
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

38

Parallel Enumeration of t–ary Trees in ASC SIMD Model

Zbigniew Kokosiński

zk@pk.edu.pl
Dept. of Automatic Control & Information Technology, Faculty of Electrical & Computer Eng.,

Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland

Summary
In this paper parallel algorithms are presented for enumeration

and unranking of t–ary trees with n internal nodes. Generation

algorithms are designed in the associative computing model ASC

that belongs to a broad category of SIMD models. Tree

sequences are generated in lexicographical order, with O(1) time

per object, in a new representation, as combinations with

repetitions with restricted growth. The resulting full t–ary trees in

the form of z–sequences and x–sequences appear in lexico-

graphical and decreasing lexicographical order, respectively.

Sequential O(n) ranking and O(nt) unranking algorithms for

t–ary trees with n internal nodes are also described on the basis

of dynamic programming paradigm. Parallel implementations of

ranking and unranking algorithms are discussed. O(n) parallel

unranking algorithm is derived in the ASC SIMD model.

Key words:
ASC SIMD, t-ary trees, t-sequence, parallel enumeration,

parallel generation;

1. Introduction

Combinatorial generation is one of fundamental problems

in computer science [1,2]. Combinatorial objects are

involved as test or problem instances in numerous

important application areas. Many generation algorithms

has been developed for such combinatorial objects like

n–tuples, combinations, permutations, numerical and set

partitions, trees, graphs etc.

Binary and t–ary trees are important combinatorial

structures. Their representation, enumeration and ranking

techniques are of great interest from both a theoretical and

practical point of view [3,4].

The number of t–ary trees with n internal nodes is

() () (1)B n t tn n tn n . The number of binary trees

(2)B n is known as the Catalan number ()C n . There are

well known equivalence relations between such objects as

binary trees, full binary trees, ordered trees, well-formed

parentheses, standard tableaux and ballot sequences [5].

Many different representations were invented and used for

sequential generation of binary and t–ary trees, for instance

x–sequences, (bitstrings), y–sequences, w–sequences,

z–sequences, Gray codes etc. [6,7,8,9,10,11,12,13,14,15,

16, 17,18,19,20,21].

Parallel generation algorithms for t–ary trees were

developed in various SIMD models, providing paralleli-

zation of the generation process on the single object level.

The first parallel generation algorithm for the linear array

model with N processors (N n) was proposed by Akl

and Stojmenović in [22]. In fact one more processor is

needed as a master unit what leads to an irregularity of the

model with either N or 1N processors. The inversion

table representation of t–ary trees is used and subsequent

trees are generated with a constant delay. Partial results

concerning applications of associative SIMD models with

1N processors for enumeration of t–ary trees in the form

of z–sequences and x–sequences were presented in [23,24].

For the above generation methods parallelization of

computations on the level of the set of objects is possible

by partitioning the full set of objects into k disjoint subsets

and concurrent subset generation by an adaptive parallel

algorithm.

In the paper [25] a parallel adaptive algorithm for genera-

ting t–ary trees as z–sequences in decreasing lexico-

graphical order (A–order) in CREW SM SIMD model was

presented, with the processor number N , N n . The

parallelization of computations on the level of single

objects was provided, although the object is generated in

parts (except the case when N n).

Sequential ranking and unranking algorithms were

developed for binary trees [9] and t–ary trees [8,14,17,

21,25]. Ranking and unranking of combinatorial

configurations is applied in adaptive and random genera-

tion algorithms, genetic algorithms, enumeration coding

etc. [26,27,28].

One interesting application of generators of combinatorial

configurations is associative processing [29,30].

Associative machine models have been shown to have

applications in many different areas of parallel computing

including processing of data bases, computational

geometry, expert systems, artificial intelligence, solving

NP–complete and polynomial problems etc. [29,30,31,

32,33,34]. Many efficient algorithms developed in these

areas exploit the power of massive associative processing.

Associative processors designed for processing

combinatorial problems require additional hardware

components, which are able to perform generation of

mask/comparand vectors efficiently: a fast interconnection

network generating pattern permutations and generators of

mailto:zk@pk.edu.pl

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

39

combinatorial objects (preferably in bitstring

representation). A versatile hardware generator of

permutations, combinations and partitions was designed

that combines a complex parallel counter as the control

unit and a cellular interconnection network [35,36].

Parallel associative algorithms for generation of combi-

nations and partitions in conventional and bitstring

representations with O(1) time per one generated object

[37,38,39] were also designed.

In the present paper a new representation of t–ary trees is

proposed in the form of t–sequences. Then, a new parallel

algorithm for the generation of t–ary trees is designed.

Consecutive objects are generated in a lexicographic order,

corresponding to reverse A–order [20], with O(1) time per

object.

Computations run in the an associative SIMD model called

ASC with 1n processors and constant–time basic

associative operations [40,41]. In this model parallel

processors perform word–parallel bit–serial associative

operations.

Sequential algorithms for ranking and unranking t–ary

trees are also described on the basis of a dynamic

programming technique, where tables of pre–computed

coefficients are used. The complexity of our new ranking

algorithm is only O(t) in comparison to O(nt) ranking

algorithms given in [14,21] and the same as the ranking

algorithm in [25]. An O(nt) unranking algorithm is also

given. Although unranking problems are inherently

sequential, a portion of the computations can be

parallelized and a new O(n) parallel algorithm for un-

ranking t–ary trees is constructed in the ASC model. The

unranking algorithm given in [25] is (log)O nt n .

The dynamic programming technique was successfully

employed in many combinatorial algorithms including

unranking combinations [42], partitions [36] and some

other combinatorial objects [43,44]. Parallel dynamic

programming algorithms were proposed for unranking

combinations [45].

Sequential simulation programs for all presented

algorithms have been implemented in Pascal and success-

fully tested for various input data.

The rest of the paper is organized as follows. The next

section introduces representations of combinatorial

objects. Section 3 describes the ASC SIMD model of

computation used throughout this paper. Associative

algorithms for generation of t–ary trees in two different

representations are presented in section 4. Sequential

ranking and unranking algorithms for t–ary trees together

with simple proofs of their correctness are described in

section 5. A parallel unranking algorithm is given in

section 6. Section 7 contains concluding remarks.

2. Representations and properties of t–ary

trees

Let us introduce basic notions used throughout this paper

and a new representation of t–ary trees by means of choice

functions of indexed families of sets.

Let
i i IA denote an indexed family of sets

iA A ,

where: 1A { …m} , 1I { … n} , 1 m n . Any mapping

f which "chooses" one element from each set
1 nA … A is

called a choice function of the family
i i IA [46].

With additional restrictions we can model by choice

functions various classes of combinatorial objects

[35,37,43].

Any choice function
i i Ia of the indexed family

i i IA that satisfies the supplementary condition:

i ja a , for i j , and i j I , is called a nondecreasing

choice function of this family (l–sequence). All

nondecreasing choice functions are representations of all

n–subsets with repetitions (combinations with repetitions)

of the m–element set A . In conventional representation of

combinations with repetitions we deal in fact with indexed

sets 1 1i iL { … m n } A [37].

Any choice function
i i Ia of the indexed family

i i IA that satisfies the supplementary conditions:

1. (1)(1) 1m n t ; 2.
i ja a , for i j , and i j I ,

and 3. 1 (1)(1) 1ia { … i t } , for i I , is called non-

decreasing choice function with restricted growth of this

family (t–sequence). In the above mappings we deal in fact

with indexed sets 1 (1)(1) 1i iT { … i t } A .

For given n and t , the number of all choice functions

is the fraction nt

nC /(nt-n+1) 1nt t

nC of the number of all

choice functions .

There exist bijections between the set of choice functions

 and the set of t–ary trees with n internal nodes in other

widely used representations. Below we define choice

functions and corresponding to the notions of

z–sequences and x–sequences known from the literature.

Any choice function
i i Ia of the indexed family

i i IA that satisfies the supplementary conditions: 1.

(1) 1m n t ; 2.
i ja a , for i j and i j I ; and 3.

1 (1) 1ia { … i t } , for i I , is called increasing

choice function with restricted growth of this family

(z–sequence [20]). In the above mappings we deal in fact

with indexed sets 1 (1) 1i iZ { … i t } A .

Any choice function
i i Ia of the indexed family

i i IA , where
i iA X {0,1} and 1I { … tn} , is

40 IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

Fig. 1 Representations of t-ary trees in A-order; n=3, t=4 and B(3,4)=22.

called binary choice function of this family (x–sequence

[20]). All binary choice functions such that

1 ia … a i t , for 1 i tn , are bitstring

representations of the corresponding t–ary trees.

Simple transformations convert choice functions into

choice functions and . For instance, [] [] 1i i i ,

1 i n , and [[]] 1i , 1 i n , and otherwise

[] 0j , for 1 j nt .

The t–ary trees and their selected representations are

depicted in Fig.1.

Let us introduce now lexicographical orders on the set of

all choice functions of the family
i i IA .

For given choice functions
1 kd … d and

1 kg … g , we say that is less then according

to the increasing lexicographical order, if and only if there

exists 1i i { … k} , satisfying
i id g , and

j jd g , for

every j i .

For given choice functions
1 kd … d and

1 kg … g , we say that is less then according

to the decreasing lexicographical order, if and only if there

exists 1i i { … k} satisfying
i id g and

j jd g , for

every j i .

The following proposition is immediate from the previous

definitions:

P r o p o s i t i o n

Any given choice function
p

, 1 ()p B n t , may be

obtained from the choice function
1p
, preceding it in the

increasing lexicographical order, by incrementing the

rightmost element satisfying
1[] (1)(1) 1p g g t , and

setting all elements
1[]p h , h g , to the same value

1[] 1p g . □

The above proposition is a validation of the generation

algorithm for t–sequences and its basic multicast operation

as well as the associative model of computation described

in section 3.

The number of all t–ary trees with n internal nodes is

denoted by () () (1)B n t tn n tn n . The number of

binary trees (2)B n is known as Catalan number ()C n .

Let us introduce now the concept of Ruskey numbers [14],

which is used in our dynamic programming

ranking/unranking algorithms.

The number of different ()n t –trees (i.e. trees with n

internal nodes) less then or equal to

1 1 2n i n i n i i Iz … z z … z T with fixed

1 1n iz … z (in the increasing lexicographical order) is

called a Ruskey number. The Ruskey numbers can be

computed recursively by the following formulas:

()t

nR i j j (1)

for 1i , and 0 (1)(1) 1j n t ;

() (1) (1)t t t

n n nR i j R i j R i j (2)

for 1 i n , and (1)(1) 1 (1)(1) 1i t j n t .

The above recursive formulas describe construction of

Ruskey tables for different values n and t. Three tables RT,

containing parts of the Ruskey tables, are shown in

Tables 1, 2 and 3.

Ruskey numbers ()t

nR i j are stored in corresponding

elements []RT i j of the table RT while all remaining cells

are filled with zeros. The following equality holds:

((1)(1) 1) ()t

nR i i t B n t (3)

for 1 i n .

The tables RT can be created sequentially in time 2()O n t .

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

41

Table 1: Construction of the table RT for (n,2)-trees, n≤9, B(9,2)=4862.

Table 2: Construction of the table RT for (n,3){trees, n≤7, B(7,3)=7752.

Table 3: Construction of the table RT for (n,4){trees, n≤5, B(5,4)=969.

The pre–computed Ruskey tables were used for developing

()O nt ranking and unranking algorithms for t–ary trees

(see [14]). The algorithms were developed on the basis of

a one–to–one equivalence relation between tree sequences

and certain walks in a lattice L constructed for the given

values n and t. The dual approach was developed by Zaks

[20], where similar tables with coefficients were used.

3. Model of Computation

Parallel computational models significantly differ in

versality and complexity [26]. From practical point of view

it is reasonable to use dedicated models that provide

efficient implementation of key operations necessary for

solving the given computational task.

For combinatorial enumeration simple low–level models

are sufficient. Let us notice, that generation of the given set

of combinatorial objects in a linear order is equivalent to a

counting process in the corresponding code. Thus, the

most adequate model for parallel generation is the complex

parallel counter model, i.e. synchronous parallel counter

composed of parallel counters [35,36]. Another simple yet

powerful model is the linear array model [47]. Associative

SIMD model can also be used for several classes of objects

[23,37,38]. In some cases it is possible to combine two

simple computational models [39].

Parallel generation algorithms developed later in this paper

involve both broadcast and maximum operations. The

broadcast (multicast) operation is used for sending data

from a source device to all (selected) n destination devices,

respectively. The maximum operation is used for finding

the maximal element of the given n–element set.

In the popular CREW PRAM model the cost of both above

operations is (log)O n . A lower cost of broadcast

operation can be obtained in any model of parallel

computations with a broadcast bus, where the cost of

broadcast/multicast operations is constant. Among many

models are PRAM with a broadcast bus, BSR

(Broadcasting with Selective Reduction) [26], LARPBS

[48], etc. However, a more appropriate model for

implementation of our algorithms is a scalable associative

processor model with easy–to–implement both constant–

time associative searches (relational, maximum/minimum)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

42

and broadcast/multicast operations. Among many models

of associative computations, classified as a subclass of

SIMD models [49], we selected a well documented model,

called ASC [40,41,50].

Fig. 2 The ASC model of computation.

Let us describe the most important features of the ASC

SIMD model (Fig. 2) that are essential for the presentation

of our algorithms (all citations after [41]).

In the ASC model instructions are executed with data–

parallelizm, associative searching, maximum and minimum

operations are performed in constant–time, synchroniza-

tion of instruction streams utilize control parallelism. In the

simplest ASC model only one instruction stream appears.

Such a simple model applied in the present paper contains

a number of identical cells and one instruction stream (IS)

processor. Each cells consist of a processing element (PE)

and a local memory. The memory of an associative

computer forms an array of cells. PEs can access the

memory in their own cells. Related data items are

aggregated together into records and stored one record per

cell. More cells then data is available.

Let us now describe the IS processor. The IS processor is

connected by a bus with all cells. IS contains a copy of the

program being executed and can broadcast an instruction

to all cells in unit time. The execution of commands

follows SIMD model of parallelizm. An active cell

executes the commands it receives from IS. IS can instruct

its active cells to perform an associative search. We call

successful cells responders, while unsuccessful cells are

called nonresponders. It is also possible to restore the

former set of active cells. Each above action require one

unit of time. IS has also ability to select an arbitrary

responder from the set of active cells in unit time and

instruct that cell to broadcast its data on the bus. All other

cells can receive the value placed on the bus in unit time.

The model provides constant time global operations. The

IS processor can compute the OR or AND function of a

binary value in all active PEs in unit time. Cells with the

maximum and minimum value in each of its active PEs can

be determined in constant–time.

The ASC SIMD model is of practical value. An FPGA

prototype of the ASC processor scalable up to 52 PEs was

built using Altera APEX 20K1000E device [51].

In the algorithm Z–TreeGen , presented in the next section,

the basic operations are associative relational searches

{ }, maximum search and one–to–subset broadcast

(multicast) operations. The algorithm requires integer

tables []T n , []MAX n , a binary table []TAG n , an integer

output table []Z n and integer variables s and ind.

In the ASC model the algorithm Z–TreeGen uses an array

built of n cells, each cell containing a record with the cell

index i, 1 i n , integers []T i , []TAG i , []MAX i and

[]Z i . The integer variables s and ind are stored in the

processor IS. Thus, the required hardware complexity of

the model is O(n).

The algorithm X–TreeGen uses the same data structures as

the algorithm Z–TreeGen except the table []Z n . In return

for this, the algorithm X–treeGen uses the binary output

table []X nt that introduces an irregularity to our model of

computation. The size of the output table, determined by

the representation of t–ary trees by x–sequences, is t times

bigger then the size of the other tables and may cause some

problems related to the evaluation of the asymptotic

complexity of the computational model. There are at least

three solutions to this problem:

(i) Computations related to []X nt are performed in

an augmented ASC model that contains an extra

cell array of size nt (controlled by the same IS

processor). In this case the total complexity of the

augmented ASC model IS O(nt).

(ii) Computations related to []X nt are performed in

an augmented ASC model that contains a special

purpose fully parallel associative memory of size

nt (controlled by the same IS processor). The

extra memory does not need separate PEs for

performing associative relational searches. For

evaluation purposes the memory of size nt is

"partitioned" into n equal parts of size t, each part

contributes to the complexity of one cell of the

ASC model. Thus, the required hardware

complexity of the model remains O(n) (see

remark below).

(iii) Computations related to []X nt are performed in

the ASC model in which t additional binary

tables []jX n , 1 j t , are used for storing the

binary output table []X nt . Therefore, each

memory record in the ith cell contains the ith bits

of all []jX n instead of the ith element of []Z n .

Thus, the required hardware complexity of the

model is ()O n (see remark below).

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

43

Remark : The lenght of memory records, assuming

nonredundant codings, is ()O logn bits. Therefore, if t is

also ()O logn (quite realistic assumption) the total

complexity of the augmented ASC model in cases 2 and 3

will remain ()O n .

In the next section we assume that either solution 2 or 3 is

applied. The parallel algorithm UnrankTreePar

corresponds to the ASC model with ()O nt processors (see

section 6).

4. Parallel Enumeration Algorithms

It is interesting to notice that, despite applying different

approaches to the generation task, many enumeration

algorithms for given classes of objects reveal a common

control structure. For instance, the common control

structure of permutation generation algorithms called

"factorial counting" was discovered by Sedgewick [52]

and this structure was used for the construction of a

permutation generator [35].

In this paper we propose that the common control structure

for t–ary trees with n internal nodes in two representations

is the structure of ()m n –combinations with repetitions

with restricted growth, where (1)(1) 1m n t . The

properties of the sequences of combinations with

repetitions as nondecreasing choice functions are a key

factor in our parallelization method (see Proposition 2.1 in

section 2). Therefore, the sequence of choice functions

has been chosen as a basic control sequence for the

generation. Actually, other related objects can be obtained

from choice functions .

For the given input values: n – the number of internal

nodes, t – t–ary tree parameter, the algorithm Z–TreeGen

generates in table Z consecutive z –sequences in the

increasing lexicographical order. In the algorithm

Z–TreeGen uniform multicast operations are performed, as

described in section 3.

In order to produce control t–sequences the algorithm

operates on the table T and the variable s. In the elements

of the table MAX maximum values of the corresponding

T elements are stored. In the variable s future values of T

subsequences are computed and stored in advance.

Computations begin with 1s . The first t–sequence in the

table T is obtained. Then, the initial table TAG is

computed and the first output is produced. Next,

consecutive values T and s are produced and output

z–sequences are computed. The range of table T cells used

in the procedure One2subset is determined associatively in

O(1) time through two consecutive relational search

operations { }. The function Output performs a

parallel conversion of the control t–sequence into the

output z–sequence. Computations run until the last z–

sequence in the table Z is generated, i.e. 1ind .

The parallel algorithm Z–TreeGen is shown in Fig.3.

procedure Z–TreeGen
begin
 ind:=1; s:=1; for i:=1 to n do MAX[i]:=(i—1)(t—1)+1;
 One2subset(s, T, ind, n);
 One2subset(0, TAG, ind, n);
 Output(n, T); ind:=n;
 while ind 1 do
 if T[ind] MAX[ind] then
 begin
 s:=T[ind]+1;
 One2subset(s, T, Ind, n);
 if s MAX[ind] then One2subset(1, TAG, ind, ind);
 if ind n then One2subset(0, TAG, ind+1, n);
 Output(n, T); ind:=n;
 end;
 else
 ind:= maximum {i: TAG[i]=0};
end;

function One2subset(one, SET, left, right); /multicast/
begin
 for i:=left to right do in parallel SET[i]:=one;
end;

function Output(n, T); /conversion and output/
begin
 for i:=1 to n do in parallel Z[i]:=T[i]+i—1;
 output Z;
end;

Fig. 3 The parallel algorithm Z–TreeGen.

Sequences generated by the algorithm Z–TreeGen , for

3n , 4t , are listed in Table 4.

In columns 3 and 5 (variable s and table T) transformations

of the control sequence are shown. The bold font points

out the source and the destination elements in multicasts

involving s, T and TAG .

Output z–sequences are shown in column 6 of Table 4.

T h e o r e m 4 . 1

Algorithm Z–TreeGen generates, in the form of

z–sequences, all t–ary trees with n internal nodes in the

increasing lexicographical order with constant time per one

tree in the associative model ASC with n+1 processors.

Thus, the algorithm Z–TreeGen is optimal. □

For the given input values: n – the number of internal

nodes, t – t–ary tree parameter, the algorithm X–TreeGen

generates in table X consecutive x–sequences in the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

44

Table 4: Sequences generated by algorithms Z-TreeGen and X-TreeGen, for n=3, t=4.

decreasing lexicographical order. In the algorithm X–

TreeGen uniform multicast operations are also essential.

In order to produce control t–sequences the algorithm

operates on elements of the table T and the variable s. In

the elements of the table MAX maximum values of the

corresponding T elements are stored. In variable s future

values of T subsequences are computed and stored in

advance. Computations begin with 1s . The first t–

sequence in the table T is obtained. Then, the initial table

TAG and the first output X are computed and the first

output X is produced. Consecutive values T and s are then

produced and output x–sequences are computed.

Destination cells in tables T and X used in the procedure

One2subset are determined associatively in a constant time

through two consecutive relational search operations

{ }. In order to produce output x–sequences the

algorithm operates on elements of the table X and binary

constants {0,1}. Computations run until the last

x–sequence in the table X is generated, i.e. 1ind .

The parallel algorithm X–TreeGen for generation of t–ary

trees is shown in Fig.4.

Output x–sequences are shown in column 7 of Table 4.

T h e o r e m 4 . 2

Algorithm X–TreeGen generates, in the form of

x–sequences, all t–ary trees with n internal nodes in the

decreasing lexicographical order with constant time per

one tree in the ASC associative model with n+1

processors. Thus, the algorithm X–TreeGen is optimal. □

procedure X-TreeGen
begin
 ind:=1; s:=1; for i:=1 to n do MAX[i]:=(i—1)(t—1)+1;
 One2subset(s, T, ind, n);
 One2subset(0, TAG, ind, n);
 One2subset(1, X, ind, n);
 One2subset(0, X, n+1, nt);
 output X; ind:=n;
 while ind 1 do
 if T[ind] MAX[ind] then
 begin
 s:=T[ind]+1;
 One2subset(s, T, ind, n);
 One2subset(0, X, T[ind-1]+ind—1, nt);
 One2subset(1, X, T[ind]+ind—1, T[ind]+n—1);
 if s MAX[ind] then One2subset(1, TAG, ind, ind);
 if ind n then One2subset(0, TAG, ind+1, n);
 output X;

 ind:=n;
 end
 else ind:= maximum {i: TAG[i]=0};;;
end;

function One2subset(one, SET, left, right); /multicast/
begin
 for i:=left to right do in parallel SET[i]:=one;
end;

Fig. 4 The parallel algorithm X–TreeGen.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

45

5. Ranking and Unranking Algorithms

In this section we assume t–ary trees to be represented by

increasing choice fuctions with restricted growth

(z–sequences). In the algorithms UnrankTree and

RankTree presented below the table RT is used, which

includes a part of the Ruskey table. Each coefficient

()t

nR i j is mapped to the cell []RT i j . In the dynamic

programming approach the table RT with Ruskey numbers

is pre–computed.

For the given input values: n – the number of internal

nodes, t– t–ary tree parameter, Index – rank of the

z–sequence in the increasing lexicographical order

(1 ()Index B n t), RT – table with elements []RT i j

containing the Ruskey numbers ()t

nR i j , the algorithm

UnrankTree produces the corresponding z–sequence in

table Z.

Computations proceed with tree rank Index in the

decreasing lexicographical order. In order to determine Z

the table RT is searched. The maximum elements []RT i m ,

satisfying the given inequality []RT i j Index , are

selected in each row. Then, the next value [1]Z n i is

computed. After O(nt) iterations we obtain the required

z–sequence in the table Z.

procedure UnrankTree
begin
 i:=n; j:=(t—1)(n—1);
 Index’:=RT[i, j+1]—Index;
 while (Index’ 0) and (i 0) do
 if RT[i, j] Index’ then
 begin
 Index’:=Index’—RT[i, j];
 Z[n—i+1]:=(tn—t+2)—(i+j);
 i:=i—1;
 end
 else j:=j—1;;;
 return Z;
end;

Fig. 5 The algorithm UnrankTree.

Example 1
For the input data set {A, B, C} given below compute table Z using the

algorithm UnrankTree.
Input A
n=9, t=2 and Index(Z)=3682.
Solution
i=9, j=8, Index’=RT[9,9]—Index=4862—3682=1180.
RT[9,8]=0 Index’=1180, Index’=1180—0=1180, Z[1]:=1.
RT[8,7]=0 Index’=1180, Index’=1180—0=1180, Z[2]:=3.
RT[7,7]=429 Index’=1180, Index’=1180—429=751, Z[3]:=4.
RT[6,7]=429 Index’=751, Index’=751—429=322, Z[4]:=5.
RT[5,7]=297 Index’=322, Index’=322—297=25, Z[5]:=6.
RT[4,4]=14 Index’=25, Index’=25—14=11, Z[6]:=10.
RT[3,3]=5 Index’=11, Index’=11—5=6, Z[7]:=12.
RT[2,3]=5 Index’=6, Index’=6—5=1, Z[8]:=13.
RT[1,1]=1 Index’=1, Index’=1—1=0, Z[9]:=16.

Input B
n=7, t=3 and Index(Z)=6409.
Solution
i=7, j=13, Index’=RT[9,9]—Index=7752—6409=1343.
Z=[1,4,5,6,8,11,14].
Input C
n=5, t=4 and Index(Z)=425.
Solution
i=5, j=13, Index’=RT[5,13]—Index=969—425=544.
Z[1,3,4,12,17].

T h e o r e m 5 . 1

Algorithm UnrankTree is correct and its asymptotic

complexity is ()O nt .

Proof. The set of all ()B n t trees can be displayed in the

form of a rooted ordered tree of height n (see Fig. 6).

Fig. 6 The rooted ordered tree of all B(3,3) trees with edge

and node labels.

There are (1) 1n t nodes with depth n. Each node with

depth i, 0 1i n , has 1it k children, where k is an

integer label for the edge connecting the given node with

its ancestor (for the root that has no ancestor we assume

0k), and edges connecting the given node with its

descendants are labeled by 1 2 1k k … it ,

respectively. In this way all nodes with depth i as well as

all paths are ordered in the tree.

Traversing the tree in preorder and listing all paths from

the root to subsequent leaves – by sequences of edge labels

– is equivalent to generation (enumeration) of all ()B n t

trees in increasing lexicographic order. Let us assign to all

such paths their ranks in decreasing lexicographic order.

Unranking the object with rank Index in the tree is

equivalent to finding in the tree the path with rank

()Index B n t Index , 1 ()Index B n t .

Every node of the tree with depth i has an integer label

equal to the sum of all leaves of ordered subtree rooted in

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

46

this node and all its siblings with depth i following it. Each

node label is a Ruskey coefficient. We determine the path

with rank Index by determining a proper subtrees on the

consequtive levels starting from the root. Rooted subtrees

on the ith level are viewed in the decreasing order of their

size (size means in this case the number of subtree leaves).

In order to do this the current Index of the choice function

is compared with node labels ()t

nR i j and taken from the

cell []RT i j . In each level i no more then

(1)(1) 1n i t comparisons are made and before the

next step rank Index is modified. Single iteration with

complexity O(1) is repeated O(nt) times. Condition

[]RT i j Index is satisfied n times, and the next item of

the required object is obtained. Hence, the total complexity

of the algorithm is O(nt). 

For the sake of completeness the O(n) ranking algorithm

RankTree is presented that has lower asymptotic

complexity then the O(nt) ranking algorithms described by

Ruskey [14] and Zaks [21].

For the given input values: n – the number of internal

nodes, t – t–ary tree parameter, Z – table with z–sequence,

RT — table with elements RT[i, j] containing the Ruskey

numbers ()t

nR i j , the algorithm RankTree computes

Index , i.e. the rank of the z–sequence in the increasing

lexicographical order, 1 ()Index B n t .

Computations proceed with tree rank Index in the

decreasing lexicographical order. The value of Index is

updated iteratively. After O(n) iterations we obtain the

rank Index which is then converted into the tree rank

Index in the increasing lexicographical order.

procedure RankTree
begin
 Index’:=0;
 m:=(t—1)(n—1);
 for j:=1 to n do Index’:=Index’+RT[n—j+1, m—Z[j]+j];
 Index:=RT[n-1, m+1]—Index’;
 return Index.
end;

Fig. 7 The algorithm RankTree.

Example 2
For the input data set {D, E, F} given below find index(Z) using the

algorithm RankTree .

Input D
n=9, t=2 and Z=[1,3,4,5,6,10,12,13,16].
Solution
Index’= RT[9,8]+RT[8,7]+RT[7,7]+RT[6,7]+RT[5,7]+RT[4,4]+
+RT[3,3]+RT[2,3]+RT[1,1]=0+0+429+429+297+14+5+5+1=
=1180.
Index=RT[9,9]—Index’=4862—1180=250.

Input E
n=7, t=3 and Z=[1,4,5,6,8,11,14].
Solution
Index’= RT[7,12]+RT[6,10]+RT[5,10]+RT[4,10]+RT[3,9]+
+RT[2,7]+RT[1,5]=0+0+728+455+130+25+5=1343.
Index=RT[7,13]—Index’=7752—1343=6409.
Input F
n=5, t=4 and Z=[1,3,4,12,17].
Solution
Index’= RT[5,12]+RT[4,11]+RT[3,11]+RT[2,4]+RT[1,0]=
=0+340+200+4+0=544.
Index=RT4[5,13]—Index’=969—544=425.

T h e o r e m 5 . 2

Algorithm RankTree is correct ind its asymptotic

complexity is O(n).

Proof. Correctness of the ranking method results directly

from the proof of Theorem 5.1 and the original paper by

Ruskey [14]. The complexity of the algorithm is obviously

O(n). 

6. Parallel Ranking and Unranking

Algorithms

In the algorithm UnrankTree two computational processes

can be parallelized – creation of the coefficient table RT,

and searching in the rows of the coefficient table RT. The

parallelization may be achieved with the help of a special

purpose model.

Let us notice that elements in the ith row of the table RT

form a sequence which is increasing with column index j .

This property is essential for speeding up the search in the

RT rows. For a given pair ()n t , sequential generation of

the table RT requires 2()O n t steps. Generation of the table

RT from recursive formulas presented in section 2 may be

parallelized through systolic computations and the

generation time may be reduced from 2()O n t to O(nt) .

The algorithm UnrankTreePar has the same input and

output as in the algorithm UnrankTree.

Computations proceed with tree ranks in the decreasing

lexicographical order. In order to determine table Z

associative searches are used. In each iteration of the for

loop the element []RT i k with maximum kth coordinate is

selected satisfying the given inequality { } and the value

of Index variable is updated. Then the next value

[1]Z n i is obtained and the value m is updated. After n

iterations we obtain the corresponding z–sequence in the

table Z.

A simple parallel unranking algorithm for t –ary trees

implementing associative relational search operation { }

and maximum operation is given in Fig. 8.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

47

procedure UnrankTreePar
begin
 m:=(n—1)(t—1);
 Index’:=RT[n, m+1]—Index;
 for i:=n downto 1 do
 begin
 k:= maximum {j: (0 j m) and (RT[i, j] Index’);
 Index’:=Index’—RT[i, k];
 Z[n—i+1]:=(tn—t+2)—(i+j);
 m:=k;
 end;
 return Z;
end;

Fig. 8 The algorithm UnrankTreePar.

The unranking algorithm UnrankTreePar is a variant of

algorithm UnrankTree .

T h e o r e m 6 . 1

Algorithm UnrankTreePar is correct and its asymptotic

complexity is O(n).

Proof. Correctness of the method results from the Proof of

Theorem 5.1. Search in consecutive rows of the coefficient

table RT is organized in an associative manner. Rank

Index is simultaneously compared with all values stored

in the cells of the ith row of the table RT. This reduces the

search time in the ith row to O(1). In this way the value

[1]Z n i is determined. Before the next step the rank

Index is modified. Each iteration has time complexity

O(1). The number of iterations is n, hence the total

complexity of the algorithm is O(n). 

In order to execute the algorithm UnrankTreePar in the

ASC model of computation, where associative

computations are performed in the cell array, it is

necessary to apply (1)(1) 2n t cells, each cell

containing one n–element column of the table RT. Thus, in

the algorithm the indices i and j must be mutually

exchanged. In this case, the total complexity of the ASC

model is O(nt).

In the algorithm RankTree computations in for loop can be

parallelized. CRCW PRAM model with concurrent write

of the sum of elements [1 []]RT n j m Z j j to the

result variable Index may be applied. The resulting

parallel ranking algorithm has O(1) asymptotic time

complexity. The algorithm is obvious and it is omitted

here.

7. Concluding Remarks

Associative algorithms Z–TreeGen and X–TreeGen for

generation of t–ary trees with n internal nodes provide the

parallelization of computations on the level of single

combinatorial object, satisfying most properties discussed

in [22,47]. They can be used in adaptive tree generation

too, enabling further parallelization on the set of objects

level. In this case standard unranking techniques for t–ary

trees may be applied with a little effort for programming a

number of generators working in parallel.

Two unranking algorithms have also been presented in

Zaks’ representation. They are derived on the basis of the

dynamic programming paradigm and apply the coefficient

table RT containing Ruskey numbers. The parallel

unranking algorithm UnrankTreePar can be performed in

a special purpose parallel processor containing both

systolic and associative features. At first, the coefficient

table RT is created by systolic computations in O(nt) time.

Then, n subsequent elements of a tree codeword

(z–sequence) are computed in O(1) time per element

through bit–parallel word–parallel associative relational

searches and maximum operations.

The sequential O(n) algorithm RankTree is as fast as

similar algorithms developed earlier. A parallel version of

this algorithm in CRCW PRAM model requires only a

constant time.

The ASC SIMD model of computation was selected mostly

due to its versatility. Readers familiar with principles of

associative computing may notice that the bit–serial word–

parallel paradigm represented by the ASC model can be

replaced by the bit–parallel word–parallel paradigm

[53,54] which was used in [23]. The asymptotic time

complexities of the related algorithms for a fully parallel

associative processor remain the same as their counterparts

in ASC model.

References

[1] Knuth, D.E. (2004) The art of computer programming. Pre–

fascicles of chapter 7.2, (Addison–Wesley).

[2] Ruskey, F. (2003) Combinatorial generation, Working

Version (1j-CSC 425/520), electronic publication available at

http://www.edu/~ruskey/book.pdf

[3] Knuth, D.E. (1997) The art of computer programming.

Fundamental algorithms. (Addison-Wesley).

[4] Knuth, D.E. (2006) The art of computer programming.

Fascile 4. Generating all trees – History of Combinatorial

Generation, (Addison-Wesley).

[5] Stanton, D., White, D. (1996) Constructive combinatorics.

(Wiley–Interscience).

[6] Ahrabian, H., Nowzari–Dalini, A., Salehi, E. (2004) Gray

code algorithm for listing k-ary trees, Studies in Informatics and

Control, 243–251.

http://www.edu/~ruskey/book.pdf

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

48

[7] Er, M.C. (1987) Lexicographic listing and ranking t–ary

trees, The Computer Journal, 559–572.

[8] Er, M.C. (1992) Efficient generation of k–ary trees in natural

order, The Computer Journal, 306–308.

[9] Knott, G.D. (1977) A numbering system for binary trees,

Comm. ACM, , 113–115.

[10] Korsh, J.F. (1994) Loopless generation of k–ary tree

sequences. Information Processing Letters, 243–247.

[11] Mäkinen, E. (1991) A survey of binary tree codings. The

Computer Journal, 438–443.

[12] Roelants van Baronaigien, D. (1991) A loopless algorithm

for generating binary tree sequences. Information Processing

Letters, 189–194.

[13] Roelants van Baronaigien, D., Ruskey, F. (1988)

Generating t–ary trees in a–order. Information Processing

Letters, 205–213.

[14] Ruskey, F. (1978) Generating t–ary trees lexicographically,

SIAM Journal of Computing, 424–439.

[15] Skarbek, W. (1988) Generating ordered trees, Theoretical

Computer Science, 153–159.

[16] Skarbek, W. (2007) On generating all binary trees,

Fundamenta Informaticae, 505–536.

[17] Trojanowski, A.E. (1978) Ranking and listing algorithms

for k–ary trees. SIAM Journal of Computing, 492–509.

[18] Vajnovszki, V. (1996) Constant time algorithm for

generating tree Gray codes, Studies in Informatics and Control,

15–21.

[19] Xiang L., Ushijima K., Akl S.G. (2000) Generating regular

k–ary trees efficiently, The Computer Journal, 290–300.

[20] Zaks, S. (1980) Lexicographic generation of ordered trees,

Theoretical Computer Science, 63–82.

[21] Zaks, S. (1982) Generating and ranking t–ary trees,

Information Processing Letters, 44–48.

[22] Akl, S.G., Stojmenović, I. (1996) Generating t–ary trees in

parallel, Nordic J. of Computing, 63–71.

[23] Kokosiński, Z. (2002) On parallel generation of t–ary trees

in an associative model. In: Proc. PPAM’2001, Lecture Notes in

Computer Science, 228–235.

[24] Kokosiński, Z. (2004) A parallel dynamic programming

algorithm for unranking t–ary trees. In: Proc. PPAM’2003,

Lecture Notes in Computer Science, 255–260.

[25] Ahrabian, H., Nowzari–Dalini, A. (2007) Parallel

generation of t–ary trees in A–order, The Computer Journal,
581-588.

[26] Akl, S.G. (1997) Parallel computation: models and

methods. (Prentice Hall), 475–509.

[27] Üçoluk, G. (1996) A method for chromosome handling of

r–permutations of n–element set in genetic algorithms. Proc.

1996 IEEE Int. Conference on Evolutionary Computation,

Indianapolis, USA, 55–58.

[28] Tomic R.V. (2005) Quantized Indexing: Beyond Arithmetic

Coding, 1stWorks Corporation Technical Report TR05-0625, 32

pp. (available at http://www.1stWorks.com)

[29] Kapralski, A. (1994) Sequential and parallel processing in

depth search machines. (World Scientific).

[30] Krikelis, A., Weems, C.C. (Eds) (1997) Associative

processing and processors. (IEEE Computer Society Press).

[31] Kapralski, A. (1992) Supercomputing for solving a class of

NP–complete and isomorphic complete problems, Computer

Systems Science and Engineering, 218–228.

[32] Kokosiński, Z. (1997) An associative processor for multi–

comparand parallel searching and its selected applications. Proc.

3rd Int. Conference on Parallel and Distributed Processing

Techniques and Applications, Las Vegas, USA, Vol.III,

1434–1442.

[33] Nepomniaschaya A.S., Dvoskina M.A. (2000) A simple

implementation of Dijkstra’s shortest path algorithm on

associative parallel processors, Fundamenta Informaticae,

227–243.

[34] Nepomniaschaya A.S., Kokosiński, Z. (2004) Associative

graph processor and its properties, Proc. Int. Conference on

Parallel Computing in Electrical Engineering, Dresden,

Germany, IEEE Computer Society, 297–302.

[35] Kokosiński, Z. (1990) On generation of permutations

through decomposition of symmetric groups into cosets. BIT,

583–591.

[36] Kokosiński, Z. (1993) Circuits generating combinatorial

configurations for sequential and parallel systems. Monograph

160, Politechnika Krakowska, Kraków, Poland (in Polish),

106 pp.

[37] Kokosiński, Z. (1997) On parallel generation of

combinations in associative processor architectures. Proc. Int.

Conference on Parallel and Distributed Systems, Barcelona,

Spain, 283–289.

[38] Kokosiński, Z. (1999) On parallel generation of set

partitions in associative processor architectures. Proc. 5th Int.

Conference on Parallel and Distributed Processing Techniques

and Applications, Las Vegas, USA, Vol.III, 1257–1262.

[39] Kokosiński, Z. (2006) A new algorithm for generation of

exactly m–block set partitions in associative model. In: Proc.

PPAM’2005, Lecture Notes in Computer Science, 67–74.

[40] Potter, J.L. (1992) Associative computing. A programming

paradigm for massively parallel computers. (Plenum Press).

[41] Potter, J.L., Baker, J.W., and all (1994), ASC: an

associative computing paradigm. Computer, 19–25.

[42] Kokosiński, Z. (1995) Algorithms for unranking

combinations and their applications. Proc. 7th IASTED Int. Conf.

Parallel and Distributed Computing Systems, Washington D.C.,

USA, 216–224.

[43] Kapralski, A. (1993) New methods for the generation of

permutations, combinations and other combinatorial objects in

parallel, Journal of Parallel and Distributed Computing,

315–326.

[44] Kapralski, A. (2000) Modelling arbitrary sets of

combinatorial objects and their sequential and parallel

generation. Studia Informatica, Silesian University of

Technology (a monograph)

[45] Kokosiński, Z. (1996) Unranking combinations in parallel.

Proc. 2nd Int. Conference on Parallel and Distributed

Processing Techniques and Applications, Sunnyvale, USA,

Vol.I, 79–82.

[46] Mirsky, L. (1971) Transversal theory. (Academic Press).

[47] Akl, S.G., Stojmenović, I. (1996) Generating combinatorial

objects on a linear array of processors. In: Zomaya, A.Y., (Ed):

Parallel computing; paradigms and applications. (Int. Thompson

Comp. Press) 639–670.

[48] Pan, Y., Li, K. (1998) Linear array with a reconfigurable

pipelined bus system - concepts and applications. Journal of

Information Sciences, 237–258.

http://www.1stworks.com/

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

49

[49] Parhami, B. (1999) Introduction to parallel processing:

algorithms and architectures. (Plenum Press).

[50] ASC_Research_Papers,
http://www.cs.kent.edu/~potter/research/papers/

[51] Wang, H., Walker R.A. (2003) Implementing a scalable

ASC processor, Proc. 17th Int. Parallel and Distributed

Processing Symposium, Workshop in Massively Parallel

Processing Nice, France, 7 pp., electronic publication available at
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2003.1213482

[52] Sedgewick, R. (1977) Permutation generation methods.

Computing Survey, 137–164.

[53] Foster, C.C. (1976) Content addressable parallel

processors. (Van Nostrand Reinhold).

[54] Yau, S.S., Fung, H.S. (1977) Associative processor

architecture – a survey, Computing Survey, 3–27.

Zbigniew Kokosiński received his M.S. degree in 1982 from

Cracow University of Technology, Kraków, Poland. In 1992 he

received Ph.D. degree with distinction in Computer Science from

the Gdańsk University of Technology, Gdańsk, Poland. In 1994-

1997 he was employed as an Assistant Professor at the

Department of Computer Software, University of Aizu, Aizu-

Wakamatsu, Japan. Currently, dr. Kokosiński is an Assistant

Professor at the Dept. of Automatic Control and Information

Technology, Faculty of Electrical and Computer Engineering,

Cracow University of Technology, Kraków. His research is

focused on combinatorial optimization and parallel

metaheuristics, generation of combinatorial objects in parallel,

associative processors and algorithms, programmable devices

and systems. The publications include over 40 refereed papers in

international scientific journals and conference proceedings.

Reviews for J. of Parallel and Distributed Computing, Networks,

Parallel Computing, Lecture Notes in Computer Science, J. of

Mathematical Modeling and Algorithms, Kragujevac J. of

Mathematics etc. Dr. Kokosinski participated in organization of

several international conferences in the area of parallel

computing serving as a referee, program committee member,

session chair etc. (PDCS, ICEC, IPPS, PDPTA, PPAM, FPL,

PARELEC, MCCSIS, ISPDC). For many years he was a member

of the IEEE Computer Society, ACM and IASTED. Biographical

notes: Marquis "Who's Who in Science and Engineering".

http://www.cs.kent.edu/~potter/research/papers
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2003.1213482

