskey tables, are shown in 

Tables  1,  2 and  3.  

Ruskey numbers ( )t

nR i j  are stored in corresponding 

elements [ ]RT i j  of the table RT while all remaining cells 

are filled with zeros. The following equality holds:  
 

( ( 1)( 1) 1) ( )t

nR i i t B n t              (3) 

for 1 i n .  

The tables RT can be created sequentially in time 2( )O n t .  
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Table 1: Construction of the table RT for (n,2)-trees,  n≤9, B(9,2)=4862. 

 
  

Table 2: Construction of the table RT for (n,3){trees, n≤7, B(7,3)=7752. 

 
 

Table 3: Construction of the table RT for (n,4){trees, n≤5, B(5,4)=969. 

The pre–computed Ruskey tables were used for developing 

( )O nt  ranking and unranking algorithms for t–ary trees 

(see [14]). The algorithms were developed on the basis of 

a one–to–one equivalence relation between tree sequences 

and certain walks in a lattice L constructed for the given 

values n and t. The dual approach was developed by Zaks 

[20], where similar tables with coefficients were used.  

3. Model of Computation 

Parallel computational models significantly differ in 

versality and complexity [26]. From practical point of view 

it is reasonable to use dedicated models that provide 

efficient implementation of key operations necessary for 

solving the given computational task.  

For combinatorial enumeration simple low–level models 

are sufficient. Let us notice, that generation of the given set 

of combinatorial objects in a linear order is equivalent to a  

counting process in the corresponding code. Thus, the 

most adequate model for parallel generation is the complex 

parallel counter model, i.e. synchronous parallel counter 

composed of parallel counters [35,36]. Another simple yet 

powerful model is the linear array model [47]. Associative 

SIMD model can also be used for several classes of objects 

[23,37,38]. In some cases it is possible to combine two 

simple computational models [39].  

Parallel generation algorithms developed later in this paper 

involve  both  broadcast  and  maximum  operations. The 

broadcast (multicast) operation is used for sending data 

from a source device to all (selected) n destination devices, 

respectively. The maximum operation is used for finding 

the maximal element of the given  n–element set.  

In the popular CREW PRAM model the cost of both above 

operations is (log )O n . A lower cost of broadcast 

operation can be obtained in any model of parallel 

computations with a broadcast bus, where the cost of 

broadcast/multicast operations is constant. Among many 

models are PRAM with a broadcast bus, BSR 

(Broadcasting with Selective Reduction) [26], LARPBS 

[48], etc. However, a more appropriate model for 

implementation of our algorithms is a scalable associative 

processor model with easy–to–implement both constant–

time associative searches (relational, maximum/minimum) 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011 

 

42 

 

and broadcast/multicast operations. Among many models 

of associative computations, classified as a subclass of 

SIMD models [49], we selected a well documented model, 

called ASC [40,41,50].  

 

 

Fig. 2  The ASC model of computation. 

Let us describe the most important features of the ASC 

SIMD model (Fig. 2) that are essential for the presentation 

of our algorithms (all citations after [41]).  

In the ASC model instructions are executed with data–

parallelizm, associative searching, maximum and minimum 

operations are performed in constant–time, synchroniza-

tion of instruction streams utilize control parallelism. In the  

simplest ASC model only one instruction stream appears. 

Such a simple model applied in the present paper contains 

a number of identical cells and one instruction stream (IS) 

processor. Each cells consist of a processing element (PE) 

and a local memory. The memory of an associative 

computer forms an array of cells. PEs can access the 

memory in their own cells. Related data items are 

aggregated  together into records and stored one record per 

cell. More cells then data is available.  

Let us now describe the IS processor. The IS processor is 

connected by a bus with all cells. IS contains a copy of the 

program being executed and can broadcast an instruction 

to all cells in unit time. The execution of commands 

follows SIMD model of parallelizm. An active cell 

executes the commands it receives from IS. IS can instruct 

its active cells to perform an associative search. We call 

successful cells responders, while unsuccessful cells are 

called nonresponders. It is also possible to restore the 

former set of active cells. Each above action require one 

unit of time. IS has also ability to select an arbitrary 

responder from the set of active cells in unit time and  

instruct that cell to broadcast its data on the bus. All other 

cells can receive the value placed on the bus in unit time. 

The model provides constant time global operations. The 

IS processor can compute the OR or AND function of a 

binary value in all active PEs in unit time. Cells with the 

maximum and minimum value in each of its active PEs can 

be determined in constant–time.  

The ASC SIMD model is of practical value. An FPGA 

prototype of the ASC processor scalable up to 52 PEs was 

built using Altera APEX 20K1000E device [51].  

In the algorithm Z–TreeGen , presented in the next section, 

the basic operations are associative relational searches 

{ }, maximum search and one–to–subset broadcast 

(multicast) operations. The algorithm requires integer 

tables [ ]T n , [ ]MAX n , a binary table [ ]TAG n , an integer 

output table [ ]Z n  and integer variables  s and  ind.  

In the ASC model the algorithm Z–TreeGen uses an array 

built of n cells, each cell containing a record with the cell 

index i, 1 i n , integers [ ]T i  , [ ]TAG i , [ ]MAX i  and 

[ ]Z i . The integer variables s and ind are stored in the 

processor IS. Thus, the required hardware complexity of 

the model  is O(n).  

The algorithm X–TreeGen uses the same data structures as 

the algorithm Z–TreeGen except the table [ ]Z n . In return 

for this, the algorithm X–treeGen uses the binary output 

table [ ]X nt  that introduces an irregularity to our model of 

computation. The size of the output table, determined by 

the representation of t–ary trees by x–sequences, is t times 

bigger then the size of the other tables and may cause some 

problems related to the evaluation of the asymptotic 

complexity of the computational model. There are at least 

three solutions to this problem:  

(i) Computations related to [ ]X nt  are performed in 

an augmented ASC model that contains an extra 

cell array of size nt (controlled by the same IS 

processor). In this case the total complexity of the 

augmented  ASC model  IS O(nt).  

(ii) Computations related to [ ]X nt  are performed in 

an augmented ASC model that contains a special 

purpose fully parallel associative memory of size 

nt (controlled by the same IS processor). The 

extra memory does not need separate PEs for 

performing associative relational searches. For 

evaluation purposes the memory of size nt is 

"partitioned" into n equal parts of size t, each part 

contributes to the complexity of one cell of the 

ASC model. Thus, the required hardware 

complexity of the model remains O(n) (see 

remark below).  

(iii) Computations related to [ ]X nt  are performed in 

the ASC model in which t  additional binary 

tables [ ]jX n , 1 j t , are used for storing the 

binary output table [ ]X nt . Therefore, each 

memory record in the ith cell contains the ith bits 

of all [ ]jX n  instead of the ith element of [ ]Z n . 

Thus, the required hardware complexity of the 

model is ( )O n  (see remark below).  
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Remark : The lenght of memory records, assuming 

nonredundant codings, is ( )O logn  bits. Therefore, if t is 

also ( )O logn  (quite realistic assumption) the total 

complexity of the augmented ASC model in cases 2 and 3 

will remain ( )O n .  

In the next section we assume that either solution 2 or 3 is 

applied. The parallel algorithm UnrankTreePar 

corresponds to the ASC model with ( )O nt  processors (see  

section 6).  

4. Parallel Enumeration Algorithms 

It is interesting to notice that, despite applying different 

approaches to the generation task, many enumeration 

algorithms for given classes of objects reveal a common 

control structure. For instance, the common control 

structure of permutation generation algorithms called 

"factorial counting" was discovered by Sedgewick [52] 

and this structure was used for the construction of a 

permutation generator [35].  

In this paper we propose that the common control structure 

for t–ary trees with n internal nodes in two representations 

is the structure of ( )m n –combinations with repetitions 

with restricted growth, where ( 1)( 1) 1m n t . The 

properties of the sequences of combinations with 

repetitions as nondecreasing choice functions  are a key 

factor in our parallelization method (see Proposition 2.1 in 

section 2). Therefore, the sequence of choice functions  

has been chosen as a basic control sequence for the 

generation. Actually, other related objects can be obtained 

from choice functions .  

For the given input values: n – the number of internal 

nodes, t – t–ary tree parameter, the algorithm Z–TreeGen 

generates in table Z  consecutive z –sequences in the 

increasing lexicographical order. In the algorithm            

Z–TreeGen uniform multicast operations are performed, as 

described in section 3.  

In order to produce control t–sequences the algorithm 

operates on the table T and the variable s. In the elements 

of the table MAX  maximum values of the corresponding 

T elements are stored. In the variable s  future values of T 

subsequences are computed and stored in advance. 

Computations begin with 1s . The first t–sequence in the 

table T is obtained. Then, the initial table TAG  is 

computed and the first output is produced. Next, 

consecutive values T and s are produced and output         

z–sequences are computed. The range of table T cells used 

in the procedure One2subset is determined associatively in 

O(1) time through two consecutive relational search 

operations { }. The function Output performs a 

parallel conversion of the control t–sequence into the 

output z–sequence. Computations run until the last z–

sequence in the table Z is generated, i.e. 1ind .  

The parallel algorithm Z–TreeGen is shown in Fig.3.  
 

procedure Z–TreeGen   
begin  
    ind:=1; s:=1; for i:=1 to n do MAX[i]:=(i—1)(t—1)+1;  
    One2subset(s, T, ind, n);   
    One2subset(0, TAG, ind, n);   
    Output(n, T); ind:=n;   
    while ind 1 do  
        if  T[ind] MAX[ind] then   
            begin  
                 s:=T[ind]+1;  
                 One2subset(s, T, Ind, n);  
                 if s MAX[ind] then One2subset(1, TAG, ind, ind);  
                 if ind n then One2subset(0, TAG, ind+1, n);  
                 Output(n, T); ind:=n;   
            end;  
        else   
            ind:= maximum {i: TAG[i]=0};  
end;  
 

function One2subset(one, SET, left, right); /multicast/  
begin  
    for i:=left to right do in parallel SET[i]:=one;  
end;  
 

function Output(n, T); /conversion and output/  
begin  
    for i:=1 to n do in parallel Z[i]:=T[i]+i—1;  
    output Z;  
end;  

Fig. 3  The parallel algorithm Z–TreeGen. 

Sequences generated by the algorithm Z–TreeGen , for 

3n , 4t , are listed in Table 4.  

In columns 3 and 5 (variable s and table T) transformations 

of the control sequence are shown. The bold font points 

out the source and the destination elements in multicasts 

involving s, T and TAG .  

Output z–sequences are shown in column 6 of Table 4.  

 

T h e o r e m  4 . 1  

Algorithm Z–TreeGen generates, in the form of                

z–sequences, all t–ary trees with n internal nodes in the 

increasing lexicographical order with constant time per one 

tree in the associative model ASC with n+1 processors. 

Thus, the algorithm Z–TreeGen is optimal. □  

 

For the given input values: n – the number of internal 

nodes, t – t–ary tree parameter, the algorithm X–TreeGen 

generates in table X consecutive x–sequences in the 
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Table 4: Sequences generated by algorithms Z-TreeGen and X-TreeGen, for n=3, t=4. 

 

 
decreasing lexicographical order. In the algorithm X–

TreeGen uniform  multicast  operations  are  also essential. 

In order to produce control t–sequences the algorithm 

operates on elements of the table T and the variable s. In 

the elements of the table MAX  maximum values of the 

corresponding T elements are stored. In variable s  future 

values of T subsequences are computed and stored in 

advance. Computations begin with 1s . The first t–

sequence in the table T is obtained. Then, the initial table 

TAG  and the first output X are computed and the first 

output X is produced. Consecutive values T and s are then 

produced and output x–sequences are computed. 

Destination cells in tables T and X used in the procedure 

One2subset are determined associatively in a constant time 

through two consecutive relational search operations  

{ }. In order to produce output x–sequences the 

algorithm operates on elements of the table X and binary 

constants {0,1}. Computations run until the last               

x–sequence in the table X is generated, i.e. 1ind .  

 

The parallel algorithm X–TreeGen for generation of t–ary 

trees is shown in Fig.4.  

Output  x–sequences are shown in column 7 of Table 4.  

 

T h e o r e m  4 . 2  

Algorithm X–TreeGen generates, in the form of               

x–sequences, all t–ary trees with n internal nodes in the 

decreasing lexicographical order with constant time per 

one tree in the ASC associative model with n+1 

processors. Thus, the algorithm X–TreeGen is optimal. □ 

 

 

 

procedure X-TreeGen   
begin  
    ind:=1; s:=1; for i:=1 to n do MAX[i]:=(i—1)(t—1)+1;  
    One2subset(s, T, ind, n);   
    One2subset(0, TAG, ind, n);   
    One2subset(1, X, ind, n);   
    One2subset(0, X, n+1, nt);   
    output X; ind:=n;   
    while ind 1 do  
        if T[ind] MAX[ind] then   
            begin  
                s:=T[ind]+1;  
                One2subset(s, T, ind, n);  
                One2subset(0, X, T[ind-1]+ind—1, nt);  
                One2subset(1, X, T[ind]+ind—1, T[ind]+n—1);  
                if s MAX[ind] then One2subset(1, TAG, ind, ind);  
                if ind n then One2subset(0, TAG, ind+1, n);  
                output X;  

                ind:=n;   
            end  
        else ind:= maximum {i: TAG[i]=0};;;  
end;  

 
function One2subset(one, SET, left, right); /multicast/  
begin  
    for i:=left to right do in parallel SET[i]:=one;  
end;  

Fig. 4  The parallel algorithm X–TreeGen. 
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5. Ranking and Unranking Algorithms 

In this section we assume t–ary trees to be represented by 

increasing choice fuctions with restricted growth             

(z–sequences). In the algorithms UnrankTree and 

RankTree presented below the table RT is used, which 

includes a part of the Ruskey table. Each coefficient 

( )t

nR i j  is mapped to the cell [ ]RT i j . In the dynamic 

programming approach the table RT with Ruskey numbers 

is pre–computed.  

For the given input values: n – the number of internal 

nodes, t– t–ary tree parameter, Index  – rank of the           

z–sequence in the increasing lexicographical order 

( 1 ( )Index B n t ), RT – table with elements [ ]RT i j  

containing the Ruskey numbers ( )t

nR i j , the algorithm 

UnrankTree produces the corresponding z–sequence in 

table Z.  

Computations proceed with tree rank Index  in the 

decreasing lexicographical order. In order to determine Z 

the table RT is searched. The maximum elements [ ]RT i m , 

satisfying the given inequality [ ]RT i j Index , are 

selected in each row. Then, the next value [ 1]Z n i  is 

computed. After O(nt) iterations we obtain the required    

z–sequence in the table Z.  

  
procedure UnrankTree   
begin  
    i:=n; j:=(t—1)(n—1);  
    Index’:=RT[i, j+1]—Index;   
    while (Index’  0) and (i 0) do   
        if RT[i, j]  Index’ then  
            begin  
                Index’:=Index’—RT[i, j];  
                Z[n—i+1]:=(tn—t+2)—(i+j);  
                 i:=i—1;  
            end  
        else j:=j—1;;;  
   return Z;  
end;  

Fig. 5  The algorithm UnrankTree. 

Example 1  
For the input data set {A, B, C} given below compute table Z using the 

algorithm UnrankTree.  
Input A  
n=9, t=2 and Index(Z)=3682.  
Solution  
i=9, j=8, Index’=RT[9,9]—Index=4862—3682=1180.  
RT[9,8]=0  Index’=1180, Index’=1180—0=1180, Z[1]:=1.  
RT[8,7]=0  Index’=1180, Index’=1180—0=1180, Z[2]:=3.  
RT[7,7]=429  Index’=1180, Index’=1180—429=751, Z[3]:=4.  
RT[6,7]=429  Index’=751, Index’=751—429=322, Z[4]:=5.  
RT[5,7]=297  Index’=322, Index’=322—297=25, Z[5]:=6.  
RT[4,4]=14  Index’=25, Index’=25—14=11, Z[6]:=10.  
RT[3,3]=5  Index’=11, Index’=11—5=6, Z[7]:=12.  
RT[2,3]=5  Index’=6, Index’=6—5=1, Z[8]:=13.  
RT[1,1]=1  Index’=1, Index’=1—1=0, Z[9]:=16.  

Input B  
n=7, t=3 and Index(Z)=6409.  
Solution  
i=7, j=13, Index’=RT[9,9]—Index=7752—6409=1343.  
Z=[1,4,5,6,8,11,14].  
Input C  
n=5, t=4 and Index(Z)=425.  
Solution  
i=5, j=13, Index’=RT[5,13]—Index=969—425=544.  
Z[1,3,4,12,17].  

 

T h e o r e m  5 . 1  

Algorithm UnrankTree is correct and its asymptotic 

complexity is ( )O nt .   

 

Proof. The set of all ( )B n t  trees can be displayed in the 

form of a rooted ordered tree of height n (see Fig. 6).  

 

 
 

Fig. 6  The rooted ordered tree of all B(3,3) trees with edge 

and node labels. 

 

There are ( 1) 1n t  nodes with depth n. Each node with 

depth i, 0 1i n , has 1it k  children, where k is an 

integer label for the edge connecting the given node with 

its ancestor (for the root that has no ancestor we assume 

0k ), and edges connecting the given node with its 

descendants are labeled by 1 2 1k k … it , 

respectively. In this way all nodes with depth i as well as 

all paths are ordered in the tree.  

Traversing the tree in preorder and listing all paths from 

the root to subsequent leaves – by sequences of edge labels 

– is equivalent to generation (enumeration) of all ( )B n t  

trees in increasing lexicographic order. Let us assign to all 

such paths their ranks in decreasing lexicographic order. 

Unranking the object with rank Index  in the tree is 

equivalent to finding in the tree the path with rank 

( )Index B n t Index , 1 ( )Index B n t .  

Every node of the tree with depth i has an integer label 

equal to the sum of all leaves of ordered subtree rooted in 
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this node and all its siblings with depth i following it. Each 

node label is a Ruskey coefficient. We determine the path 

with rank Index  by determining a proper subtrees on the 

consequtive levels starting from the root. Rooted subtrees 

on the ith level are viewed in the decreasing order of their 

size (size means in this case the number of subtree leaves). 

In order to do this the current Index  of the choice function 

is compared with node labels ( )t

nR i j  and taken from the 

cell [ ]RT i j . In each level i no more then 

( 1)( 1) 1n i t  comparisons are made and before the 

next step rank Index  is modified. Single iteration with 

complexity O(1) is repeated O(nt) times. Condition 

[ ]RT i j Index  is satisfied n times, and the next item of 

the required object is obtained. Hence, the total complexity 

of the algorithm is O(nt).  

 

For the sake of completeness the O(n) ranking algorithm 

RankTree is presented that has lower asymptotic 

complexity then the O(nt) ranking algorithms described by 

Ruskey [14] and Zaks [21].  

 

For the given input values: n – the number of internal 

nodes, t – t–ary tree parameter, Z – table with z–sequence, 

RT — table with elements RT[i, j] containing the Ruskey 

numbers ( )t

nR i j , the algorithm RankTree computes 

Index , i.e. the rank of the z–sequence in the increasing 

lexicographical order, 1 ( )Index B n t .  

Computations proceed with tree rank Index  in the 

decreasing lexicographical order. The value of Index  is 

updated iteratively. After O(n) iterations we obtain the 

rank Index  which is then converted into the tree rank 

Index  in the increasing lexicographical order.  

 
procedure RankTree   
begin  
    Index’:=0;  
    m:=(t—1)(n—1);  
    for j:=1 to n do Index’:=Index’+RT[n—j+1, m—Z[j]+j];  
    Index:=RT[n-1, m+1]—Index’;  
    return Index.  
end;  

Fig. 7  The algorithm RankTree. 

Example 2  
For the input data set {D, E, F} given below find index(Z) using the 

algorithm RankTree .  

Input D  
n=9, t=2 and Z=[1,3,4,5,6,10,12,13,16].  
Solution  
Index’= RT[9,8]+RT[8,7]+RT[7,7]+RT[6,7]+RT[5,7]+RT[4,4]+  
+RT[3,3]+RT[2,3]+RT[1,1]=0+0+429+429+297+14+5+5+1=  
=1180.  
Index=RT[9,9]—Index’=4862—1180=250.  
 

Input E  
n=7, t=3 and Z=[1,4,5,6,8,11,14].  
Solution  
Index’= RT[7,12]+RT[6,10]+RT[5,10]+RT[4,10]+RT[3,9]+  
+RT[2,7]+RT[1,5]=0+0+728+455+130+25+5=1343.  
Index=RT[7,13]—Index’=7752—1343=6409.  
Input F  
n=5, t=4 and Z=[1,3,4,12,17].  
Solution  
Index’= RT[5,12]+RT[4,11]+RT[3,11]+RT[2,4]+RT[1,0]=  
=0+340+200+4+0=544.  
Index=RT4[5,13]—Index’=969—544=425.  

 

T h e o r e m  5 . 2  

Algorithm RankTree is correct ind its asymptotic 

complexity is O(n).   

 

Proof. Correctness of the ranking method results directly 

from the proof of Theorem 5.1 and the original paper by 

Ruskey [14]. The complexity of the algorithm is obviously 

O(n).   

6. Parallel Ranking and Unranking 

Algorithms 

In the algorithm UnrankTree two computational processes 

can be parallelized – creation of the coefficient table RT, 

and searching in the rows of the coefficient table RT. The 

parallelization may be achieved with the help of a special 

purpose model.  

Let us notice that elements in the ith row of the table RT 

form a sequence which is increasing with column index j . 

This property is essential for speeding up the search in the 

RT rows. For a given pair ( )n t , sequential generation of 

the table RT requires 2( )O n t  steps. Generation of the table 

RT from recursive formulas presented in section 2 may be 

parallelized through systolic computations and the 

generation time may be reduced from 2( )O n t  to O(nt) .  

 

The algorithm UnrankTreePar has the same input and 

output as in the algorithm UnrankTree.  

Computations proceed with tree ranks in the decreasing 

lexicographical order. In order to determine table Z 

associative searches are used. In each iteration of the for 

loop the element [ ]RT i k  with maximum kth coordinate is 

selected satisfying the given inequality { } and the value 

of Index  variable is updated. Then the next value 

[ 1]Z n i  is obtained and the value m is updated. After n 

iterations we obtain the corresponding z–sequence in the 

table Z.  

 

A simple parallel unranking algorithm for t –ary trees 

implementing associative relational search operation { } 

and maximum operation is given in Fig. 8.  
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procedure UnrankTreePar   
begin  
    m:=(n—1)(t—1);  
    Index’:=RT[n, m+1]—Index;   
    for i:=n downto 1 do   
        begin  
            k:= maximum {j: (0  j  m) and (RT[i, j]  Index’);  
            Index’:=Index’—RT[i, k];  
            Z[n—i+1]:=(tn—t+2)—(i+j);  
            m:=k;  
        end;  
    return Z;  
end;  

Fig. 8  The algorithm UnrankTreePar. 

The unranking algorithm UnrankTreePar is a variant of 

algorithm UnrankTree . 

  

T h e o r e m  6 . 1  

Algorithm UnrankTreePar is correct and its asymptotic 

complexity is O(n).  

  

Proof. Correctness of the method results from the Proof of 

Theorem 5.1. Search in consecutive rows of the coefficient 

table RT is organized in an associative manner. Rank 

Index  is simultaneously compared with all values stored 

in the cells of the ith row of the table RT. This reduces the 

search time in the ith row to O(1). In this way the value 

[ 1]Z n i  is determined. Before the next step the rank 

Index  is modified. Each iteration has time complexity 

O(1). The number of iterations is n, hence the total 

complexity of the algorithm is O(n).  

 

In order to execute the algorithm UnrankTreePar in the 

ASC model of computation, where associative 

computations are performed in the cell array, it is 

necessary to apply ( 1)( 1) 2n t  cells, each cell 

containing one n–element column of the table RT. Thus, in 

the algorithm the indices i and j must be mutually 

exchanged. In this case, the total complexity of the ASC 

model is O(nt).  

 

In the algorithm RankTree computations in for loop can be 

parallelized. CRCW PRAM model with concurrent write 

of the sum of elements [ 1 [ ] ]RT n j m Z j j  to the 

result variable Index  may be applied. The resulting 

parallel ranking algorithm has O(1) asymptotic time 

complexity. The algorithm is obvious and it is omitted 

here.  

 

7. Concluding Remarks 

Associative algorithms Z–TreeGen and X–TreeGen for 

generation of t–ary trees with n internal nodes provide the 

parallelization of computations on the level of single 

combinatorial object, satisfying most properties discussed 

in [22,47]. They can be used in adaptive tree generation 

too, enabling further parallelization on the set of objects 

level. In this case standard unranking techniques for t–ary 

trees may be applied with a little effort for programming a 

number of generators working in parallel.  

Two unranking algorithms have also been presented in 

Zaks’ representation. They are derived on the basis of the 

dynamic programming paradigm and apply the coefficient 

table RT containing Ruskey numbers. The parallel 

unranking algorithm UnrankTreePar can be performed in 

a special purpose parallel processor containing both 

systolic and associative features. At first, the coefficient 

table RT is created by systolic computations in O(nt) time. 

Then, n subsequent elements of a tree codeword             

(z–sequence) are computed in O(1) time per element 

through bit–parallel word–parallel associative relational 

searches and maximum operations.  

The sequential O(n) algorithm RankTree is as fast as 

similar algorithms developed earlier. A parallel version of 

this algorithm in CRCW PRAM model requires only a 

constant time.  

The ASC SIMD model of computation was selected mostly 

due to its versatility. Readers familiar with principles of 

associative computing may notice that the bit–serial word–

parallel paradigm represented by the ASC model can be 

replaced by the bit–parallel word–parallel paradigm 

[53,54] which was used in [23]. The asymptotic time 

complexities of the related algorithms for a fully parallel 

associative processor remain the same as their counterparts 

in ASC model.  
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