
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

151

Manuscript received December 5, 2011
Manuscript revised December 20, 2011

Routers Packet Classification Using Configuration
Machine

Dr. V. Francis Densil Raj Mrs. C. M. Selvarani
Assistant Professor - MCA, Professor - CSE
Anna University of Technology Madurai, Pannai Engineering College
Tamilnadu, India Tamilnadu, India

ABSTRACT:
The packet classification is the vital part mechanism that
leads to create many networking services in the internet
such as firewall packet filtering and traffic accounting.
So the packet classification is in need which enables
many networking services in the network. There are two
types support such as hardware and software support.
The hardware support is more expansive compared to
software and it also has limited scalability. In this paper
we discussed the extreme packet classification by
decreasing the optimization rule in turn which improves
the incremental rules update efficiently. Our work also
improves the source and destination ip prefixes specified
in rules which are based on Router Configuration Engine
Packet Classification (RCEPC), inspects
multidimensional sequence based tree algorithm. The
firewall rules are built in the form of 24 bit sub rules
which reads the router instruction and improved
classification process, which in turn finds the
classification rule in the network.

Keywords: Packet classification, Packet Filtering,
RCEPC, Tree based algorithm, Firewall rules

INTRODUCTION

Packet classification implementation is done at
routers by applying some rules for incoming packets and
categories for flow of packets. At the arrival packet
contains multiple fields in the header. For this search key
can be used to identify the best suitable rule to apply.
Each header fields contains values. These values are used
to create a rules for differentiate packets constituting a
filter set. A field value in filter can be an IP prefix, a
range or an exact number. Multiple rules can be obtained
for real filter data set in order to communicate the pair
network one for each application. In multiple filters is
the application appears as one for each pair of
communications network using the application. Lookups
over a filter set with respect to multiple

header fields are complex [4] and can easily become
router performance bottlenecks.

The different classification mechanism are used
to improve the efficiency of the quicken packet
classification through the hardware and software
approaches. The software approach uses of specific data
structures to hold filter data sets for fast search [8]. The
software oriented classification is more attractive, less
expensive and more flexible. That is provided lookup
speed can be quickened by sorting rules in on chip
SRAM. The hardware approach is basically implemented
by using field programmable gate arrays (FGPA) or
ASIC logics [2] [6] plus ternary content addressable
memory (TCAM) to hold filters [9] or registers for rule
caching[3]. The classification mechanism is based on
software and hardware. Unfortunately an approach with
hardware support is expansive and has limited
scalability, where as one with optimization fails to
incremental rule updates effectively and TCAM give to
hold a filter set would dictate the maximal set size
allowable. The Recursive Flow Classification [4] or
inserted tuple space search rules (rectangle TSS
[7],binary TSS [10] diagonal TSS [5] are used to
increasing optimization via pre-processing speedup
lookups often fail to deal with incremental rule updates
effectively.

For rapid packet classification we use router
configuration engine packet classification (RCEPC), here
an IP prefix with £ bits is rounded down to include its
first £ bits only for £≤ ι , £ є DPL, “designated prefix
length”. Router Configuration engine Packet
Classification (RCEPC) acquires high classification
throughput and superior memory efficiency means of one
with two staged search. In this method it round down the
prefixes to a small number of DPL denoted by m, i.e., m
is DPL. Here each DPL corresponds to one unit.

For fewer than 32 under IPV4, when every
prefix length is permitted without rounding down. For set
association we take the hash accesses per packet
classification and collapse those hash units to one
lumped hash table (LuHa) for better performance. Router
Configuration Engine Packet Classification (RCEPC) has
a fast classification than Lumped Hash (LuHa) table
keyed by the source and destination IP. Since it has small
number of hash access to router.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

152

Table1. An example of rules configuration in classifier

Destination IP
Source IP
(addr/mask)

Destinati
on

Protoc
ol

(addr/mask) port

152.163.190.6
9/32 152.163.80.11/24 * *

152.168.3.0/
24

152.163.200.157/
32 80 UDP

152.168.3.0/
24

152.163.200.157/
32 20,21 UDP

152.168.3.0/
24

152.163.200.157/
32 80 TCP

152.163.198
.4/32 152.163.160.0/22 >1023 TCP

152.163.198
.4/32 152.163.36.0/24 >1023 TCP

The Lumped Hash Table (LuHa) table gives

high storage utilization by identifying multiple candidate
sets for each rule. The LuHa table has three major
differences infrastructure. As a fundamental element,
packet classification is the most important process in
TCS, which categories packets into different traffic flows
using a set of filters or rules. With rapid increasing
Internet services, traffic control systems need more
accurate packet classification algorithms and high
performance processing.

Most previous packet classifications support the

prefix match, exact match and range match. In IP
network, for example, many applications use five classic
fields (protocol, source IP, source port, destination IP
and destination port) of packet header to determine the
flow which packet belongs to. Table 1 shows a rule
configuration from ISPs and enterprise networks
[11].compared from other d-left hashing [1]. They are:
First the LuHa table needs only one hash function
whereas d function needs d-left hashing. Second the hash
function is given by 2m for different prefixes for each
pair of the source and destination IP address. Third it
gives higher storage usage by combining different LuHa
table was designed by Traffic Control System (TCS).

Traffic control system (TCS) is becoming an

indispensable and widespread-deployed device of
network Table 2 shows an example of traffic
distribution with inaccurate classification. We collected
applications traffic proportion from 31 different network
nodes. A large amount of applications transmit packets
through not only the traditional transport layer port but
random ports. Therefore, approximate 30% traffic cannot

be categorized into a flow which complies with a rule.
However, new network applications and services demand
efficient and accurate packet classification. Thus, it is
necessary that traditional packet classifications evolve to
a scalable traffic classification in IP network. Especially,
traffic control systems need classifying, shaping network
traffic and detecting malicious packet.

An example, we can change HTTP port from80
to a random port. Furthermore, port 80 is being used by a
variety of non-web applications to circumvent TCS and
firewalls which do not filter 80 port traffic and some new
applications hardly use fixed transport layer port to
communicate, such as P2P flows, multimedia stream. So,
accurate and efficient packet classification is an urgent
problem in TCS.

Table2. An example of traffic distribution
Protocol And Percentage Of Traffic
Application

HTTP 10%

P2P 15.7%

FTP 1.9%

Others 39.1%

Unclassified 33.3%

Total 100%

To obtain high performance and flexibility, we
use a promising hardware solution Intel IXP2800
network processor. The IXP2800 is the second-
generation network processor, which enables fast
deployment of intelligent network services by providing
flexible programming and high performance. It is
suitable for complex packet processing in a wide variety
of network applications. Each hardware thread in
network processor can run independently and parallel to
process packets. The IXP2800 supports a broad range of
speed from OC48 to OC192.

This paper describes an efficient hybrid packet
classification in gigabits traffic control system using
second-generation programmable network processor. We
address the problem of inaccurate packet classification
and analyze the payload of new applications. In
particular, we focus on the packet classification on not
only packet header but the first 64-bit payload and other
flags of packet router property. Then, we present the
software pipeline architecture, hardware implementation

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

153

consideration, and report measurements. We show a
classifier that can exploit network processors, and make
suggestions about hardware features that can
significantly improve accuracy and performance of
traffic control system.

Related Work

Classification lookup mechanisms may be
categorized, in accordance with their implementation
approaches, as being hardware-centric and software-
oriented, depending upon if dedicated hardware logics or
specific storage components (like TCAM or registers)
are used. Different hardware centric classification
mechanisms exist. In particular, a mechanism with
additional registers to cache evolving rules and dedicated
logics to match incoming packets with the cached rules
was pursued [3]. Meanwhile, packet classification using
FPGA was considered [6] by using the BV (Bit Vector)
algorithm [17] to look up the source and destination ports
and employing a TCAM to hold other header fields, with
search functionality realized by FPGA logic gates.
Recently, packet classification hardware accelerator
design based on the HiCuts and HyperCuts (HC)
algorithms [13], [20] has been presented [16]. Separately
effective methods for dynamic pattern search were
introduced [2], realized by reusing redundant logics for
optimization and by fitting the whole filter device in a
single Xilinx FPGA unit, taking advantage of built-in
memory and XOR-based comparators in FPGA.

Hardware approaches based on TCAM are
considered attractive due to the ability for TCAM to hold
the Don’t care state and to search the header fields of an
incoming packet against all TCAM entries in a rule set
simultaneously [18], [9]. Widely employed storage
components in support of fast lookups, TCAM has such
noticeable shortcomings (listed in [8]) as lower density,
higher power consumption, and being pricier and
unsuitable for dynamic rules, since incremental updates
usually require many TCAM entries to be shifted (unless
provision like those given earlier [19], [9] is made). As a
result, software-oriented classification is more attractive,
provided that its lookup speed can be quickened by
storing rules in on-chip SRAM.

Software-Oriented Classification

Software-oriented mechanisms are less
expensive and more flexible in filter lookups when
compared with their hardware-centric counterparts.

Such mechanisms are abundant, commonly
involving efficient algorithms for quick packet
classification with an aid of caching or hashing. Their
classification speeds rely on efficiency in search over the
rule set using the keys constituted by corresponding
header fields. Several representative software

classification techniques are reviewed in sequence.

Recursive Flow Classification

Recursive flow classification (RFC) carries out
multistage reduction from a lookup key (composed of
packet header fields) to a final class ID, which specifies
the classification rule to apply [4]. Given a rule set, pre-
processing is required to decide memory contents so that
the sequence of RFC lookups according to a lookup key
yields the appropriate class ID [4]. Based on a pre-
computed decision tree, Hierarchical Intelligent Cuts (Hi
Cuts) [15] holds classification rules merely in leaf nodes
and each classification operation needs to traverse the
tree to a leaf node, where multiple rules are stored and
searched sequentially. During tree search, Hi Cuts relies
on local optimization decisions at each node to choose
the next field to test. Hyper Cuts (HC) is an improvement
over Hi Cuts by allowing cuts to be made over multiple
dimensions at a node [20], as opposed to just a single
dimension each in Hi Cuts. At every node, there can be
totally πD

i=1 nc(i)child nodes, where nc(i) is the number
of splits made in the ith dimension. Like Hi Cuts, HC is
also a decision tree-based classification mechanism, but
each of its tree nodes splits associated rules possibly
based on multiple fields. It is shown to enjoy substantial
memory reduction while considerably quickening the
worst-case search time under core router rule sets [20],
when compared with Hi Cuts and other earlier
classification solutions.

Decision Tree Based Method

Given that decision tree-based methods (like
HiCuts and HC) in general are notorious for the tree size
explosion problem (with the decision tree size highly
depending on the data sets and possibly to grow
exponentially), refinement techniques are introduced to
reduce their storage requirements. The trade-off between
storage and lookup performance

can be measured by the space factor (SF), with a larger
SF value yielding a wider and shallower decision tree. A
larger SF is expected to consume more storage but
support faster lookups.

Meanwhile, storage-saving for decision tree-

based classifiers can be achieved by pushing common
rules upwards, aiming to keep a common set of rules at
the parent node if the rules hold true for all of its child
nodes. Although this way lets rules be associated with
non leaf nodes to save storage by avoiding replicas at the
leaves, it can degrade lookup performance, as a lookup
then has to examine internal nodes. Additionally, since
decision trees are known to involve excessive (child
node) pointers, a common fix lets the parent node keep
merely the starting base address pointing to its first child

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

154

plus an additional n-bit “Extended Path Bitmap” (EPB)
to remember existing child nodes [20]. This pointer
compression reduces space greatly from n pointers to one
plus (n -1) bits. Also, practical decision tree
implementation stores all filter rules in a memory array
of consecutive locations; the decision tree only keeps
indices in the tree nodes. This reduces storage by
avoiding replicas of filter rules which hold true for
multiple sub trees due to wildcard addresses or port
ranges. Adversely, such compression techniques make
incremental updates very difficult. The linear memory
array representation leaves holes upon rule deletions and
is hard to accommodate new rules. The resulting indirect
lookup process becomes inefficient because memory, in
principle, exhibits maximal bandwidth under continuous
bursts of requests. When data objects are accessed in a
random (or non burst) manner, memory bandwidth
efficiency dwindles rapidly, so is the packet
classification rate.

An efficient router packet classification
algorithm was introduced [12] by hashing flow IDs held
in digest caches (instead of the whole classification key
comprising multiple header fields) for reduced memory
requirements at the expense of a small amount of packet
misclassification. Recently, fast and memory-efficient
(2D) packet classification using Bloom filters was
studied [14] by dividing a rule set into multiple subsets
before building a cross-product table for each subset
individually. Each classification search probes only those
subsets that contain matching rules (and skips the rest)
by means of Bloom filters, for sustained high throughput.
The mean memory requirement is claimed to be some
32-45 bytes per rule [14]. As will be demonstrated later,
our mechanism achieves faster lookups (involving 8- 16
hash probes plus four more SRAM accesses, which may
all take place in parallel, per packet) and consumes fewer
bytes per rule (taking 15-25 bytes per rule).

A dynamic packet filter, dubbed Swift [21],
comprises a fixed set of instructions executed by an in-
kernel interpreter. Unlike packet classifiers, it optimizes
filtering performance by means of powerful instructions
and a simplified computational model, involving a kernel
implementation. Lately, HyperSplit has been pursued for
its superior classification speed and memory usage [22].
Based on recursive space decomposition, HyperSplit has
the tree size explosion problem and requires 66 MB
storage for 10K ACL rules, in sharp contrast to less than
250 KB under router Configuration Engine Packet
Classification (RCEPC).

The point of implementation, router packet
classification includes two kinds: hardware-based
algorithms and software-based algorithms. Typical
algorithms show in Table 3. (n denotes the number of
rules, d denotes the number of classification fields, w

denotes width of classification fields).

A. Novel algorithms

Router Packet Classification algorithm (RPC)
splits the set of filter rules into several subsets by the
hash-compression index table built based on the first 8-
bit prefix of IP and constructs fast search trees for each
subset. These search trees with smaller-sized filters can
be more quickly constructed, optimized and updated, so
the rate of search is correspondingly improved. It can be
easily implemented in hardware at line speeds using a
pipeline fashion.

From the view of geometry, the best bounds for
point location in N rectangular regions and d > 3
dimensions are O (log n) time with O (Nd) space; or O
((log n)d-1) time with O (N) space.

A kind of Parallel Router Packet Classification

algorithm [24] adopts a parallel decision tree based
packet classification scheme via rule set pre-partitioning.
The original rule set is pre-partitioned into a series of
subsets and then the overlaps among the rules are
eliminated on several packet fields. So that decision cuts
within each subset (on such packet fields) will not incur
rule duplication and the storage efficiency is, therefore,
significantly increased as well as O(Log(N)) processing
delays.

A new algorithm [25] for router packet
classification uses the concept of independent sets. The
algorithm has very small memory requirements. The
search speed is not sensitive to the size of the rule table
or to the percentage of wildcards in the fields. It also
scales well from two-dimensional classifiers to high-
dimensional ones. In particular, the algorithm is
inherently parallel. Hardware tailored to this algorithm
can achieve very fast search speed. The update algorithm
proposed is also very fast in general.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

155

A Novel Router Packet Classification Algorithm [26]
makes use of bits distribution features. It is a high
level classification method. It always takes the bits
from every dimension into account, instead of
constraining the search process in some of the
dimensions at every stage. It is composed of three
lookup procedures: a heuristic hash lookup, a novel
multi-way dynamic search tree lookup and a lookup in
a small rule set. This architecture is aimed at finding
the best matching rule by traversing an optimal search
path.

The performance analysis method of
algorithms

The actual performance analysis needs many
rules, data packets and the relation between them for
whichever algorithms. It is a difficult task to simulate
the data sets. Class Bench [27], a suite of tools for
benchmarking packet classification algorithms and
devices, has been widely applied. It is based on a
battery of analyses on 12 real filter sets provided by
Internet Service Providers (ISPs), a network
equipment 563 vendor, and other researchers working
in the field. The filter sets range in size from 68 to
4557 entries and utilize one of the following formats:
access control list (ACL), firewall (FW), and IP chain
(IPC). The general approach of ClassBench is to
construct a set of benchmark parameter files that
specify the relevant characteristics of real filter sets,
generate a synthetic filter set from a chosen parameter
file and a small set of high-level inputs, and generate a
sequence of packet headers to probe the synthetic filter
set using the Trace Generator. Markers-based Space
Decomposition Algorithm [28] and O(log W)
Multidimensional Packet Classification used this
benchmark tools. Taking the level of network protocol
and fields extension into account, Class Bench should
include MAC and IPv6 headers in the future.

Construction

Router Packet Classification Algorithm
Design in Cable Modem Quality of Service
System

A. Router Packet Classification application in

Quality of Service system

This paper is based on Cable Modem (CM) research with
Godson CPU, SDRAM memory chip, Embedded Linux
OS and DOCSIS (Data-Over-Cable Service Interface
Specification) to allow transparent bidirectional transfer
of Internet Protocol (IP) traffic, between the cable system
head end and customer locations in hybrid-fiber/coax

cable network. CM and CMTS (Cable Modem
Termination System) classify packets traversing the RF
MAC interface into a Service Flow to provide Quality of
Service (QoS) by shaping, policing, and prioritizing
traffic according to the Parameter Set defined for the
Service Flow. Service Flow and Classifier are two
important concepts in DOCSIS V1.1. A Service Flow is
a MAC-layer transport service that provides
unidirectional transport of packets either to upstream
packets transmitted by the CM or to downstream packets
transmitted by the CMTS. A Service Flow is
characterized by a set of QoS Parameters such as latency,
jitter, and throughput assurances. A Classifier is a set of
matching criteria applied to each packet entering the
cable network. It consists of some packet matching
criteria (destination IP address, for example), a classifier
priority, and a reference to a service flow. If a packet
matches the specified packet matching criteria, it is then
delivered on the referenced service flow. Figure 1
illustrates the mappings discussed below.

Figure 1. Classification within the MAC Layer

CM and CMTS Packet Classification consist of
multiple Classifiers. Several Classifiers may all refer to
the same Service Flow. The mapping of classifier and
service flow shows in Figure 2. If a Classifier is found in
which all parameters match the packet, the Classifier
MUST forward the packet to the corresponding Service
Flow. If no Classifier is found in which all parameters
match the packet then the packet is classified to the
Primary Service Flow.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

156

Figure 2. Mapping of classifier and service flow

The packet classification table contains the

following fields in DOSCSISV1.1, in Table 4. But
DOCSISV3.0 also includes Ipv6 Traffic Class Range and
Mask, Flow Label and Next Header Type.

Classifiers can be added to the table either via
management operations (configuration file, registration)
or via dynamic operations
(dynamic signaling, DOCSIS MAC sub layer service
interface). SNMP based operations can view Classifiers
that are added via dynamic operations, but cannot modify
or delete Classifiers that are created by dynamic
operations.

In real network, rules mainly focus on IP
Classification Parameters. LLC and 802.1p/q
Classification Parameters are seldom.

The BH algorithm is proposed to meet QoS
requirement in Cable Modem and limit resource in
embedded system. The algorithm is based on B tree
structure and non-collision function. The algorithm
divides di into two stages.
Fields Description
Priority Determines the search order for the

table. High priority classifier are
searched before lower priority classifier.

IP
classification
parameter

Zero or more of the IP classification
parameters(IP TOS Range/mask, IP
destination Address/mask, TCP/UDP
Source Port Start, TCP/UDP Source
Port End, TCP/UDP Destination Port
Start, TCP/UCP Destination Port End)

LLC
Classification
Parameters

zero or more of the LLC classification
parameters (Destination MAC Address,
Source MAC Address, Ethertype/SAP)

IEEE
802.1P/Q
Parameters

zero or more of the IEEE classification
parameters (802.1P Priority Range,
802.1Q VLAN ID)

Service Flow
Identifier

identifier of a specific flow to which
this packet is to be directed

 The first stage reduces the memory by storing
the redundant once and uses a non collision function to
speed up search time for IP Classification.
Then the number of rules sharply decreases. The match
rule is finally obtained by linear search with priority for
LLC and 802.1p/q Classification. The algorithm process
shows in Figure 3.

Figure 3. Router Packet classification

Architecture of the Packet Classification
Engine

This section explains about the steps
involved to design the Packet Classification Engine
Architecture. The design is based on the schematic
representation explained above. PCE implements basic
inspection from 5 header packet field in the Ethernet
packet. Those five fields are considered input to the
system. The inputs are Source IP Address, Destination
IP Address, Source Port, Destination Port, Protocol,
START, RESET and Clock Signal whereas the outputs
are valid and forward.

Figure 4. PCE Top Level

START signal is a control signal to start an inspection

process by PCE. Every inspection is controlled by this
signal to receive field input as system inputs and
processes it. RESET signal cleans register value and

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

157

output and initialize the system. Output Forward signal
shows 1 inspection process is finished and read Valid
signal as a result. Valid signal shows fields’ inspection
result and control
packet buffer to forward or discard the Ethernet

packet from the firewall. CLOCK signal is needed to
synchronize the system process.

Figure 5.High level state machine of PCE

Process in PCE starts from input and ends
with output signal generation, shown by High Level
State Machine in Figure 7. When the system is turned
on, PCE will be in the idle state. In this state, the
system waits for start signal input gives logic „1‟.
When the signal is given, all the field inputs are
received and system will move to process_1 state. In
this state, all the output is clean. PCE inspects the input
fields based on the algorithm. Every one inspection, it
moves to process_2 state and checks for inspection
status. When the inspection is not finished, it will loop
back to process_1. When it is finished, the system
moves to stop state. In this state, outputs are generated
and the system will move to idle state automatically
until the next process.

Based on the algorithm explained above, we
need an architecture which can maximized its
advantages and works fast and reliable. The
architecture must have simple design but also have the
capability to facilitate various modifications of firewall
rules and specification. The idea of building our PCE
architecture comes from the algorithm itself. This PCE
takes form of a single cycle processor whose processes
are decided by instruction memory.

Figure 6. Subfields multiplexer

This architecture is most suitable for PCE in a

firewall which implements variable rules and
specification. Each of 8 bit sub-fields from tree-based
algorithm will produce instructions for the processor.
From 5 inspected fields of packet header, we will get 13
subfields, 4 sub-fields of Source IP Address, 4 sub-fields
of Destination IP Address, 2 sub-fields of Source Port, 2
subfields of Destination Port, and 1 sub-field of Protocol.
With 13 sub-fields inspected by PCE, we need
mechanism to decide which sub-field is inspected. The
processor will need a multiplexer with 4-bit selector for
the data processed. Figure 8 shows the multiplexer used.
Before the multiplexer, there is a register to secure the
system from unwanted input change.

The most important component in sub-fields
inspection by PCE is comparator. It compares sub-field
input with sub-fields in the firewall rules. The
comparison process has been explained in the tree-
algorithm. Comparator is designed to compare 2 input 8
bit data and give result based on the criteria. These
criteria are greater, less, or equal. If the comparison of 2
inputs and the criteria matches, this component will
generate logic „1‟ result, and otherwise if it is not.
Figure 9 shows comparator used in the PCE. The criteria
is 2 bit input at the component.

Figure 7. Comparator

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

158

The architecture needs a component to control
system output at the right time, which is after field
inspection process is finished. Logic „1‟ from the
comparator only shows that the comparison is suitable
but the process is not over yet. Final compile unit is
designed to generate output if the process is finished.
Valid and Forward signal in PCE is generated by this
component. Command to generate output will be saved
in the last part of a process in the accessed rules by the
system. Output generation is shows by the action leaves
at the end of inspection tree. Final Compile Unit is
shown in Figure 8. 1 bit is needed to control output
generation.

Figure 8. Final Compile Unit

By taking processor form as the architecture,
PCE needs instructions to control process undergoing in
each cycle. These instructions are saved in instruction
memory. In our proposed PCE, the component saving the
instructions is called Rules Memory. Each instruction
can be accessed by giving address input to the
component. Figure 9 shows Rules Memory used in PCE.
Because in this research we do not use complex memory
and updating mechanism yet, Rules Memory address is
consisted only 8 bit. This address will change based on
the specification.

Figure 9 Packet Classification Engine Architecture
The hardware accelerator can save search

structures for rule sets containing up to 49,000 rules,
when implemented on a Stratix EP3SE260F115C3

FPGA, and rule sets containing up to 24,000 rules when
implemented on a Cyclone EP3C120F484C7 FPGA.

Figure 10. Memory usage(lines) and worst case
number of clock cycles(bars).

The search structures built using the ACL1,
IPC1 rule sets for both the Cyclone and Stratix
implementation show similar performance results. This
is because memory consumption is not a major problem
for these rule sets as they don’t contain many rules with
wildcard fields. For the search structure built using the
FW1 rule sets it can be seen that the Stratix
implementation shows better performance than the
Cyclone implementation. This is because memory
consumption is a problem due to the many rules
containing wildcard fields. The FW1 rule set for
example with 15,000 rules needs, at worst 9 clock cycles
to classify a packet when 3,944,448 bits of memory are
available for the search structure using the Cyclone. This
figure is reduced to 4 clock cycles when the amount of
memory available is doubled using a Stratix.

The router classification in the hardware
accelerator is shown in Fig. 16 and 17, with the results
for the hardware accelerator generated using a search
structure requiring at worst 2 clock cycles to classify a
packet. Post place and route simulations were carried out
using Quartus 2 Power Play Power Analyzer Tool with
VCD files generated by ModelSim. These results were
compared to the power consumed by the state of the art
Cypress Ayama 10000 Network Search Engine [32],
which uses similar amounts of memory. The hardware
accelerator implemented on the Cyclone 3 FPGA with
3,944,448 bits of memory is compared to the Cypress
Ayama 10128 search engine with 4,608,000 bits of
TCAM. The Stratix 3 implementation of the hardware
accelerator with 7,888,896 bits of memory available is
compared to the Cypress Ayama 10256 search engine
with 9,216,000 bits of TCAM.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

159

Figure11. Power vs. throughput for Cyclone 3
hardware accelerator.

Figure 12. Power vs. throughput for Stratix 3
hardware accelerator.

Looking at Fig. 16 it can be seen that the
TCAM has a maximum throughput of 133 mpps, while
the hardware accelerator implemented on the Cyclone 3
FPGA with 2 packet classification engines has a
maximum throughput of 65 mpps when running at 65
MHz. This throughput decreases to 36 mpps when 1
engine is used while running the hardware accelerator at
36 MHz. These levels of Throughputs are more than
enough to cope with line rates up to OC-768. At these
speeds the hardware accelerator shows an energy saving
of 66.38%.

Conclusion

 Packet classification is essential for most
network system functionality and services, but it is
complex, since it involves comparing multiple fields in a
packet header against entries in the filter data set to
decide the proper rule to apply for handling the packet

[4]. This paper has considered a rapid packet
classification mechanism realized by RCEPC able to not
only exhibit high scalability in terms of both the
classification time and the router size involved, but also
effectively handle incremental updates to the filter data
sets. Based on a single set-associative LuHa hash table
(obtained by lumping a set of hash table units together)
to support two- staged search, RCEPC promises to enjoy
better classification performance than its known
software-oriented counterpart, because the LuHa table
narrows the search Scope effectively based on the source
and the destination IP addresses of an arrival packet
during the first stage, leading to fast search in the second
stage. With its required router size lowered considerably,
RCEPC makes it possible to hold entire search data
structures in the local cache of each core within a
contemporary processor, further elevating its
classification performance than previous software- based
techniques.

Note that theoretically pathological cases may
occur despite encouraging pragmatic results by ρ=1:0, as
we have witnessed in this study. For example, a large
number of (host son the same subnet with) prefixes ρ/ω
can differ only in a few bits. Hence, those prefixes can
be router configuration engine into the same set after
being
rounded down, say from ρ/ω down to ρ| ιi , for ιi ≤ ω <
ιi+1, under RCEPC. There are possible ways to deal with
such cases and to avoid overwhelming the indexed set. A
possible way is to use one and only one entry to keep the
round-down prefix ρ| ιi , as opposed to holding all ρ/ω‟s
in individual entries under the current design.
Subsequently, the (ω- ιi) round-down bits can form a
secondary indexing structure to provide the
differentiation (among rules specific to each host) and/or
the round-down bits can be mingled with the remaining
fields of the filter rules. Thus, each stage narrows the
search range by small and manageable structures. These
possible options are being explored.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

160

Figure 17.Maximum Buffer usage

[1] A. Broder and M. Mitzenmacher, "Using Multiple Hash
Functions to Improve IP Lookups," Proc. 20th Ann. Joint
Conf. IEEE Computer and Comm. Soc. (INFOCOM '01),
pp. 1454-1463, Apr. 2001.

[2] Y.H. cho and W.h. Magione-Sdmith, "Deep Packet Filter
with Dedicated Logic and Read Only Memories," Proc.
12th IEEE Symp. Field-Programmable Custom Computing
Machines. pp. 125-134. Apr. 2004.

[3] Q. Dong et al., "Wire Speed Packet Classification without
TCAMs: A Few More Registers (and a Bit of Logic) Are
Enough," Proc. ACM SIGMETRICS Int'l Conf.
Measurement and Modeling of Computer Systems
(SIGMETRICS '07), pp. 253-264, June 2007.

[4] P. Gupta and N. McKeown, "Packet Classification on
Multiple fields," Proc. ACM Ann. Conf. Special Interest
Group on Data Comm. (SIGCOMM '99), pp. 147-160,
Aug./Sept. 1999.

[5] F.-Y. Lee and S. Shieh, "Packet Classification Using
Diagonal- Based Tuple Space Search," Computer Networks,
vol. 50, pp. 1406-1423, 2006.

[6] H. Song and J.W. Lockwood, "Efficient Packet
Classification for Network Intrusion Detection Using
FPGA," Proc. ACM/SIGDA 13th Int'l Symp. Field
Programmable Gate Arrays(FPGA '05), pp. 238-245, Feb.
2005.

[7] V. Srinivasan, S. Suri, and G. Varghese, "Packet
Classification Using Tuple Space Search," Proc. ACM
SIGCOMM '99, pp. 135-146, Aug./Sept. 1999.

[8] D.E. Taylor, "Survey and Taxonomy of Packet
Classification Techniques," ACM Computing Surveys, vol.
37, no. 3, pp. 238-275, Sept. 2005

[9] G. Wang and N.-F. Tzeng "TCAM-Based Forwarding
engine with Minimum Independent Prefix Set(MIPS) for
Fast Updating," Proc. IEEE Int'l Conf. Comm. (ICC '06),
June 2006.

[10] P. Warkhede. S. Suri, and G. Varghese, "Fast Packet
Classification for Two-Dimensional Conflict-Free Filters,"
Proc. 20th IEEE INFOCOM '01. pp. 1434-1443, Apr. 2001

[11] P. Gupta and N. McKeown, "Packet classification on
multiple fields", Proceedings of ACM Sigcomm '99.
pp.147-160, August 1999.

[12] F. Chang et al., "Efficient Packet Classification with
DigestCaches," Proc. Third Workshop Network Processors
and Applications(NP-3), Feb. 2004.

[13] W.T. Chen. S.B. Shih, and J.L. Chiang, "A Two-Stage
Packet Classification Algorithm," Proc. 17th Int'l Conf.
Advanced Information Networking and Applications
(AINA '03), pp. 762-767, Mar. 2003.

[14] S. Dharmapurikar et al., "Fast Packet Classification Using
Bloom Filters," Proc. IEEE/ACM Symp. Architectures for
Networking and Comm. Systems(ANCS '06), pp. 61-70,
Dec. 2006.

[15] P. Gupta and N. McKeown, “Classifying Packets with
Hierarchical Inteligent Cuttings," IEEE Micro, vol. 20, no.
1, pp. 34-41, Jan./Feb. 2000.

[16] A. Kennedy, X. Wang, and B. Liu, "Energy Efficent
Packet Classification Hardware Accelerator," Proc. IEEE
Int'l Symp. Parallel and Distributed Processing (IPDPS '08),
pp. 1-8, Apr. 2008.

[17] T.V. Lakshman and D. stiliadis, "High-Speed Policy-
Based Packet Forwarding Using Efficient Multi-
Dimensional Range Matching," Proc. ACM SIGCOMM
'98, pp. 191-202, Aug./Sept. 1998

[18] J. van Lunteren and T. Engbersen, "Fast and Scalable
Packet Classification," IEEE J. Selected Areas in Comm.,
vol. 21, no. 4, pp. 560-571, May 2003.

[19] D. Shah and P. Gupta, "Fast Incremental Updates on
Ternary- CAMs for Routing Lookups and Packet
Classification," Proc. Eighth Ann. IEEE Symp. High-
Performance Interconnets (Hot Interconnects '08), pp. 145-
153, Aug. 2000.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

161

[20] S. Singh et al., "Packet Classification Using
Multidimensional Cutting," Proc. ACM SIGCOMM '03. pp.
213-114, Aug. 2003.

[21] Z. Wu, M. Xie, and H. Wang, "Swift: A Fast Dynamic
Packet Filter," Proc. Fifth USENIX Symp. Networked
Systems Design and Implementation (NSDI '08), pp. 279-
292, Apr. 2008.

[22] L. Xu et al., "Packet Classification Algorithms: From
Theory to Practice," Proc. 28th IEEE INFOCOM '09, APR.
2009.

[23] Yu Lei, Deng Ya-Ping, Wnag Jiang-Bo, and Jiang Chao-
Yong, A Novel IP Packet Classification Algorithm Based
on Hierarchical Intelligent Cuttings, The 6th International
Conference on ITS Telecommunication Proceedings,
2006:1033-1036.

[24] Zheng Kai, Liang Zhiyong, and Ge Yi, Parallel Packet
Classification via Policy Table Pre-Partitioning, IEEE
Globecom, 2005:73-78.

[25] Xuehong Sun, Sartaj K. Sahni, and Yiqiang Q Zhao,Packet
Classification Consuming Small Amount of Memory,
IEEE/ACM TRANSACTIONS ON NETWORKING, 2005,
13(5):1135-1145.

