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ABSTRACT: 
The packet classification is the vital part mechanism that 
leads to create many networking services in the internet 
such as firewall packet filtering and traffic accounting. 
So the packet classification is in need which enables 
many networking services in the network. There are two 
types support such as hardware and software support. 
The hardware support is more expansive compared to 
software and it also has limited scalability. In this paper 
we discussed the extreme packet classification by 
decreasing the optimization rule in turn which improves 
the incremental rules update efficiently. Our work also 
improves the source and destination ip prefixes specified 
in rules which are based on Router Configuration Engine 
Packet Classification (RCEPC), inspects 
multidimensional sequence based tree algorithm. The 
firewall rules are built in the form of 24 bit sub rules 
which reads the router instruction and improved 
classification process, which in turn finds the 
classification rule in the network.  

Keywords: Packet classification, Packet Filtering, 
RCEPC, Tree based algorithm, Firewall rules 
 
INTRODUCTION 

Packet classification implementation is done at 
routers by applying some rules for incoming packets and 
categories for flow of packets. At the arrival packet 
contains multiple fields in the header. For this search key 
can be used to identify the best suitable rule to apply. 
Each header fields contains values. These values are used 
to create a rules for differentiate packets constituting a 
filter set. A field value in filter can be an IP prefix, a 
range or an exact number. Multiple rules can be obtained 
for real filter data set in order to communicate the pair 
network one for each application. In multiple filters is 
the application appears as one for each pair of 
communications network using the application. Lookups 
over a filter set with respect to multiple  
 
 

 
header fields are complex [4] and can easily become 
router performance bottlenecks. 

The different classification mechanism are used 
to improve the efficiency of the quicken packet 
classification through the hardware and software 
approaches. The software approach uses of specific data 
structures to hold filter data sets for fast search [8]. The 
software oriented classification is more attractive, less 
expensive and more flexible. That is provided lookup 
speed can be quickened by sorting rules in on chip 
SRAM. The hardware approach is basically implemented 
by using field programmable gate arrays (FGPA) or 
ASIC logics [2] [6] plus ternary content addressable 
memory (TCAM) to hold filters [9] or registers for rule 
caching[3]. The classification mechanism is based on 
software and hardware. Unfortunately an approach with 
hardware support is expansive and has limited 
scalability, where as one with optimization fails to 
incremental rule updates effectively and TCAM give to 
hold a filter set would dictate the maximal set size 
allowable. The Recursive Flow Classification [4] or 
inserted tuple space search rules (rectangle TSS 
[7],binary TSS [10] diagonal TSS [5] are used to 
increasing optimization via pre-processing speedup 
lookups often fail to deal with incremental rule updates 
effectively. 

For rapid packet classification we use router 
configuration engine packet classification (RCEPC), here 
an IP prefix with £ bits is rounded down to include its 
first £ bits only for £≤ ι , £ є DPL, “designated prefix 
length”. Router Configuration engine Packet 
Classification (RCEPC) acquires high classification 
throughput and superior memory efficiency means of one 
with two staged search. In this method it round down the 
prefixes to a small number of DPL denoted by m, i.e., m 
is DPL. Here each DPL corresponds to one unit. 

For fewer than 32 under IPV4, when every 
prefix length is permitted without rounding down. For set 
association we take the hash accesses per packet 
classification and collapse those hash units to one 
lumped hash table (LuHa) for better performance. Router 
Configuration Engine Packet Classification (RCEPC) has 
a fast classification than Lumped Hash (LuHa) table 
keyed by the source and destination IP. Since it has small 
number of hash access to router. 
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Table1. An example of rules configuration in classifier 

Destination IP 
Source IP 
(addr/mask) 

Destinati
on 

Protoc
ol

(addr/mask)   port  
    
152.163.190.6
9/32 152.163.80.11/24 * *

     
152.168.3.0/
24  

152.163.200.157/
32 80 UDP

     
152.168.3.0/
24  

152.163.200.157/
32 20,21 UDP

     
152.168.3.0/
24  

152.163.200.157/
32 80 TCP

     
152.163.198
.4/32  152.163.160.0/22 >1023 TCP

     
152.163.198
.4/32  152.163.36.0/24 >1023 TCP

     
 
The Lumped Hash Table (LuHa) table gives 

high storage utilization by identifying multiple candidate 
sets for each rule. The LuHa table has three major 
differences infrastructure. As a fundamental element, 
packet classification is the most important process in 
TCS, which categories packets into different traffic flows 
using a set of filters or rules. With rapid increasing 
Internet services, traffic control systems need more 
accurate packet classification algorithms and high 
performance processing. 

 
Most previous packet classifications support the 

prefix match, exact match and range match. In IP 
network, for example, many applications use five classic 
fields (protocol, source IP, source port, destination IP 
and destination port) of packet header to determine the 
flow which packet belongs to. Table 1 shows a rule 
configuration from ISPs and enterprise networks 
[11].compared from other d-left hashing [1]. They are: 
First the LuHa table needs only one hash function 
whereas d function needs d-left hashing. Second the hash 
function is given by 2m for different prefixes for each 
pair of the source and destination IP address. Third it 
gives higher storage usage by combining different LuHa 
table was designed by Traffic Control System (TCS). 

 
Traffic control system (TCS) is becoming an 

indispensable and widespread-deployed device of 
network   Table 2 shows an example of traffic 
distribution with inaccurate classification. We collected 
applications traffic proportion from 31 different network 
nodes. A large amount of applications transmit packets 
through not only the traditional transport layer port but 
random ports. Therefore, approximate 30% traffic cannot 

be categorized into a flow which complies with a rule. 
However, new network applications and services demand 
efficient and accurate packet classification. Thus, it is 
necessary that traditional packet classifications evolve to 
a scalable traffic classification in IP network. Especially, 
traffic control systems need classifying, shaping network 
traffic and detecting malicious packet. 

An example, we can change HTTP port from80 
to a random port. Furthermore, port 80 is being used by a 
variety of non-web applications to circumvent TCS and 
firewalls which do not filter 80 port traffic and some new 
applications hardly use fixed transport layer port to 
communicate, such as P2P flows, multimedia stream. So, 
accurate and efficient packet classification is an urgent 
problem in TCS. 

Table2. An example of traffic distribution 
Protocol And Percentage Of Traffic 
Application   

   
HTTP  10% 

   
P2P  15.7% 

   
FTP  1.9% 

   
Others  39.1% 

   
Unclassified  33.3% 

   
Total  100% 

   

 
 

To obtain high performance and flexibility, we 
use a promising hardware solution Intel IXP2800 
network processor. The IXP2800 is the second-
generation network processor, which enables fast 
deployment of intelligent network services by providing 
flexible programming and high performance. It is 
suitable for complex packet processing in a wide variety 
of network applications. Each hardware thread in 
network processor can run independently and parallel to 
process packets. The IXP2800 supports a broad range of 
speed from OC48 to OC192. 

This paper describes an efficient hybrid packet 
classification in gigabits traffic control system using 
second-generation programmable network processor. We 
address the problem of inaccurate packet classification 
and analyze the payload of new applications. In 
particular, we focus on the packet classification on not 
only packet header but the first 64-bit payload and other 
flags of packet router property. Then, we present the 
software pipeline architecture, hardware implementation 
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consideration, and report measurements. We show a 
classifier that can exploit network processors, and make 
suggestions about hardware features that can 
significantly improve accuracy and performance of 
traffic control system. 
 
Related Work 

Classification lookup mechanisms may be 
categorized, in accordance with their implementation 
approaches, as being hardware-centric and software-
oriented, depending upon if dedicated hardware logics or 
specific storage components (like TCAM or registers) 
are used. Different hardware centric classification 
mechanisms exist. In particular, a mechanism with 
additional registers to cache evolving rules and dedicated 
logics to match incoming packets with the cached rules 
was pursued [3]. Meanwhile, packet classification using 
FPGA was considered [6] by using the BV (Bit Vector) 
algorithm [17] to look up the source and destination ports 
and employing a TCAM to hold other header fields, with 
search functionality realized by FPGA logic gates. 
Recently, packet classification hardware accelerator 
design based on the HiCuts and HyperCuts (HC) 
algorithms [13], [20] has been presented [16]. Separately 
effective methods for dynamic pattern search were 
introduced [2], realized by reusing redundant logics for 
optimization and by fitting the whole filter device in a 
single Xilinx FPGA unit, taking advantage of built-in 
memory and XOR-based comparators in FPGA. 

Hardware approaches based on TCAM are 
considered attractive due to the ability for TCAM to hold 
the Don’t care state and to search the header fields of an 
incoming packet against all TCAM entries in a rule set 
simultaneously [18], [9]. Widely employed storage 
components in support of fast lookups, TCAM has such 
noticeable shortcomings (listed in [8]) as lower density, 
higher power consumption, and being pricier and 
unsuitable for dynamic rules, since incremental updates 
usually require many TCAM entries to be shifted (unless 
provision like those given earlier [19], [9] is made). As a 
result, software-oriented classification is more attractive, 
provided that its lookup speed can be quickened by 
storing rules in on-chip SRAM. 
 
Software-Oriented Classification 

Software-oriented mechanisms are less 
expensive and more flexible in filter lookups when 
compared with their hardware-centric counterparts. 

Such mechanisms are abundant, commonly 
involving efficient algorithms for quick packet 
classification with an aid of caching or hashing. Their 
classification speeds rely on efficiency in search over the 
rule set using the keys constituted by corresponding 
header fields. Several representative software 

classification techniques are reviewed in sequence. 
 
Recursive Flow Classification 

Recursive flow classification (RFC) carries out 
multistage reduction from a lookup key (composed of 
packet header fields) to a final class ID, which specifies 
the classification rule to apply [4]. Given a rule set, pre-
processing is required to decide memory contents so that 
the sequence of RFC lookups according to a lookup key 
yields the appropriate class ID [4]. Based on a pre-
computed decision tree, Hierarchical Intelligent Cuts (Hi 
Cuts) [15] holds classification rules merely in leaf nodes 
and each classification operation needs to traverse the 
tree to a leaf node, where multiple rules are stored and 
searched sequentially. During tree search, Hi Cuts relies 
on local optimization decisions at each node to choose 
the next field to test. Hyper Cuts (HC) is an improvement 
over Hi Cuts by allowing cuts to be made over multiple 
dimensions at a node [20], as opposed to just a single 
dimension each in Hi Cuts. At every node, there can be 
totally πD

i=1 nc(i)child nodes, where nc(i) is the number 
of splits made in the ith dimension. Like Hi Cuts, HC is 
also a decision tree-based classification mechanism, but 
each of its tree nodes splits associated rules possibly 
based on multiple fields. It is shown to enjoy substantial 
memory reduction while considerably quickening the 
worst-case search time under core router rule sets [20], 
when compared with Hi Cuts and other earlier 
classification solutions. 

 
Decision Tree Based Method 
 

Given that decision tree-based methods (like 
HiCuts and HC) in general are notorious for the tree size 
explosion problem (with the decision tree size highly 
depending on the data sets and possibly to grow 
exponentially), refinement techniques are introduced to 
reduce their storage requirements. The trade-off between 
storage and lookup performance 

 
can be measured by the space factor (SF), with a larger 
SF value yielding a wider and shallower decision tree. A 
larger SF is expected to consume more storage but 
support faster lookups. 

 
Meanwhile, storage-saving for decision tree-

based classifiers can be achieved by pushing common 
rules upwards, aiming to keep a common set of rules at 
the parent node if the rules hold true for all of its child 
nodes. Although this way lets rules be associated with 
non leaf nodes to save storage by avoiding replicas at the 
leaves, it can degrade lookup performance, as a lookup 
then has to examine internal nodes. Additionally, since 
decision trees are known to involve excessive (child 
node) pointers, a common fix lets the parent node keep 
merely the starting base address pointing to its first child 
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plus an additional n-bit “Extended Path Bitmap” (EPB) 
to remember existing child nodes [20]. This pointer 
compression reduces space greatly from n pointers to one 
plus (n -1) bits. Also, practical decision tree 
implementation stores all filter rules in a memory array 
of consecutive locations; the decision tree only keeps 
indices in the tree nodes. This reduces storage by 
avoiding replicas of filter rules which hold true for 
multiple sub trees due to wildcard addresses or port 
ranges. Adversely, such compression techniques make 
incremental updates very difficult. The linear memory 
array representation leaves holes upon rule deletions and 
is hard to accommodate new rules. The resulting indirect 
lookup process becomes inefficient because memory, in 
principle, exhibits maximal bandwidth under continuous 
bursts of requests. When data objects are accessed in a 
random (or non burst) manner, memory bandwidth 
efficiency dwindles rapidly, so is the packet 
classification rate. 

An efficient router packet classification 
algorithm was introduced [12] by hashing flow IDs held 
in digest caches (instead of the whole classification key 
comprising multiple header fields) for reduced memory 
requirements at the expense of a small amount of packet 
misclassification. Recently, fast and memory-efficient 
(2D) packet classification using Bloom filters was 
studied [14] by dividing a rule set into multiple subsets 
before building a cross-product table for each subset 
individually. Each classification search probes only those 
subsets that contain matching rules (and skips the rest) 
by means of Bloom filters, for sustained high throughput. 
The mean memory requirement is claimed to be some 
32-45 bytes per rule [14]. As will be demonstrated later, 
our mechanism achieves faster lookups (involving 8- 16 
hash probes plus four more SRAM accesses, which may 
all take place in parallel, per packet) and consumes fewer 
bytes per rule (taking 15-25 bytes per rule). 
 

A dynamic packet filter, dubbed Swift [21], 
comprises a fixed set of instructions executed by an in-
kernel interpreter. Unlike packet classifiers, it optimizes 
filtering performance by means of powerful instructions 
and a simplified computational model, involving a kernel 
implementation. Lately, HyperSplit has been pursued for 
its superior classification speed and memory usage [22]. 
Based on recursive space decomposition, HyperSplit has 
the tree size explosion problem and requires 66 MB 
storage for 10K ACL rules, in sharp contrast to less than 
250 KB under router Configuration Engine Packet 
Classification (RCEPC). 
 

The point of implementation, router packet 
classification includes two kinds: hardware-based 
algorithms and software-based algorithms. Typical 
algorithms show in Table 3. (n denotes the number of 
rules, d denotes the number of classification fields, w 

denotes width of classification fields). 
 
A. Novel algorithms 

Router Packet Classification algorithm (RPC) 
splits the set of filter rules into several subsets by the 
hash-compression index table built based on the first 8-
bit prefix of IP and constructs fast search trees for each 
subset. These search trees with smaller-sized filters can 
be more quickly constructed, optimized and updated, so 
the rate of search is correspondingly improved. It can be 
easily implemented in hardware at line speeds using a 
pipeline fashion.  

From the view of geometry, the best bounds for 
point location in N rectangular regions and d > 3 
dimensions are O (log n) time with O (Nd) space; or O 
((log n)d-1) time with O (N) space. 

 
A kind of Parallel Router Packet Classification 

algorithm [24] adopts a parallel decision tree based 
packet classification scheme via rule set pre-partitioning. 
The original rule set is pre-partitioned into a series of 
subsets and then the overlaps among the rules are 
eliminated on several packet fields. So that decision cuts 
within each subset (on such packet fields) will not incur 
rule duplication and the storage efficiency is, therefore, 
significantly increased as well as O(Log(N)) processing 
delays. 

A new algorithm [25] for router packet 
classification uses the concept of independent sets. The 
algorithm has very small memory requirements. The 
search speed is not sensitive to the size of the rule table 
or to the percentage of wildcards in the fields. It also 
scales well from two-dimensional classifiers to high-
dimensional ones. In particular, the algorithm is 
inherently parallel. Hardware tailored to this algorithm 
can achieve very fast search speed. The update algorithm 
proposed is also very fast in general. 
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A Novel Router Packet Classification Algorithm [26] 
makes use of bits distribution features. It is a high 
level classification method. It always takes the bits 
from every dimension into account, instead of 
constraining the search process in some of the 
dimensions at every stage. It is composed of three 
lookup procedures: a heuristic hash lookup, a novel 
multi-way dynamic search tree lookup and a lookup in 
a small rule set. This architecture is aimed at finding 
the best matching rule by traversing an optimal search 
path. 
 
The performance analysis method of 
algorithms 
 

The actual performance analysis needs many 
rules, data packets and the relation between them for 
whichever algorithms. It is a difficult task to simulate 
the data sets. Class Bench [27], a suite of tools for 
benchmarking packet classification algorithms and 
devices, has been widely applied. It is based on a 
battery of analyses on 12 real filter sets provided by 
Internet Service Providers (ISPs), a network 
equipment 563 vendor, and other researchers working 
in the field. The filter sets range in size from 68 to 
4557 entries and utilize one of the following formats: 
access control list (ACL), firewall (FW), and IP chain 
(IPC). The general approach of ClassBench is to 
construct a set of benchmark parameter files that 
specify the relevant characteristics of real filter sets, 
generate a synthetic filter set from a chosen parameter 
file and a small set of high-level inputs, and generate a 
sequence of packet headers to probe the synthetic filter 
set using the Trace Generator. Markers-based Space 
Decomposition Algorithm [28] and O(log W) 
Multidimensional Packet Classification used this 
benchmark tools. Taking the level of network protocol 
and fields extension into account, Class Bench should 
include MAC and IPv6 headers in the future. 

 
Construction 
 
Router Packet Classification Algorithm 
Design in Cable Modem Quality of Service 
System 
 
A. Router Packet Classification application in 

Quality of Service system  
 

This paper is based on Cable Modem (CM) research with 
Godson CPU, SDRAM memory chip, Embedded Linux 
OS and DOCSIS (Data-Over-Cable Service Interface 
Specification) to allow transparent bidirectional transfer 
of Internet Protocol (IP) traffic, between the cable system 
head end and customer locations in hybrid-fiber/coax 

cable network. CM and CMTS (Cable Modem 
Termination System) classify packets traversing the RF 
MAC interface into a Service Flow to provide Quality of 
Service (QoS) by shaping, policing, and prioritizing 
traffic according to the Parameter Set defined for the 
Service Flow. Service Flow and Classifier are two 
important concepts in DOCSIS V1.1. A Service Flow is 
a MAC-layer transport service that provides 
unidirectional transport of packets either to upstream 
packets transmitted by the CM or to downstream packets 
transmitted by the CMTS. A Service Flow is 
characterized by a set of QoS Parameters such as latency, 
jitter, and throughput assurances. A Classifier is a set of 
matching criteria applied to each packet entering the 
cable network. It consists of some packet matching 
criteria (destination IP address, for example), a classifier 
priority, and a reference to a service flow. If a packet 
matches the specified packet matching criteria, it is then 
delivered on the referenced service flow. Figure 1 
illustrates the mappings discussed below. 

 

Figure 1. Classification within the MAC Layer 

CM and CMTS Packet Classification consist of 
multiple Classifiers. Several Classifiers may all refer to 
the same Service Flow. The mapping of classifier and 
service flow shows in Figure 2. If a Classifier is found in 
which all parameters match the packet, the Classifier 
MUST forward the packet to the corresponding Service 
Flow. If no Classifier is found in which all parameters 
match the packet then the packet is classified to the 
Primary Service Flow. 
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Figure 2. Mapping of classifier and service flow 

 
The packet classification table contains the 

following fields in DOSCSISV1.1, in Table 4. But 
DOCSISV3.0 also includes Ipv6 Traffic Class Range and 
Mask, Flow Label and Next Header Type. 
 

Classifiers can be added to the table either via 
management operations (configuration file, registration) 
or via dynamic operations  
(dynamic signaling, DOCSIS MAC sub layer service 
interface). SNMP based operations can view Classifiers 
that are added via dynamic operations, but cannot modify 
or delete Classifiers that are created by dynamic 
operations.  

In real network, rules mainly focus on IP 
Classification Parameters. LLC and 802.1p/q 
Classification Parameters are seldom. 

The BH algorithm is proposed to meet QoS 
requirement in Cable Modem and limit resource in 
embedded system. The algorithm is based on B tree 
structure and non-collision function. The algorithm 
divides di into two stages. 
Fields Description 
Priority Determines the search order for the 

table. High priority classifier are 
searched before lower priority classifier.

IP 
classification 
parameter 

Zero or more of the IP classification 
parameters(IP TOS Range/mask, IP 
destination Address/mask, TCP/UDP 
Source Port Start, TCP/UDP Source 
Port End, TCP/UDP Destination Port 
Start, TCP/UCP Destination Port End)

LLC 
Classification 
Parameters 

zero or more of the LLC classification 
parameters (Destination MAC Address, 
Source MAC Address, Ethertype/SAP)

IEEE 
802.1P/Q 
Parameters 

zero or more of the IEEE classification
parameters (802.1P Priority Range, 
802.1Q VLAN ID) 

Service Flow 
Identifier 

identifier of a specific flow to which 
this packet is to be directed 

 
 

 The first stage reduces the memory by storing 
the redundant once and uses a non collision function to 
speed up search time for IP Classification. 
Then the number of rules sharply decreases. The match 
rule is finally obtained by linear search with priority for 
LLC and 802.1p/q Classification. The algorithm process 
shows in Figure 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3. Router Packet classification 

Architecture of the Packet Classification 
Engine

This section explains about the steps 
involved to design the Packet Classification Engine 
Architecture. The design is based on the schematic 
representation explained above. PCE implements basic 
inspection from 5 header packet field in the Ethernet 
packet. Those five fields are considered input to the 
system. The inputs are Source IP Address, Destination 
IP Address, Source Port, Destination Port, Protocol, 
START, RESET and Clock Signal whereas the outputs 
are valid and forward. 

 
Figure 4. PCE Top Level 

 
START signal is a control signal to start an inspection 

process by PCE. Every inspection is controlled by this 
signal to receive field input as system inputs and 
processes it. RESET signal cleans register value and 
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output and initialize the system. Output Forward signal
shows 1 inspection process is finished and read Valid
signal as a result. Valid signal shows fields’ inspection
result and control  
packet buffer to forward or discard the Ethernet

packet from the firewall. CLOCK signal is needed to
synchronize the system process. 

  

Figure 5.High level state machine of PCE
 

Process in PCE starts from input and ends
with output signal generation, shown by High Level
State Machine in Figure 7. When the system is turned
on, PCE will be in the idle state. In this state, the
system waits for start signal input gives logic „1‟. 
When the signal is given, all the field inputs are
received and system will move to process_1 state. In
this state, all the output is clean. PCE inspects the input
fields based on the algorithm. Every one inspection, it
moves to process_2 state and checks for inspection
status. When the inspection is not finished, it will loop
back to process_1. When it is finished, the system
moves to stop state. In this state, outputs are generated
and the system will move to idle state automatically
until the next process. 

Based on the algorithm explained above, we
need an architecture which can maximized its
advantages and works fast and reliable. The
architecture must have simple design but also have the
capability to facilitate various modifications of firewall
rules and specification. The idea of building our PCE
architecture comes from the algorithm itself. This PCE
takes form of a single cycle processor whose processes
are decided by instruction memory. 
 

 
 
Figure 6. Subfields multiplexer 

 
This architecture is most suitable for PCE in a 

firewall which implements variable rules and 
specification. Each of 8 bit sub-fields from tree-based 
algorithm will produce instructions for the processor. 
From 5 inspected fields of packet header, we will get 13 
subfields, 4 sub-fields of Source IP Address, 4 sub-fields 
of Destination IP Address, 2 sub-fields of Source Port, 2 
subfields of Destination Port, and 1 sub-field of Protocol. 
With 13 sub-fields inspected by PCE, we need 
mechanism to decide which sub-field is inspected. The 
processor will need a multiplexer with 4-bit selector for 
the data processed. Figure 8 shows the multiplexer used. 
Before the multiplexer, there is a register to secure the 
system from unwanted input change. 

The most important component in sub-fields 
inspection by PCE is comparator. It compares sub-field 
input with sub-fields in the firewall rules. The 
comparison process has been explained in the tree-
algorithm. Comparator is designed to compare 2 input 8 
bit data and give result based on the criteria. These 
criteria are greater, less, or equal. If the comparison of 2 
inputs and the criteria matches, this component will 
generate logic „1‟ result, and otherwise if it is not. 
Figure 9 shows comparator used in the PCE. The criteria 
is 2 bit input at the component. 
 

 

Figure 7. Comparator 
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The architecture needs a component to control 
system output at the right time, which is after field 
inspection process is finished. Logic „1‟ from the 
comparator only shows that the comparison is suitable 
but the process is not over yet. Final compile unit is 
designed to generate output if the process is finished. 
Valid and Forward signal in PCE is generated by this 
component. Command to generate output will be saved 
in the last part of a process in the accessed rules by the 
system. Output generation is shows by the action leaves 
at the end of inspection tree. Final Compile Unit is 
shown in Figure 8. 1 bit is needed to control output 
generation. 

 

Figure 8. Final Compile Unit 

By taking processor form as the architecture, 
PCE needs instructions to control process undergoing in 
each cycle. These instructions are saved in instruction 
memory. In our proposed PCE, the component saving the 
instructions is called Rules Memory. Each instruction 
can be accessed by giving address input to the 
component. Figure 9 shows Rules Memory used in PCE. 
Because in this research we do not use complex memory 
and updating mechanism yet, Rules Memory address is 
consisted only 8 bit. This address will change based on 
the specification. 

 

Figure 9 Packet Classification Engine Architecture 
The hardware accelerator can save search 

structures for rule sets containing up to 49,000 rules, 
when implemented on a Stratix EP3SE260F115C3 

FPGA, and rule sets containing up to 24,000 rules when 
implemented on a Cyclone EP3C120F484C7 FPGA. 

Figure 10. Memory usage(lines) and worst case 
number of clock cycles(bars). 

The search structures built using the ACL1, 
IPC1 rule sets for both the Cyclone and Stratix 
implementation show similar performance results. This 
is because memory consumption is not a major problem 
for these rule sets as they don’t contain many rules with 
wildcard fields. For the search structure built using the 
FW1 rule sets it can be seen that the Stratix 
implementation shows better performance than the 
Cyclone implementation. This is because memory 
consumption is a problem due to the many rules 
containing wildcard fields. The FW1 rule set for 
example with 15,000 rules needs, at worst 9 clock cycles 
to classify a packet when 3,944,448 bits of memory are 
available for the search structure using the Cyclone. This 
figure is reduced to 4 clock cycles when the amount of 
memory available is doubled using a Stratix. 
 

The router classification in the hardware 
accelerator is shown in Fig. 16 and 17, with the results 
for the hardware accelerator generated using a search 
structure requiring at worst 2 clock cycles to classify a 
packet. Post place and route simulations were carried out 
using Quartus 2 Power Play Power Analyzer Tool with 
VCD files generated by ModelSim. These results were 
compared to the power consumed by the state of the art 
Cypress Ayama 10000 Network Search Engine [32], 
which uses similar amounts of memory. The hardware 
accelerator implemented on the Cyclone 3 FPGA with 
3,944,448 bits of memory is compared to the Cypress 
Ayama 10128 search engine with 4,608,000 bits of 
TCAM. The Stratix 3 implementation of the hardware 
accelerator with 7,888,896 bits of memory available is 
compared to the Cypress Ayama 10256 search engine 
with 9,216,000 bits of TCAM. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011 

 

159

 

Figure11. Power vs. throughput for Cyclone 3 
hardware accelerator. 

 

Figure 12. Power vs. throughput for Stratix 3 
hardware accelerator. 

Looking at Fig. 16 it can be seen that the 
TCAM has a maximum throughput of 133 mpps, while 
the hardware accelerator implemented on the Cyclone 3 
FPGA with 2 packet classification engines has a 
maximum throughput of 65 mpps when running at 65 
MHz. This throughput decreases to 36 mpps when 1 
engine is used while running the hardware accelerator at 
36 MHz. These levels of Throughputs are more than 
enough to cope with line rates up to OC-768. At these 
speeds the hardware accelerator shows an energy saving 
of 66.38%. 

 
Conclusion 

                Packet classification is essential for most 
network system functionality and services, but it is 
complex, since it involves comparing multiple fields in a 
packet header against entries in the filter data set to 
decide the proper rule to apply for handling the packet 

[4]. This paper has considered a rapid packet 
classification mechanism realized by RCEPC able to not 
only exhibit high scalability in terms of both the 
classification time and the router size involved, but also 
effectively handle incremental updates to the filter data 
sets. Based on a single set-associative LuHa hash table 
(obtained by lumping a set of hash table units together) 
to support two- staged search, RCEPC promises to enjoy 
better classification performance than its known 
software-oriented counterpart, because the LuHa table 
narrows the search Scope effectively based on the source 
and the destination IP addresses of an arrival packet 
during the first stage, leading to fast search in the second 
stage. With its required router size lowered considerably, 
RCEPC makes it possible to hold entire search data 
structures in the local cache of each core within a 
contemporary processor, further elevating its 
classification performance than previous software- based 
techniques. 

Note that theoretically pathological cases may 
occur despite encouraging pragmatic results by ρ=1:0, as 
we have witnessed in this study. For example, a large 
number of (host son the same subnet with) prefixes ρ/ω 
can differ only in a few bits. Hence, those prefixes can 
be router configuration engine into the same set after 
being 
rounded down, say from ρ/ω down to ρ| ιi , for ιi ≤ ω < 
ιi+1, under RCEPC. There are possible ways to deal with 
such cases and to avoid overwhelming the indexed set. A 
possible way is to use one and only one entry to keep the 
round-down prefix ρ| ιi , as opposed to holding all ρ/ω‟s 
in individual entries under the current design. 
Subsequently, the (ω- ιi) round-down bits can form a 
secondary indexing structure to provide the 
differentiation (among rules specific to each host) and/or 
the round-down bits can be mingled with the remaining 
fields of the filter rules. Thus, each stage narrows the 
search range by small and manageable structures. These 
possible options are being explored. 
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Figure 17.Maximum Buffer usage 
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