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Summary 
This paper proposes a robust diagnosis of a reverse osmosis 
desalination system modeled by Bond Graph approach. The 
design is achieved by using graphical methods taking advantage 
of structural proprieties of the bond graph model. The fault 
indicators are generated in the presence of parameter uncertainties. 
Simulation results are used to show the dynamic behavior of 
system variables and to evaluate the performance of the bond 
graph for fault diagnosis. 
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1. Introduction 

To improve the production quality, safety and effectiveness 
of industrial units, the robust fault diagnosis was the subject 
of much research. FDI (Fault Detection and Isolation) is a 
procedure of comparing behavior of the real system and 
behavior of the referral process. In the literature, two 
approaches exist troubleshooting: quantitative and 
qualitative. Among the books published during the years of 
robust diagnosis using these methods, can be found ref. [1]. 

An industrial process has a highly complex behavior 
because of the mutual interaction of several different 
phenomena in nature, and combining technology 
components that implement different kind of energy 
(electrical, mechanical, hydraulic, thermodynamic, 
chemical, etc.). . The dynamic behavior of this type of 
system is generally described by nonlinear differential 
equations. The bond graph tool allows multi-purpose in 
nature and graphics using a unified language to display 
explicitly the nature of trade in the power system 
phenomena such as storage, energy dissipation and 
processing and highlight the physical nature and location of 
the state variables 

The diagnosis of uncertain systems has been the subject 
of several research works in recent years [2]. 
Dauphin-Tangy and al [3] are proposed two methods for 
modelling uncertainties by using bond graph approach. The 
first  method is based on describing parameter uncertainties 
as bond graph elements, and the second method introduces 
the  

LFT form (Linear Fractional Transformation) for 
uncertainties modelling.  

The innovative interest of the present paper is the use of 
the bond graph tool for modelling and robust diagnosis, 
taking into account the parameter uncertainties. In this way, 
by applying the bond graph methodology using LFT model, 
it becomes possible to obtain physical knowledge of the 
systems and to improve their monitoring by deducing 
residuals fault indicators and consequently, to insure the 
best safety able to detect and to isolate imperfections.  

This paper is organized as follows: Section 2 deals with 
diagnosis using bond graph approach. Section 3 proposes a 
robust diagnosis using the BG. Section 4 deals with 
sensibility residual using bond graph approach. An 
illustrative example of reverse osmosis desalination system 
is developed in section 5 and shows the efficiently of the 
proposed method.  

2. Diagnosis Using Bond Graph Approach 

2.1 Bond graph modeling 

The bond graph approach was defined in 1961 by Henry 
Paynter [4] and then developed by Karnopp [5]. 
This energetic approach serves to emphasize analogies 
between different fields of physics (mechanics, electricity, 
hydraulics, thermodynamics, acoustics, etc.) and to 
represent in uniform multidisciplinary physical systems. 
Because of its structure and causal properties, the bond 
graph tool is more and more used for modeling and fault 
diagnosis. The causal properties of the bond graph tool 
were initially used for the determination of the origin of the 
faults. 

2.2 Diagnosis using bond graph approach  

Monitoring system by the bond graph approach can be 
illustrated in figure 1 [6]. There are basically two parts: 

 The first part concerns the transfer of power and 
energy (formed by the process and all the actuators). 
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   The second part shows the signals (the information 
system and the control system and sensors). 

 
Fig. 1 Monitoring system by the bond graph approach 

 

The bond graph model is the part of the energy system, 
the process is generally modeled by bond graphs usual 
elements (R, C, I, and junctions). Sources can be single (Se, 
Sf) or modulated (MSe, MSf), that is controlled by an 
external signal provided by a controller or an operator. The 
sensors and the control system are the information system. 
In the first system (energy), the power exchanged is 
represented by a half arrow (link power) led the effort 
variables and flow in the second system (information 
system) exchanged power is negligible; it is then 
represented by an information link (arrow) which is the 
same used in conventional block diagrams. 

Monitoring algorithms (detection and fault isolation 
FDI) receive online information from the sensors (sensors 
effort and flow Df) and issue the monitoring system alarms. 
Information on the status of faulty elements are passed to 
service 

3.  Robust Diagnosis Using the Bond Graph 
Model 

3.1 Construction of a bond graph model 

There are two methods proposed by G. 
Dauphin-Tanguy and C. Sie Kam [3] to construct the 
parametric uncertainties by BG. The first is to represent the 
uncertainty of a bond graph element as another element of 
the same type, causally linked to the element or the rest of 
the nominal model. These uncertainties are kept in 
derivative causality when the model is fully causal 
preferred not to change the order of the model. The second 
method is the form LFT (Linear Fractional 

Transformations) on mathematical models introduced by R. 
Redheffer [7]. 

3.2 LFT representation 

The linear fractional transformations (LFT) are generic 
objects used extensively in system modeling uncertainty. 
The universality of the LFT is due to the fact that any 
expression can be written in this from A. Oustaloup [8] and 
D. Alazard et al. [9]. This form of representation is widely 
used for the synthesis of control laws for uncertain systems 
using the principle of the μ-analysis. It is to separate the 
face of an uncertain model of the part as shown in figure 2. 

 

 
Fig. 2 Representation LFT 

 
The ratings are combined in an augmented matrix denoted 
M, supposedly clean, and uncertainty regardless of type 
(parametric uncertainties and unstructured, uncertainty 
modeling, measurement noise ...) are combined in a matrix 
structure of Δ diagonal. In the linear case, the standard form 
leads to a state representation of the form (19): 
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With: 
 x∈ Rn the state vector of the system; 
  u ∈  Rm the vector grouping the control inputs of 

the system; 
  y ∈  Rp the vector grouping the measured system 

output; 
 w ∈ Rl and z ∈  Rl include respectively the inputs 

and auxiliary outputs;  
 n, m, l and  p are positive integers. 

Matrices (A, B1, B2, C1, C2, D11, D12, D21 and D22) are 
matrices of appropriate dimensions. 

3.3 Modeling elements by BG-LFT 

  Modeling of linear systems with uncertain parameters 
has been developed in C. Sie Kam, we invite the reader to 
consult the corresponding references for details on the 
modeling of uncertain elements BG (R, I, C, TF and GY). 
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Therefore, we limit ourselves in this part to show the two 
methods of modeling elements BG uncertain and the 
benefits of BG-LFT for the robust diagnosis. 

3.3.1 BG elements with additive uncertainty 

 By introducing uncertainty in an additive manner on 
such causal element resistance R we obtain (2):              
     

incnRnRnRnR eefRfRf)RR(e +=+=+= ΔΔ     (2) 
 
With: 

 R: The nominal value of the element R;  
 ΔR: additive uncertainty on the parameter; 
  eR and fR: represent the effort and flow in the 

element R; 
 en and einc: represent the effort made by the 

parameter nominal stress introduced by the 
additive uncertainty.  

The bond graph model equivalent to the mathematical 
model of equation (2) is given by figure 3. 

 
Fig. 3  Model BG-LFT for rresistance with additive uncertainty. 

3.3.2 BG elements with a multiplicative uncertainty 

  The introduction of a multiplicative uncertainty on how 
such causal element resistance R given in (3): 
 

incnnRn
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With: 
 Rn: The nominal value of the element R; 
 aR: multiplicative uncertainty on the parameter; 
 eR and fR: represent the effort and flow in the 

element R;  
 en and einc: represent the effort made by the 

parameter nominal stress introduced by the 
multiplicative uncertainty.  

The bond graph model equivalent to the mathematical 
model of equation (3) is given by figure 4. 

 
Fig. 4 Model BG-LFT for rresistance with multiplicative uncertainty. 

3.3.3 BG-LFT models of energy storage elements with 
a multiplicative uncertainty 

  Element I and C in integral causal 
 Element I in integral causal 

Law characteristic of the uncertain element I in 
integral causality with an uncertainty multiplicative is given 
as follows: 
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LFT Bond Graph model I elements in integral causality 
with a multiplicative uncertainty equivalent equation (4) 
given in   figure 5. 
 

 
Fig. 5 I element in integral causality with a multiplicative uncertainty 
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Dummy entry that represents the uncertainty of the flow at 
the exit of element I. fI0 is a constant representing the initial 
condition.  

 Element C in integral causal 
 
Law characteristic of the uncertain element I in integral 
causality with an uncertainty multiplicative is given as 
follows: 
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LFT Bond Graph model C element in integral causality 
with a multiplicative uncertainty equivalent equation (10) 
given in figure 6. 

 
Fig.  6  C element in integral causality with a multiplicative uncertainty 

 
The model BG-LFT 

 The BG-LFT full can then represented by the diagram 
in figure 7. 

 
Fig.7  Representation of a BG-LFT 

 Robust ARR generation 
 The generation of robust analytical redundancy 

relations from a bond graph model specific, observable and 
over determined is summarized by the following steps: 
Step 1: Check the status of the coupling on the bond graph 
model deterministic causality derived preferentially, if the 
system is over determined, then continue the following 
steps; 
Step 2: The bond graph model is shaped LFT; 
Step 3: The symbolic expression of the ARRs is derived 
from the equations at the junctions. This first form will be 
expressed by: 

 In the case of  0 Junction: 
∑ ∑∑ ++ iinci wSffb      (6) 

 In the case of  1 Junction: 
∑ ∑∑ ++ iinci wSeeb      (7) 

 
With the sum of flow sources associated with the junction 0, 
the sum of flow sources related to a junction, b = ± 1 
depending on whether the half-arrow entering or leaving 
the junction and ein and purpose are unknown variables. 
Step 4: The unknown variables are eliminated by browsing 
through the causal paths between sources and detectors or 
the unknown variables; 
Step 5: After removal of the unknown variables, the ARRs 
are uncertain form (6):  
          

)GY,TF,C,I,R,w

,fD~,eD~,Df,De,Sf,Se(:ARR

nnnnni

.

∑
∑ ∑Φ (8) 

 
Where: 
 

 TFn and GYn are respectively the nominal values of 
the modules and components TF and GY, 

 Rn, Cn and In are the nominal values of elements R, C 
and I. They are the sum of modulated inputs 
corresponding to uncertainties on the elements 
related to the junction. 

4. Residual Sensibility  

4.1 Generation of performance indices    

4.1.1 Normalized sensitivity index parametric (SI)  

The energy supplied will be evaluate to the residual of 
uncertainty about each parameter by comparing the total 
energy contributed by all the uncertainties 
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ai: Uncertainty on the ith parameter 

i Є {R, C, I, RS, TF, GY} 
wi: The input modulated corresponding to the ith parameter 

uncertainty. 

4.1.2 The index of detectability of default (ID)  

The index of detectability default is the difference between 
the effort (or flux) provided by the defects in absolute and 
that granted by all the uncertainties in absolute value. 

 Junction 1:   dYeYID sini −+=   (10) 

 Junction 0:   dYeYID sini −+=   (11) 

 Proposal: Condition detectability of faults 

 Undetected faults:  0ID ≤  

 Detected faults:  0ID 〉  

Fault detection rate parametric  

 Junction 1: 
in

i e
dY 〉     (12) 

 Junction 0: 
in

i f
dY 〉     (13) 

Detectable values of a structural fault  

dY s 〉         (14) 

5. Application 

5.1 Bond graph model of reverse osmosis 

Consider the reel system of reverse system and its bond 
graph model given in figure 8. The most important 
parameters that must be controlled are the permeate 
conductivity and flow rate [10].  

 

 
Fig. 8.  Photo of the reverse osmosis desalination system 

 
Fig. 9  Bond graph model of reverse osmosis 

 
The bond graph model of reverse osmosis shown in figure 9 
above is illustrated as follows:  
 

 The RO desalination system model is equivalent to 
a storage element with a hydraulic inlet (supply) 
and two outputs (permeate conductivity and flow 
rate). It will therefore be represented in bond 
graph model with a storage element (C) and also 
by a resistive pressure drop (R2).  

 The losses in the supply line are represented by a 
resistive element (R1). 

  The tangential flow of the water after a pressure 
drop across the membrane and represented by a 
variable resistor element according to the 
hydraulic characteristics of the membrane (MR1).  

 The control valve is represented by a resistive 
element modulated (MR2).  

 The sum of the osmotic pressure of the water 
pressure drops and permeate pressure is 
represented by only source of effort (Se) 

 
To measure the salinity of the raw water supply of reverse 
osmosis module can use a conductivity meter. 

5.2 ARRs based on BG-LFT model  
Figure 10 shows the BG-LFT model of the system 

reverse osmosis. 
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 Fig. 10  BG-LFT model of reverse osmosis 

 
From BG model (figure 10), we can deduce the ARRs: 

 
 ARR1 : 0eeee 13321 =−−−  

 

 (15) 
Eq. (15) is composed by two parts, the first is related to 
normal residual and the second to the uncertainty 
parameter. 
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5.3. Simulation results 
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Fig. 11 a) Permeate Conductivity 

                                                b) Permeate flow rate 
 
Figures (a) show the change in salinity of water produced 
for inlet concentration of 1 kg / m3.  Note that the salinity of 
water output decreases and stabilized with small 
fluctuations around 35kg / m3 for a short time. Figures (b) 
show that the permeate flow evolves exponentially with 
little decreasing when the feed salinity is around 35kg / m3. 

6. Conclusion 

In this paper, a fault detection and isolation (FDI) using on 
BG modeling is proposed. The bond graph tool is a 
graphical method of multidisciplinary dynamic systems 
modeling. It has the main advantage of the link between 
various components of diverse systems governed by 
nonlinear equations and sometimes difficult to model.  The 
fault indicators are generated in the presence of parameter 
uncertainties. As perspective of this work we’ll determine 
an observer by bond graph for location sensor fault or 
actuator fault (DOS and GOS). New techniques will be 
developed for the fault isolation and location.  
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