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Summary 
Traceability schemes are used to protect the rights of 
intellectual-property owners against illegal re-distribution. In 
order to trace a pirate copy back to a user who has been involved 
in making and re-distributing the pirate copy, a traceability 
scheme requires a code which contains a sufficient number of 
codewords and a traitor-tracing algorithm. Codes with the 
identifiable parent property (IPP codes) and traceability codes 
(TA codes) have been extensively studied. IPP codes include all 
TA codes as special instances. However, TA codes usually 
implement efficient tracing algorithms, while IPP codes do not 
always have efficient tracing algorithms. A major theoretical 
challenge is to derive more codes which have efficient tracing 
algorithms. The contributions of this paper include a new class of 
traceability codes, as well as an efficient tracing algorithm for the 
new traceability codes. The proposed tracing algorithm has the 
same complexity as the traditional tracing algorithm and can 
outperform the traditional tracing algorithm. 
Key words: 
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traceability code, tracing algorithm  

1. Introduction 

With the increasing popularity of digital products (e.g., 
digital documents, images, music, movies, and software), 
there is a strong desire to develop effective solutions to the 
problem of protecting digital products against illegal 
re-distribution [2], [5], [16]. Some approaches to detecting 
copyright infringements include monitoring P2P networks 
and blocking the data transfer and/or identifying the end 
users [12]. However, since some data transferred using 
P2P networks is licensed to permit this, a heavy-handed 
approach to blocking all traffic is not appropriate. Also, 
while it is possible to monitor the content of (unencrypted) 
P2P traffic to search for matches on particular hashes of 
known copyrighted data, maintaining and distributing a list 
of all such files to all routers in real-time is not feasible. 
Thus, it makes more sense to encapsulate intellectual 
property rights within the digital product, and to ensure 
that access rights can be managed. 

   Traditional encryption schemes alone do not provide 
an effective solution to this problem, because they do not 
prevent authorized users from transferring the clear-text 
content to unauthorized users. Also, once the transfer has 
been completed, there is no means to trace the 
unauthorized use of the content back to the source of the 
leak by any encryption scheme [2], [7]. Traceability 
schemes are used to protect the rights of 
intellectual-property owners against illegal re-distribution. 
With a traceability scheme the owner of a digital product 
can trace a pirate copy back to users who have been 
involved in making and re-distributing the pirate copy (we 
call such a user a traitor). 
An effective traceability scheme consists of a 
well-designed code (which is a collection of codewords) 
and a traitor-tracing algorithm. In a model for 
collusion-resistant traitor tracing proposed in [8], a unique 
codeword is inserted (by using an invisible watermarking 
procedure, for example) into each copy of the digital 
product before being sold or distributed. Then, by the 
traitor-tracing algorithm, with the codeword retrieved from 
the observed pirate copy (the codeword may have been 
altered by the users who colluded for making the pirate 
copy), at least one of the traitors will be identified. Two 
types of codes have been extensively studied [1], [2], [4], 
[5], [6], [7], [8], [10], [15], [16], [17]. They are codes with 
the identifiable parent property (IPP codes) and 
traceability codes (TA codes). While by definition of IPP 
codes, at least one traitor is theoretically identifiable, it is 
not always guaranteed that an efficient tracing algorithm is 
available. On the other hand, many TA codes can 
implement efficient tracing algorithms. 
  The family of IPP codes includes all TA codes as 
special members; and the currently known TA codes with 
efficient tracing algorithms form a small subset of the 
family of IPP codes. As shown in the literature, there are 
many IPP codes which are not TA codes [16], [17]. For 
those IPP codes, no efficient tracing algorithms are 
available. Therefore, a major theoretical challenge is to 
derive more codes which have efficient tracing algorithms. 
In this paper, generalizing traditional TA codes, we derive 
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a new class of codes. While the generalized TA codes still 
retain the identifiable parent property, they extend 
traditional TA codes and contain new codes. Moreover, 
adapting a decoding algorithm from our previous work 
[18],[19], we derive an efficient tracing algorithm for the 
new traceability codes. We will show that the tracing 
algorithm can outperform the traditional tracing algorithm 
[16].  
Traditional TA codes are defined with respect to the 
Hamming metric (see [16], [17], for example). We 
generalize this definition by defining traceability codes 
with respect to any well-defined metric. We will prove that 
the generalized traceability codes with respect to any 
metric still have the identifiable parent property (that is, 
they belong to IPP codes). As there are many well-defined 
metrics different from the Hamming metric (for instances, 
edit distance, Euclidean distance, and Lee distance [3], 
[11], [14], [18], [19]), the family of generalized TA codes 
is obviously larger than that of traditional TA codes and 
contains new codes. To be more explicit, we then focus on 
TA codes with respect to the Lee metric. By giving a 
precise example, we will show that there exist Lee-metric 
TA codes which are new codes, that is, they are not 
traditional TA codes. We will then present an efficient 
tracing algorithm for the new Lee-metric TA codes. 
The rest of the paper is organized as follows. In Section 2, 
we review the background. In Section 3, we generalize TA 
codes and present new TA codes. In Section 4, we present 
an efficient tracing algorithm for the new Lee-metric TA 
codes. We analyze the performance and complexity of the 
proposed tracing algorithm in Section 5. Concluding 
remarks will be given in Section 6. 

2. Background 

Let A  be an alphabet with | | .A q=  A code C of 
length n  over A  is a subset of 

nA , where 
nA  is the 

set of all n -tuples with components in .A  If  
| |C M=  (that is, C  has M  elements), we call C a 
( , )n M code. An element c  of C , i.e., C∈c , is 
called a codeword. In practical applications, each 
codeword uniquely corresponds to an authorized user of a 
digital product (or a legal copy of the digital product). A 

subset of the code, D C⊆ , corresponds to a group of 
users. A pirate copy (or simply called pirate) corresponds 
to a n-tuple in 

nA . If a group of users, D , have colluded 
to produce a pirate copy, D is called a coalition. An 
element of a coalition is called a traitor. 

For a coalition ,D a n-tuple 1 2( , ,..., )nx x x=x is called 
a descendant of 

 ,D  provided that for all ix  (i = 1, . . . , n), ,i ix a=  

for some 1( ,..., ,..., ) .i na a a D∈  
The set of all descendants of D  is denoted as 

( ).desc D  The size of a coalition, | |D , is an important 
parameter, which can affect the effectiveness of a 
traceability scheme. Letting t be any positive integer, we 
define 

, and | |
( ) ( ).t

D C D t
desc C desc D

⊆ ≤
= U

 

That is, ( )tdesc C  is the set of n-tuples that can be 
produced by a coalition of size at most t. 
In the literature the Hamming metric has been used to 

define traceability codes. For any 1 2( , ,..., )nx x x=x  

and 1 2( , ,..., ) ,n

ny y y A= ∈y the Hamming distance 
between x  and y  is defined as 

( , ) | { | } |H i id i x y= ≠x y  
that is, the number of coordinates where x  and y differ. 
Suppose C  has s subsets of size at most t. It is clear 

that when | |C M= ,  
1

t

i

M
s

i=

⎛ ⎞
= ∑⎜ ⎟

⎝ ⎠ . We are now ready 
to define codes with the identifiable parent property (IPP 
codes) and traceability codes (TA codes). 
Definition 1.  Suppose C  is a code of length n. Let 

2t ≥ be an integer. Let ,iD C⊆  1,..., ,i s=  be all 
the subsets of C  with | | .tD t≤  

(1) C  is a t-IPP code, provided that for all 

( )tdesc C∈x  the following is true 

{ | ( ),| | } .
i ii desc D D t iD φ∈ ≤ ≠xI  

(2) C  is a t-TA code, provided that for all iD  and any 

( )idesc D∈x there exists at least one codeword 

iD∈y  such that  
 

( , ) ( , ),H Hd d<x y x z   for any .iC D∈ −z  

 
Remark 1. Consider a t-IPP code. If a pirate copy x  was 
produced by some coalition D  of size at most t, then the 
traitors must be in the intersection 

{ | ( ) ,| | }i ii d e s c D D t iD∈ ≤xI . By definition, this intersection 
is not empty. Thus, the traitors are identifiable. However, 
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the definition does not provide any information on a 
procedure for constructing the above-mentioned 
intersection or searching the elements of the intersection. 
Suppose C is a (n,M) code. By the exhaustive search, it 

requires 
( )

M
O

t
⎛ ⎞
⎜ ⎟
⎝ ⎠  comparisons to find a traitor. If the 

code of length n is defined over an alphabet A  of size 
q , then ( )nM O q= ; and thus the exhaustive traitor 
search has an exponential time-complexity in code length 
n. 
On the other hand, t-TA codes can have a more efficient 
traitor tracing procedure. By the maximum likelihood 
principle, the codewords which are closest to the pirate are 
traitors. By definition of t-TA codes, at least one traitor 
can be found by comparing the Hamming distance 
between the pirate copy and the codewords. This 
procedure will require M comparisons, and is much more 
efficient than the exhaustive search, which requires 

( )
M

O
t

⎛ ⎞
⎜ ⎟
⎝ ⎠  comparisons. But as ( )nM O q= , this 

procedure still has an exponential complexity in code 
length n. Error-correcting codes have been used to attain 
TA codes [1], [2], [4], [5], [10], [15], [16], [17]. A lot of 
block error-correcting codes, including Reed-Solomon and 
algebraic-geometric codes, are TA codes, when these 
error-correcting codes have large minimum distances and 
small code rates [4], [5], [16], [17]. In [16], the 
well-known list decoding of Reed-Solomon and 
algebraic-geometric codes has been adapted to an efficient 
tracing algorithm. Suppose the TA codes are of length n, 
the tracing algorithm in [16] has a time-complexity which 
is polynomial in code length n. This has been the first 
polynomial-complexity tracing algorithm. 
The following is an important result which shows that all 
t-TA codes satisfy the identifiable parent property, that is, 
the family of t-IPP codes includes all t-TA codes as special 
members. The proof of this result can be found in [17]. 
 
Proposition 1.  Any t-TA code is a t-IPP code. 
On the other hand, there are many t-IPP codes that are not 
t-TA codes (see [16], [17]). In the following sections, we 
will generalize TA codes to attain new traceability codes; 
we will also propose a polynomial-complexity tracing 
algorithm, which outperforms the tracing algorithm in 
[16]. 

3. Generalized Traceability Codes  

Given a set S , a function d from S S×  to ℜ  (the set 
of real numbers) is a distance (or called metric) if and only 
if it satisfies the following three properties: 

∈(1) For any x, y  S, d(x, y) ≥ 0, and d(x, y) = 0 if and 
only if x = y. 

∈For any x, y  S, d(x, y) = d(y, x).  
∈For any x, y, z  S, d(x, y) ≤ d(x, z) + d(z, y).  

It is easy to verify that the Hamming distance is a 
well-defined distance. There are many well-defined 
distances (for examples, edit distance, Euclidean distance, 
and Lee distance [3], [11], [14], [18], [19]) which are 
different from the Hamming distance. 
We are now ready to define generalized t-TA codes with 
respect to any well-defined distance. 
 
Definition 2. (Generalized Traceability Codes) Suppose 
C  is a code of length n. Let t ≥ 2 be an integer. Let 

,iD C⊆  1,..., ,i s=  be all the subsets of C  of size at 

most t, that is, | | .tD t≤  We call C  a generalized t-TA 
code (or t-GTA code for short), provided that there exists a 

well-defined distance d, such that for all iD  and any 
( ),tdesc D∈x  there exists at least one codeword 

tD∈y  such that 
 

( , ) ( , ),d d<x y x z   for any .iC D∈ −z  
 
Comparing with the definition of t-TA codes (i.e., 
Definition 1), this obviously generalizes t-TA codes as the 
Hamming distance is a special instance of distances. The 
generalized TA codes will bring us more traceability codes 
as well as new efficient tracing algorithms based on other 
metrics as we will see in the following sections. 
We now prove that the generalized traceability codes still 
have the identifiable parent property, that is, for the 
generalized traceability codes the traitors are identifiable. 
 
Theorem 1.  Any generalized t-TA code is a t-IPP code. 
Proof:  Suppose C  is a generalized t-TA code with 

respect to a well-defined distance d. Let ( ).tdesc C∈x  

Then there is a coalition ,iD C⊆  with | |iD t=  and 
( ).idesc D∈x  Let iD∈y  such that 

( , ) ( , )d d≤x y x z  for every .iD∈z  Then 
( , ) ( , )d d≤x y x z  ∈for any z  C by the definition of 

generalized t-TA code. 

Next, we prove that for any jD C⊆
 with 

| | ,jD t≤
 if 

( )jdesc D∈x
 then 

.jD∈y
 In fact, if jD∉y

, then 

there is a jD∈w
such that ( , ) ( , )d d<x w x y  by 
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definition of generalized t-TA codes. This contradicts the 

fact that ( , ) ( , )d d≤x y x z  for any z ∈ C. As jD∈y
 

for any jD C⊆
 with 

| |jD t≤
and 

( ),jdesc D∈x
 

we conclude that the intersection 

{ | ( ) ,| | }j jj d esc D D t jD∈ ≤xI
is not empty. Therefore, C is a 

t-IPP code. 
In the following, by giving an example, we will show that 
the family of generalized traceability codes contains new 
codes which are not traditional traceability codes. 
In the rest of the paper, we focus on the Lee metric. Let Zp 
be the ring of integers modulo p, where p is a prime. From 
basic algebra we know Zp is actually a field, which is also 

denoted as pF
. For any pa F∈

, the Lee value of a , 

denoted by | |a , is the nonnegative integer 
min{ , }.a p a− For a n-tuple 1 2( , ,..., ) n

n qx x x F= ∈x
, 

the  Lee  weight  is  defined  as  1
|| || | |

n

L i
i

x
=

= ∑x
.  

The Lee distance between two n-tuples x and y  in 
n

qF
, 

denoted by ( , )Ld x y , is defined as the Lee weight of 
−x y . It is easy to verify that the Lee distance is a 

well-defined distance. 
The Lee distance defined above can be extended to any 
finite field (see [18], [19]). When we consider the binary 
field 2F  and ternary field 3F , the Lee distance 
coincides with the Hamming distance. However, for other 
finite fields, they are different. 

The following is an example of new traceability codes, 
which is a generalized t-TA code with respect to the Lee 
distance. But it is not a traditional t-TA code. 
Example 1.  Consider 11F the finite field of 11 

elements. Let C  be the following code of length 3 over 
the finite field 11F . 

{(1,0,0), (4,1,1), (5,1,1)}.C =  
The code C  is a 2-IPP code; while it is not a 2-TA code.  
   In fact, the symbols in the first position of the 
codewords are distinct. Thus, for any pirate copy 

3

11F∈x , every coalition  of  size  at  most  2  
which  can  produce x must contain the codeword 
which has the same first coordinate with the pirate copy 
as a common codeword. Thus, C  is a 2-IPP code. 

Consider a pirate copy (1,1,1)=x . Obviously, it is a 
descendant of the following coalition 
 

{(1,0,0), (4,1,1)}.D =  

Now,    
          ((1,1,1), (1,0,0)) 2Hd =  and  

          ((1,1,1), (4,1,1)) 1.Hd =  

{(5,1,1)}C D− =  and ((1,1,1), (5,1,1)) 1.Hd =  
Thus, there is no codeword D∈y  satisfying 
 

( , ) ( , ),H Hd d<x y x z   for any .C D∈ −z  

Therefore, C  is not a 2-TA code. 
Now, let us consider the Lee distance Ld . The 

following are the subsets of C  of size 2: 
D1 = {(1, 0, 0), (4, 1, 1)}, 
D2 = {(1, 0, 0), (5, 1, 1)}, and 
D3 = {(4, 1, 1), (5, 1, 1)}. 

We will show that C  is a generalized 2-TA code with 
respect to the Lee distance, by proving that all iD  

satisfy the condition: For any x ∈ desc(Di), there is a 
codeword y ∈ Di such that dL(x, y) < dL(x, z),  for any  
z ∈ C − Di. 

First, considering D1 we have  
desc(D1) = {(1, 0, 0), (4, 1, 1), (1, 0, 1), 1, 1, 0),    

(1, 1, 1), (4, 0, 0), (4, 0, 1), (4, 1, 0)}. 
 
For (1, 0, 0) and (4, 1, 1), as they are in D1, they have Lee 
distance 0 to themselves. Thus, the condition above is 
satisfied. Look at (1, 0, 1),  

((1,0,1), (1,0,0)) 1 ((1,0,1), (4,1,1) 4,L Ld d= < =  
and 

((1,0,1), (1,0,0)) 1 ((1,0,1), (5,1,1) 5.L Ld d= < =  

Therefore, for x = (1, 0, 1) ∈ desc(D1), the codeword   
(1, 0, 0) ∈ D1 is such a y satisfying the above condition. 
Now, for any of (1, 1, 0),  (1, 1, 1),  (4, 0, 0),  (4, 0, 1), 
(4, 1, 0), we can similarly find a y ∈ D1 such that     
dL(x, y) < dL(x, z), for any z ∈ C − D1. Therefore, D1 
satisfies the above condition. Similarly, we can prove that 
D2 and D3 both satisfy the above condition. 
Therefore, C  is a generalized 2-TA code with respect to 
the Lee distance.  

4. Efficient Lee-Metric Tracing Algorithm 

Reed-Solomon (RS) and algebraic-geometric (AG) codes 
have been used as traceability codes; and the list decoding 
algorithm with respect to the Hamming metric has been 
adapted to an efficient tracing algorithm [16]. In this 
section we address RS-traceability codes and 
AG-traceability codes with respect to the Lee metric. We 
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will drive an efficient tracing algorithm based on a 
Lee-metric decoding algorithm in [18], [19]. 
To be self-contained, let us have a brief review of RS and 
AG codes. As AG codes are a generalization of RS codes, 
to simplify the statement, the Lee-metric tracing algorithm 
will be presented for RS-traceability codes. (The algorithm 
can be straightforwardly adapted to AG-traceability 
codes). 

A RS code, ( , )n kC
, over pF

, the finite filed with p 
elements, is defined as 

( , ) 1{( ( ), ..., ( )) |  ( ) [ ],
                                          deg( ( )) }

n k n pC f f f X F X
f X k

α α= ∈

<
 

where 1 ,..., nα α  are n distinct nonzero elements in pF
, 

and 
[ ]pF X

 stands for the set of polynomials in X  

with coefficients in pF
. This code is of length n and 

dimension k (see [16], for example). 
 
Let X be a nonsingular, absolutely irreducible curve of 
genus g in the m-dimensional projective space 

mP  over 

the finite field pF
. Suppose 1 2{ , ,..., }nP P P  is a set of 

rational points of X. Let 1 2 ... nD P P P= + + + , and let 
G  be a divisor of X satisfying sup( ) sup( )D G φ∩ = . 

An AG code, ( , )C D G , over pF
, is defined as 

1 2( , ) {( ( ), ( ),..., ( )) |  ( )}.nC D G f P f P f P f L G= ∈  
If deg( )G nρ = < , then ( , )C D G  has length = n and 

dimension 1gρ≥ − + . If moreover 2 2g nρ− < < , 

then the dimension of this code is exactly 1gρ − +  (see 
[16], for example).  
 

Let 1( ,..., )nx x=x  be retrieved from an observed pirate 
copy (for simplicity we call x  a pirate). A tracing 
algorithm is to find out some or all of the codewords 
within certain distance, say τ , from the pirate. As we 
have seen from definition of RS codes, each codeword 
uniquely corresponds to a univariate polynomial in 

[ ]pF X
 (which we call a codeword polynomial). The 

tracing algorithm will find out all codeword polynomials 
that correspond to the codewords within distance τ  from 
the pirate, through two crucial steps: Interpolation Step, 
that is, a step of constructing a bivariate polynomial 

( , )Q X Y  (by an interpolation procedure) that contains 
the codeword polynomials as its factors, and Factorization 

Step, that is, a step of factorizing ( , )Q X Y  to find all 
the codeword polynomials that correspond to the 
codewords within distance τ  from x . 
 
As a preprocessing step of the Lee-metric tracing 
algorithm, we need a number of points on the plane over 

pF
, which are constructed as follows. Let u  be an 

integer with 0 ( 1) / 2 1u p≤ ≤ − − . For each 
{1, 2, ..., }i n∈ , we define a set iS  of 2 1u +  points as 

 

      

{( , ), ( , 1), ..., ( , ),
         ( , 1), ..., ( , )}

i i i i i i i

i i i i

S x u x u x
x x u

α α α
α α

= − − +
+ +  

 

where iα  is the i-th point used to define the RS code, 

and ix  is the i-th coordinate of the pirate x . Denote 
 

              1 2 ... .nS S S= ∪ ∪ ∪S  
Obviously S  has (2 1)n u +  points. Denote the points 

of S  by 1 1 2 2( , ), ( , ), ..., ( , )N Nz z zβ β β , where 
(2 1)N n u= + . We are now ready to present the tracing 

algorithm.  
Algorithm 1 (Lee-metric Tracing Algorithm) 
Inputs:  The pirate x , and the set of points S , and the 
following parameters:            

        ,  ,  ,  ,  and  .
1

n k u m n
u
ττ ⎡ ⎤= − ⎢ ⎥+⎢ ⎥

 

Step 1:  Choose two integers ,  lγ  such that 1mγ >  

and  
1 ( 2)(2 1) .

2 2( 1)
l lu n

k
γ +⎛ ⎞ +

+ <⎜ ⎟ −⎝ ⎠
 

  
Step 2: Find a nonzero bivariate polynomial 

( , ) i j

ijQ X Y a X Y= ∑  with coefficients ij pa F∈  

such that max{ | 0}iji jk a l+ ≠ ≤ , through the 
following interpolation procedure: 

  
Compute ( , )Q X Y  satisfying that for 

1, 2,...,i N= , ( , )i izβ  is a zero of ( , )Q X Y  of 
multiplicity γ . 
 

Step 3: Find all unvariate polynomials ( ) [ ]pf X F X∈  

of deg( ( ))f X k< , such that ( )Y f X−  is a 
factor of ( , )Q X Y , through factorizing ( , )Q X Y  
or an efficient root-finding algorithm (see [20]). Then 
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for each codeword 1( ( ),..., ( )nf fα α=c  

corresponding to ( )f X , check if ( , )Ld τ≤x c . If 
so, include c  in the output. 

The correctness of the algorithm has been proved in our 
previous work [18] as a Lee-metric decoding algorithm for 
error-correcting codes. The purpose of constructing the set 
S  (in the preprocessing step) and choosing the integers 
γ  and l (in the first step) is to ensure the algorithm 
working well and to optimize the performance of the 
algorithm. It is clear that if the algorithm works for a 
larger τ , then it can find more traitors. Thus, we will 
measure the traitor-tracing performance by the maximum 
τ  for which the algorithm works. As a corollary of 
Theorem 2 of [18], we have the following results. 
 
Theorem 2.  Suppose x  is a pirate. Algorithm 1 (or an 
adapted algorithm for AG-traceability codes) finds all 
traitors C∈c  that satisfy 
                   ( , ) ,Ld τ≤x c  
where τ  is  

 ( 1)( (2 1) ( 1) 1)u n u n kτ ⎢ ⎥= + − + − −⎣ ⎦      (4.1) 

for any Lee-metric RS-traceability code ( , )n kC  of length 

n  and dimension k , and  

 ( 1)( (2 1) ( 1) 1)u n u n k gτ ⎢ ⎥= + − + + − −⎣ ⎦   (4.2) 

for any Lee-metric AG-traceability code ( , )C D G  
defined on a curve of genus g and of length n  and 
dimension 1k gρ= − + , where the integer u  
satisfies  0 ( 1) / 2 1u p≤ ≤ − − . 
In next section, we will analyze the performance and the 
complexity of the algorithm, and compare it with the 
traditional tracing algorithm in [16]. 

5. Performance and Complexity 

We first give an example to show that the Lee-metric 
tracing algorithm can find more traitors than the 
traditional Hamming-metric tracing algorithm in [16]; we 
than give a general analysis of the performance and 
complexity of the Lee-metric tracing algorithm in the 
second subsection.  

5.1 An Example 

Let us consider a RS-traceability code ( , )n kC C= over the 

alphabet 13F . Let 12n =  and 2k = . Then the code 

C  is a 3-TA code. For any 3 ( )desc C∈x , the 

Hamming-metric tracing algorithm can find all the traitors 
C∈c satisfying the following (see [16]) 

       ( , ) ( 1) 1 8.Hd n n k⎢ ⎥≤ − − − =⎣ ⎦x c  

Now consider a coalition 1 2{ , }D = c c  of 2 users where  

     1 (0,0,0,0,0,0,0,0,0,0,0,0),  =c and 

      2 (1,1,1,1,1,1,1,1,1,1,1,1).=c  

(1,1,1,1,1,1,1,1,1,1,0,0)=x  is a pirate produced by 
D , i.e., ( )desc D∈x . We have 

    1 2( , ) 10,    and    ( , ) 2 8.H Hd d= = <x c x c  
Thus, the Hamming-metric tracing algorithm can find the 
traitor 2c . But it fails to find the traitor 1c . 
  
   Now, for 1u = by Theorem 2, the Lee-metric tracing 
algorithm has a capability  

       ( 1)( ( 1) 1) 10.u n n kτ ⎢ ⎥= + − − − =⎣ ⎦  

Thus, the Lee-metric tracing algorithm can find all the 
traitors satisfying 
                 ( , ) 10.Ld ≤x c  
It is easy to verify that  
       1 2( , ) 10,    and    ( , ) 2.L Ld d= =x c x c  
Therefore, the Lee-metric tracing algorithm finds both the 
traitors 1c  and 2c . 

5.2 Performance and Complexity 

According to [16] the traitor-tracing performance of the 
Hamming-metric tracing algorithm is  

( 1) 1       

              for RS-traceability codes,

( 1) 1    

                 for AG-traceability codes. 

H

n n k

n n k g
τ

⎧ ⎢ ⎥− − −⎣ ⎦⎪
⎪⎪= ⎨

⎢ ⎥− + − −⎪ ⎣ ⎦⎪
⎪⎩

 (5.1) 

While, by Theorem 2 the performance of the Lee-metric 
tracing algorithm is 

( 1)( (2 1) ( 1) 1)       

                for RS-traceability codes,

( 1)( (2 1) ( 1) 1)    

                 for AG-traceability codes. 

L

u n u n k

u n u n k g
τ

⎧ ⎢ ⎥+ − + − −⎣ ⎦⎪
⎪⎪= ⎨

⎢ ⎥+ − + + − −⎪ ⎣ ⎦⎪
⎪⎩

 (5.2) 

Here u  can be any integer with 
0 ( 1) / 2 1u p≤ ≤ − − , where p  is the size of the 
alphabet. The fact that u  is variable in the interval 
[0,   ( 1) / 2 1]p − −  gives us more flexibility to 
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maximize the traitor-tracing performance. This is the 
reason why the Lee-metric tracing algorithm can find 
more traitors than the Hamming-metric tracing algorithm.  
In the following we will compare the algorithms by 

plotting Hτ and Lτ (which will actually be normalized 
against the code length) in a single figure (Fig. 1). It is 
well known that (see [16] and [17] for example) only those 
RS and AG codes which have very low code rate can be 
used as traceability codes. So, in Fig. 1 we only plot 

normalized Hτ and Lτ for small code rates. More 
precisely, for a RS or AG code to be used as a 
t-traceability code, a sufficient condition is 

2/d n n t> − ([16], [17]). As the code dimension 
1k n d≤ − + , we have 

2(1/ ) (1/ )t nδ < + , where 
/k nδ =  is the code rate. In most practical applications, 

the preferable n  is usually in the range between 100 and 
a few thousands; and t  is greater than or equal to 3. The 
following table (Table 1) shows the code rates δ  for 
some values of n  and t .  
In Fig. 1 the vertical axis represents normalized 
traitor-tracing performance against the code length, while 
horizontal axis represents code rate δ . From the figure 
we can see that when the code has a low rate (say, 

0.165δ ≤ ), the Lee-metric tracing algorithm has a better 
performance than the traditional tracing algorithm.  

Table 1: Rates of RS-traceability codes 
  100n =   200n =  
 3n =  0.1212δ <  0.1178δ <  
 4n =  0.0725δ <  0.0692δ <  
 5n =  0.05δ <  0.0467δ <
 6n =  0.0378δ <  0.0328δ <  

 

Fig. 1: Performance comparison of tracing algorithms 

Now we consider the computational complexity. Note that 
for the Lee-metric tracing algorithm, Algorithm 1, the 
dominant steps in complexity are the interpolation step 
(i.e., Step 2) and the factorization step (i.e., Step 3). It is 
well known that (see [16], [20]) the complexity of finding 
a nonzero bivariate polynomial by an interpolation 
procedure over 2n(u+1) points is O(n3u3) = O(n3) (as u is 
usually a small constant). Making use of an improved 
procedure in [13], the complexity of Step 2 can be reduced 
to O(n2). Using an efficient root-finding procedure in [13], 
[20], the codeword polynomials can be found with Step 3 
in complexity O(c(log c)2kn) which is bounded from 
above by O(c2n2), where c is the size of the output list of 
the algorithm. It is easy to see that c=O(t) where t is the 
size of the coalition. Thus, the overall complexity of the 
Lee-metric tracing algorithm is O(t2n2). This is the same 
as the complexity of the Hamming-metric tracing 
algorithm in [16]. 

6. Conclusion 

By generalizing traditional traceability codes, we have 
derived a new class of traceability codes. The generalized 
traceability codes still retain the identifiable parent 
property; and they contain new traceability codes. By 
adapting a decoding algorithm with respect to the Lee 
distance that we proposed in our previous work, we have 
presented an efficient tracing algorithm for the new 
traceability codes. The proposed algorithm can outperform 
the Hamming-metric tracing algorithm, and has the same 
complexity as the Hamming-metric tracing algorithm. 
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