
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

134

Manuscript received December 5, 2011
Manuscript revised December 20, 2011

Unified model of interaction: use cases and scenarios
engineering

Abdeslam Jakimi and Mohammed El Koutbi

Labo SI2M, École Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Agdal, Rabat, Morocco

Summary
Scenarios and use cases have been used interchangeably
in several works meaning partial descriptions. In this
paper, we suggest a requirement engineering process that
composes (merge) use cases/scenarios and yields a formal
specification of the system in form of a high-level Petri
net. Use cases and scenarios are acquired in form of
diagrams as defined by the Unified Modeling Language
(UML). These diagrams are composed and transformed
into Petri net specifications and merged to obtain a global
Petri net specification capturing the behavior of the entire
system. From the global specification, a system prototype
can be generated and embedded in a user interface builder
environment for further refinement. Based on end user
feedback, the use cases and the input scenarios may be
iteratively refined. The result of the overall process is a
specification consisting of a global Petri net, together with
the generated and refined prototype. This paper discusses
some activities of this process. The need of a unified
model of interaction (UMI) is also discussed at the end of
this paper.
Key words:
Use Case/Scenario engineering, Use Case/Scenario composition,
Model transformation, UML, Unified Model of Interaction.

1. Introduction

Scenarios have been identified as an effective means
for understanding requirements and for analyzing human
computer interaction. A typical process for requirement
engineering based on scenarios has two main tasks. The
first task consists of generating from scenarios
specifications that describe system behavior. The second
task concerns scenario validation with users by simulation
and prototyping. These tasks remain tedious activities as
long as they are not supported by automated tools.

This paper suggests an approach for requirements
engineering that is based on the Unified Modeling
Language (UML) [1,2,3,4] and high-level Petri nets. The
approach provides an iterative, four-step process with
limited manual intervention for deriving a prototype from
scenarios and for generating a formal specification of the
system. As a first step in the process, the use case diagram
of the system as defined by the UML is elaborated, and

for each use case occurring in the diagram, scenarios are
acquired in the form of UML sequence diagrams and can
be enriched with UI, time, security, etc… constraints [4].
In the second step, the use case diagram and all sequence
diagrams are transformed into Hierarchical Colored Petri
Nets (CPNs). In step three, the CPNs describing one
particular use case are integrated into one single CPN, and
the CPNs obtained in this way are linked with the CPN
derived from the use case diagram to form a global CPN
capturing the behavior of the entire system. Finally, in
step four, a system prototype is generated from the global
CPN and can be embedded in a UI builder environment
for further refinement [5, 6].

In our approach, we aim to model separately the use
case and the scenario levels. We also want to keep track
of scenarios after their integration or composition. Thus,
we need a PN class that supports hierarchies as well as
colors or objects to distinguish between scenarios in the
resulting specification. We adopted Jensen’s definition of
CPN [7] which is widely accepted and supported by the
designCPN tool [8] for editing, simulating, and verifying
CPNs. Object PNs could also being used, but CPNs are
largely sufficient for this work.

Section 2 of this paper gives a brief overview of the
scenario aspects. Section 3 gives a general idea of the
UML diagrams relevant to our work. In Section 4, the
four activities leading from use cases / scenarios to formal
specifications and executable prototypes are detailed.
Section 5 discussed the need of unified model of
interaction that gives a unique syntax to express. Finally,
the section 6 concludes the paper and provides an outlook
of future work.

2. Scenario Aspects

Scenarios have been evolved according to several
aspects, and their interpretation seems to depend on the
context of use and the way in which they were acquired or
generated. In a survey, Rolland [9] proposed a framework
for the classification of scenarios according to four
aspects: the form, contents, the goal and the cycle of
development (Figure1).

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

135

Fig. 1: Aspects of scenarios [5]

The form view deals with the expression mode of a
scenario. Are scenarios formally or informally described,
in a static, animated or interactive form?

The contents view concerns the kind of knowledge
which is expressed in a scenario. Scenarios can, for
instance, focus on the description of the system
functionality or they can describe a broader view in which
the functionality is embedded into a larger business
process with various stakeholders and resources bound to
it.

The purpose view is used to capture the role that a
scenario is aiming to play in the requirements engineering
process. Describing the functionality of a system,
exploring design alternatives or explaining drawbacks or
inefficiencies of a system are examples of roles that can
be assigned to a scenario.

The lifecycle view considers scenarios as artefacts
existing and evolving in time through the execution of
operations during the requirements engineering process.
Creation, refinement or deletion are examples of such
operations.

3. Use cases and scenarios in UML

Object oriented analysis and design methods offer a
good framework for scenarios. In our work, we adopted
the Unified Modeling Language, which is a unified
notation for object oriented analysis and design.

Scenarios and use cases have been used
interchangeably in several works meaning partial
descriptions. UML distinguishes between theses terms
and gives them a more precise definition. A use case is a
generic description of an entire transaction involving
several objects of the system. A use case diagram is more
concerned with the interaction between the system and
actors (objects outside the system that interact directly
with it). It presents a collection of use cases and their
corresponding external actors. A scenario shows a
particular series of interactions among objects in a single

execution of a use case of a system (execution instance of
a use case). A scenario is defined as an instance of a given
use case. Scenarios can be viewed in two different ways
through sequence diagrams (SequenceDs) or
collaboration diagrams (CollDs). Both types of diagrams
rely on the same underlying semantics. Conversion from
one to the other is possible .

3.1 Use case diagram

Some authors [10,11] and the UML reference
manual agree that a use case is a high-level description of
what the system is supposed to do, whose aim is to
capture the system requirements. However, use cases
have to be specified, that is, many particular cases of a
use case can be described. In other words, if a use case
represents a user interaction, many variants of this user
interaction can be described.

The UsecaseD in UML is concerned with the
interaction between the system and external actors. One
use case can call upon the services of another use case
using some relations (includes, extends, uses, etc). An
example of the include relation is given in Figure 2. This
relation is represented by a directed dotted line and the
label <<include>>. The direction of an include relation
does not imply any order of execution. Other relations
between use cases are detailed in [12, 13].

Figure 2 shows three main use cases: Deposit,
Withdraw and Balance (services of the ATM : Automatic
Teller Machine) that call on the service of the use case
Identify.

Identify

Withdraw

Deposit

Balance

<<include>>

<<include>>

<<include>>

User

Fig. 2. ATM use case diagram.

3.2 Sequence diagram

We chose to use sequence diagrams (SequenceDs)
because of their simplicity and their wide use in different
domains. A SequenceD shows interactions among a set of
objects in temporal order, which is good for
understanding timing and interaction issues. It depicts the
objects by their lifelines and shows the messages they
exchange in time sequence. However, it does not capture

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

136

the associations among the objects. A SequenceD has two
dimensions: the vertical dimension represents time, and
the horizontal dimension represents the objects. Messages
are shown as horizontal solid arrows from the lifeline of
the object sender to the lifeline of the object receiver. A
message may be guarded by a condition, annotated by
iteration or concurrency information, and/or constrained
by an expression. Each message can be labeled by a
sequence number representing the nested procedural
calling sequence throughout the scenario, and the message
signature. Sequence numbers contain a list of sequence
elements separated by dots. Each sequence element
consists of a number of parts, such as: a compulsory
number showing the sequential position of the message,
and a letter indicating a concurrent thread (see messages
(m3, m4 and m5 in figure 3), and an iteration indicator *
(see message m2 in figure 2) indicating that several
messages of the same form are sent sequentially to a
single target or concurrently to a set of targets.

Fig. 3 : Example of a SequenceD

4. Use case and scenario engineering

In this section, we give an overview of the iterative
process that derives a formal specification for the system
from use cases and scenarios. Figure 4 presents the
sequence of activities involved in the proposed process.

SequenceDs

UseCaseD

Specification
Building

System
Prototype

Real
World

Scenarios
Acquisition

Prototype
Evaluation

CPN
Verification

Integrated
CPNs

Scenario
 Integration/
Composition

CPNs

Fig. 4: Activities of the proposed process

In the Scenario Acquisition activity, the analyst
elaborates the UsecaseD, and for each use case, he or she
elaborates several SequenceDs corresponding to the
scenarios of the use case at hand. The analyst then uses
some composition operators as defined in section 4.3 to
capture interaction at different levels: use cases, scenarios
and messages [14]. The Specification Building activity
consists of deriving CPNs from the acquired UsecaseD
and SequenceDs and composes them to obtain a global
CPN with three levels of hierarchy. The Composed CPNs
serve as input to both the CPN Verification and the
System Prototype Generation activities. During Prototype
Evaluation, the generated prototype is executed and
evaluated by the end user. In the CPN Verification
activity, existing algorithms can be used to check
behavioral properties [15, 16].

In the following subsections, we will focus on the
three first activities this process: scenario acquisition,
specification building, and composition of UML scenarios.

4.1 Scenarios acquisition

In this activity, the analyst elaborates the UsecaseD
capturing the system functionalities, and for each use case,
he or she acquires the corresponding scenarios in form of
SequenceDs.

Scenarios of a given use case are classified by type
and ordered by frequency of use. We have considered two
types of scenarios: normal scenarios, which are executed
in normal situations, and scenarios of exception executed
in case of errors and abnormal situations. Figures 5 and 6
give examples of SequenceDs corresponding to the
scenarios regularIdentify and errorIdentify.

1:m1

2*:m2

2.1A:m3

2.1B.1:m4

2.1B.2:m5
2.2:m6

O1 O2 O3

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

137

Fig. 5: Scenario regularIdentify of the use case Identify.

Fig. 6: Scenario errorIdentify of the use case Identify.

To obtain a global description of a given service (use
case) of the system or the description of the whole system,
an operation of integration or composition between use
cases and/or between scenarios is needed.

The operation of integration looks like a
generalization, where the analyst tries to identify and
abstract some common parts in the system behaviour.

Composition constructs new behaviours from
existing ones. This operation (composition) can be
applied to different interaction objects like use cases,
scenarios or messages. The difficulty of composition
comes from the fact that interaction objects (use cases or
scenarios specially) are being described independently
one to each others.

In this paper, we consider four operators (;:
sequential operator, ||: concurrent operator, * :iteration
operator and if-else operator) to compose a set of
interaction objects that describe a part of a given system.

Our developed algorithms can automatically produce a
global interaction object representing any way of
composing scenarios. For example, we can compose three
scenarios S1, S2 and S3 to obtain the resulting scenario Sr.
Sr = (S1 ; S2 || S3)*[5], means to compose S1 and S2
sequentially, the obtained scenario will be composed
concurrently with S3, then the obtained scenario will be
iterated five times. Given a set of scenarios, our
algorithms can produce any composing form of the given
scenarios. The same operators can be applied to use cases.

To explain more how these operators act on
interaction objects (section 4.3).

4.2 Specification Building

This activity consists of deriving a hierarchical CPNs
from both the acquired and composed use cases and all of
the SequenceDs. The obtained CPN will have three levels
of hierarchy: the first level captures use cases interactions,
the second level describes scenario interactions of the
same use case and the third level shows interactions
between messages within a given scenario. These
derivations are explained below in the subsections Use
case specification and scenario specification.

4.2.1. Use case specification

The CPN corresponding to the UsecaseD is derived
by mapping use cases into transitions. A place Begin is
always added to model the initial state of the system.
After a use case execution, the system will return, via an
back to its initial state for further use case executions. The
place Begin may contain several tokens to model
concurrent executions. Figure 7 depicts the CPN derived
from the ATM system’s UsecaseD (Figure 2) based on
the following composition [Identify ; (Withdrawal |
Deposit | Balance)*].

Fig. 7: CPN first level of hierarchy (corresponding to use case
interactions).

UC1: Identify, UC2: Withdrawal , UC3: Deposit, UC4: Balance

 UC1

 Begin

 UC2 UC3 UC4

 :Customer

 Enter_pin

 Select_op

Connect
 Check

Pin_ok
Card_

k

 Insert_card

 :ATM

 :Bank :Account

Confirm

:Customer

 Pin_error

Connect Check

Invalid_
pin

 Invalid_card

:ATM :Bank :Account

 Eject_card

Insert_card

Enter_pin

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

138

4.2.2. Scenario specification.

Each use case (a transition in the CPN above) is
expended in a CPN handling relations between its
scenarios. Suppose that UC2 is described by three
scenarios SC1, SC2 and SC3 composed as follow: (SC1;
SC2) || SC3. The UC2 will be expended as shown in
figure 8.

Fig. 8 : CPN second level of hierarchy (corresponding to scenario
interactions).

The third level concerns scenarios. For each scenario
of a given use case, we first derive the CPN structure,
then the CPN semantic is built by the help of the analyst.
The CPN structure is automatically obtained from the
graph representing the sequence of messages in the
scenario by adding places between each pair of sequential
messages. Figure 9(a) gives an example of such graph
derived from the scenario of Figure 3, and Figure 9(b)
shows the inserted places.

m1

m3

m4

m6

m2

m5

m 1

m 2

m 3 m 4

m 5

m 6

(c)

Fig. 9: (a) graph of messages, (b) Structure of CPN third level of
hierarchy (corresponding to message interactions).

For the CPN semantic, the analyst can build an

associated table of object states from the scenario by
following the exchange of messages from top to bottom
and identifying the changes in object states caused by the
messages. This can serve to label places in the derived
CPN. It can also been used to verification issues to check
the coherence between scenarios.

To each scenario, we assign a distinct color to track
it in the composed CPN. All scenarios of the same use
case will have the same initial place which we call
Begin_UC2 in figures 8. This place will contain several
tokens with different colors of the linked scenarios :
color1 for SC1 and color3 for SC3. At the end of SC1
transition, the token will change its color to color2
corresponding to the scenario SC2 and it can begin its
execution.

4.3. Composition of UML scenarios

UML scenarios are considered as partial descriptions.
To obtain a global description of a given service of the
system or the description of the whole system, an
operation of integration or composition is needed. The
difficulty of scenarios composition comes in the fact that
the scenarios are being described independently one to
another.

Figure 10 gives an overview of the merging
algorithm based on scenarios represented in the form of
sequence diagrams.

Fig. 10: Composing UML Scenarios.

In this section, we will describe the sequential,
conditional, concurrency and iteration operators which
defines a relation of precedence between two scenarios.

4.3.1 The sequential operator

This operator is the simplest one to implement. The
interactions between objects (or actor and objects) of two
SequenceDs are ordered in such a way that the
interactions of first SequenceD (sd1) will occur before
those of the second SequenceD (sd2). To compose
sequentially two SequenceDs, they need to have at least

Scénario résultant
Scénario 1

Scénario 2
Algorithme de Algorithme de

compositioncomposition

Composition
Algorithm

Resulting
Scenario

Scenario 1

Scenario 2

 SC1

 Begin_UC2

 SC2

 SC3

 End UC2

(a) (b)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

139

one common object. The principle of composing two
scenarios using this operator is described as follows:

 Put initially the resulting SequenceD sdf equal to
the first sequenced sd1.

 Calculate the maximum sequence numbers
(maxns) in sd1.

 Add this number (maxns) to all sequence
numbers in the second SequenceD sd2 before
merging them in sdf.

 Add to sdf objects that only belong to sd2.

An example of composing sequentially two scenarios
sd1 and sd2 is shown in Figure 11.

 (a) (b) (c)

Fig. 11: (a) SequenceD sd1, (b) SequenceD sd2 and (c) Resulting
SequenceD sdf = sd1 ; sd2.

4.3.2 The conditional operator

This operator allows us to define a choice between
two possible scenarios when executing a service of the
system. In this case, a condition [X] is allotted to the
SequenceD sd1 and the complement [NonX] will allot the
second SequenceD sd2. This operator gathers two
scenarios into one SequenceD with keeping the conditions
behind messages in the resulting SequenceD. The figure
(Figure 12) shows how we can merge two scenarios sd1
and sd2 with the conditional operator (sdie = sd1 ? sd2).
Note that the sequence numbers of sd2 must be updated as
in the case of the sequential operator.

 (a) (b) (c)

Fig. 12: (a) SequenceD sd1, (b) SequenceD sd2 et (c) Resulting
SequenceD sdie = sd1 ? sd2.

4.3.3 The concurrency operator

This operator allows us to define a competition
between scenarios. This kind of composition can be used
to describe the independence or the interleaving between
two sequences of interactions. Two cases have to be
considered. The first case, when the two scenarios have
some common objects. The second case relates to two
scenarios having different objects acting for separate sub
systems. In this work, we were interested by the first case
which is more complex to implement than the second.

We need to review sequence numbers of the two
SequenceDs that will be merged by the concurrent
operator (||):

 Update all sequence numbers of sd1 by adding a
letter, that is not yet used in sd1 or sd2,
representing a new thread of execution.

 Update all sequence numbers of sd2 by adding a
letter, that is not yet used in sd1 or sd2,
representing the second thread of execution.

 Compose sequentially the updated SequenceDs
sd1 and sd2.

Figure 13 shows an example of a concurrent
composition of two scenarios in form of SequenceDs.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

140

 (a) (b) (c)

Fig. 13: (a) SequenceD sd1, (b) SequenceD sd2 et (c) Resulting
SequenceD sdr = sd1 || sd2.

4.3.4 The iteration operator

This operator gives the possibility to iterate a given
scenario many times. The condition that guards the
iteration must be indicated *[cond-iteration] as we do it in
an iterative message in a SequenceD. Sdr = sd1*[3]
means that the scenario sd1 will be executed three times.
The condition of iteration must be propagated globally to
all messages of the scenario sd1. Suppose that sd1
contains two sequential messages m1 and m2. We note
that sd1 = (1:m1 ; 2:m2). If we propagate the iterative
condition directly to all messages of the scenario sd1, we
will obtain the resulting scenario sdr that is equal to
(*[3]1:m1 ; *[3]2:m2). This means that the message m1
will be iterated three times then the message m2 will do
the same. This is naturally different of what we want sdr =
*[3](1:m1 ; 2:m2). To solve this problem, we have
considered that the scenario sd1 is represented by one
abstract message m sent by the first object of the scenario
to itself and all concrete messages will be viewed as are
refinement of this message m. Thus, sd1 can be seen as
equal to one message sd1 = 1:m and this message is
refined with 1.1:m1 and 1.2:m2 (1:m = 1.1:m1; 1.2:m2).
The resulting scenario sdr can be seen as equal to *[3] m
which is equal to *[3](1.1:m1; 1.2:m2).

4.3.5 Tool support

To implement the four operators described above, we
have used the Eclipse environment, the TogetherJ [17]
plug-in for UML modeling and the application
programming interface (API) JDOM for XML
manipulation. Figure 14 gives a picture of how these tools
have been used in this work.

Fig 14. : Tool support for scenario composition.

Eclipse has been chosen because of its modular
integrated environment of development (IDE). Many
modules (plug-ins) are provided by Eclipse and it is very
easy to add others developed either by the Eclipse
community or by software companies. We used the plug-
in for UML diagrams (from Together) which makes it
possible for us to create use case and sequence diagrams.
Moreover, our composition algorithm can be used with
any plug-in of UML diagrams as shown in figure 14.

Scenarios are first acquired throw the UML diagram
plug-in, and then there are transformed in form XML files.
These XML files serve as input to our developed
composition operators that produce a merged XML file
related to the resulting composed scenario. This XML file
can also be imported via the UML diagram plug-in for
purposes of visualization and annotation.

5. Unified Model of Interaction

The UsecaseD captures services offered by the
system and interactions between these services with the
external actors. Interactions in a UsecaseD are modeled
using some limited relations such as uses and extends.
These relations give only a simplified view of interactions
that can really exist between services given by a system.
For example, in the case of the system of the Automatic
Teller Machine (ATM), the use case Identification is used
by three others use cases: Withdrawal, Deposit and
Balance. Within the relation uses, interactions between
the four services of the system are not precisely defined.
Really after executing the use case Identification, the
customer can repeatedly carry out one of the three other
use cases (Deposit, Withdraw and Balance). Another
example of limitation of expressiveness using use case
relations, constraints as ‘it is forbidden to execute the
Withdraw use case after the Deposit one; it is forbidden to

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

141

Withdraw more than three times’ can not be now easily
expressed.

These kinds of constraints are not actually supported
in UML. More detailed relations are needed in the use
case model [12]. We think that artifacts provided by the
UML standard in sequence diagrams with some
extensions can be used to model interactions between use
cases. Thus, we can use the same interaction operators
found in the sequence diagram: like sequence (;),
condition (if), choice (|), iteration (*), and concurrence (||).
For example, [Identification; (Withdrawal | Deposit |
Balance)*] express naturally that the use case
Identification is executed then it is followed by an
iteration of one of three other use cases. Graphical
notations can also be used to express easily these relations.
The meta-model of interactions in sequence diagrams can
be generalized to use cases, scenarios and messages. This
will gives to developers a hierarchical simplified view of
interactions at different levels of abstraction.

A Unified Model of Interaction (UMI) will help in
better expressing interaction between usecases, sequence
diagrams and messages using one kind of diagram. The
UMI will be very useful during the step of code
generation from UML models. The UMI will also be a
great support to automate the operation of code from
static and dynamic models (class, use case and scenario
diagrams).

6. Conclusions

In this work, we have presented a new approach that
produces automatically a global specification of the whole
system in form of a three level hierarchical CPN. We
have also implemented four operators for composing use
cases and scenarios: sequential, conditional, iterative and
concurrent. We have too discussed the need of unified
model of interaction that gives a unique syntax to express
interactions at different levels: use case, scenario and
message.

As future work, we prospect to study the possibility
of code generation from in form of web services
usecases/scenarios which will be a good plug-in to add.
We plan to generate code from UML diagrams that
describe dynamic and non-functional aspects of a system
while remaining platform independent.

References

[1] G. Booch, J. Rumbaugh and I. Jacobson. Unified Modeling

Language User Guide. Addison Wesley, 1999.
[2] J. Rumbaugh, I. Jacobson and G. Booch. Unified Modeling

Language Reference Manual. Addison Wesley, 1999.
[3] I. Jacobson, G. Booch and J. Rumbaugh. The Unified

Software Development Process, Addison-Wesley, 1999.

[4] Object Management OMG. Uinified modeling language
specification version 2.0: Infrastructure. Technical Report
ptc/03-09-15, OMG, 2003.

[5] M. Elkoutbi, I. Khriss, R.K. Keller. “Automated
Prototyping of User Interfaces Based on UML Scenarios”.
The Automated Software Engineering Journal, 13, 5-40,
2006.

[6] M. Elkoutbi, and R.K. Keller. “ User Interface Prototyping
based on UML Scenarios and High-level Petri Nets,”
Application and Theory of Petri Nets 2000 (Proc. of 21st
Intl. Conf. on ATPN), Aarhus, Denmark, June 2000.
Springer. LNCS 1825, pp. 166-186.

[7] K. Jensen., Coloured Petri Nets, Basic concepts, Analysis
methods and Pratical Use, Springer, 1995.

[8] designCPN: version 4, Meta Software Corp.
<http://www.daimi.aau.dk/designCPN>.

[9] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A.
Sutcliffe, N.A.M. Maiden, M. Jarke, P. Haumer, K. Pohl, E.
Dubois and P. Heymans. “A Proposal for a Scenario
Classification Framework”. The Requirements Engineering
Journal, Volume 3, Number 1, 1998.

[10] I. Jacobson Use cases—yesterday, today, and tomorrow.
Software Syst. Model. 2004, 3 210–220.

[11] G. Génova and J. Lorens. The emperor's new use case. J.
Object Technol. 2005, 4 81–94.

[12] P. Metz, J. O'Brien, W. Weber. Specifying use case
interaction: clarifying extension points and rejoin points. J.
Object Technology. 2004, 3 87–102.

[13] J.M. Almendros-Jiménez and L. Iribarne. Describing Use-
Case Relationships with Sequence Diagrams. Oxford
Journals, the Computer Journal, 2007 50(1):116-128.

[14] A. Jakimi, A. Sabraoui, E. Badidi,, and Elkoutbi M.,” Use
Cases and Scenarios Engineering”, (Innovations’07)
Proceedings of the IEEE 4th International Conference on
Innovations in Information Technology, November 18-
20,2007, Dubai, United Arab Emirates.

[15] M. Elkoutbi, “User Interface Engineering based on
Prototyping and Formal Methods” PhD thesis, Université
de Montréal”, Canada, March 2000.

[16] A. Jakimi, A. Sabraoui, E. Badidi, A.Salah and M. El
Koutbi, “Using UML Scenarios in B2B systems”, in the
proceedings of ICCCE’08, Malaysia, 2008.

[17] Borland, “Together”, www.borland.com /together.

Mohammed Elkoutbi is a professor at École Nationale Supérieure
d’Informatique et d’Analyse des Systèmes in Agdal, Rabat, Morocco.
His current research interests include requirements engineering, user
interface prototyping and design, and formal methods in analysis and
design. He earned a PhD in Computer Science from University of
Montreal in 2000.

Abdeslam Jakimi, was born in morocco,
in 1978. He received the diploma
(D.E.S.A) in Informatics from Faculty of
Sciences Rabat, Mohammed V University,
Rabat, Morocco. His current research
interests include requirements engineering,
user interface prototyping and design
transformations, scenario engineering.

