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Summary 
This paper presents a taxonomy of intrusion response systems 
(IRS), classifying a number of research papers published during 
the past decade that provide us with many valuable insights into 
the field of Internet security. In recent years, we have seen 
impressive changes in how attackers gain access to systems and 
infect computers. We discuss the key features of IRS that are 
crucial for defending a system from attack. Choosing the right 
security measures and responses is an important and challenging 
part of designing an IRS. If we fail to do so, our automated 
response systems will reduce network performance and wrongly 
disconnect users from a network. We address this challenge here, 
and introduce the concept of "response cost", in an attempt to 
meet users needs in terms of quality of service (QoS) and the 
interdependency of critical processes. This taxonomy will open 
up interesting areas for future research in the growing field of 
intrusion response systems. 
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1. Introduction 
Our use of software systems, information systems, 
distributed applications, etc. is continuously growing in 
size and complexity [6]. Today, cyber attacks and 
malicious activities are common problems in distributed 
systems, and they are rapidly becoming a major threat to 
the security of organizations. It is therefore crucial to have 
appropriate Intrusion Detection Systems (IDS) in place to 
monitor, trace, and analyze system execution. Only then 
can we hope to identify performance bottlenecks, 
malicious activities, programming functional, and other 
performance problems [4]. Intrusion Response Systems 
(IRS), by contrast, continuously monitor system health 
based on IDS alerts, so that malicious or unauthorized 
activities can be handled effectively by applying 
appropriate countermeasures to prevent problems from 
worsening and return the system to a healthy mode. 
Unfortunately, IRS receives considerably less attention 
than IDS [15]. 
 Usually, the attacker exploits security goals: the 
confidentiality and integrity of data, and the availability of 
service (referred to as CIA), by targeting vulnerabilities in 
the form of flaws or weak points in the security 
procedures, design, or implementation of the system [2], 
[42]. The main issue in choosing a security measure is to 

correctly identify the security problem. For example, we 
do not want to isolate a whole server from a network on 
which many services are installed, nor do we want to kill 
processes that are using a considerable amount of CPU 
resources unless we are sure they are being attacked. Thus, 
implementing an appropriate algorithm in IDS and IRS, 
and choosing the right set of responses, must take into 
account whether or not the network is being attacked with 
a very high positive value. It is essential that we counter 
attacks with new features, a complete list of responses, 
accurate evaluation of those responses in a network model, 
and an understanding of the cost of each response in every 
network element. If we fail to do so, our automated IRS 
will needlessly reduce network/host performance, wrongly 
disconnect users from the network/host, and eventually 
result in a DoS attack on our network. We must, therefore, 
establish a tradeoff between slowing down system 
performance and maintaining maximum security [22]. 
 In this paper, we propose a taxonomy of IRS and 
present a review of existing IRS. Our aim in the paper is to 
identify the weaknesses of IRS and propose guidelines for 
improve them.  
 The rest of this paper is organized as follows: in 
Section 2, we propose our taxonomy of IRS and describe 
their main elements. A review of recent existing IRS is 
presented in Section 3. Section 4, we discuss the current 
state of the intrusion response field, and suggestions for 
future research which can improve the current weaknesses 
of IRS. Finally, in Section 5, we present our conclusions. 
 

2.  A taxonomy of intrusion response systems 
Depending on their level or degree of automation, IRS can 
be categorized as: 
 

• Notification systems: These systems mainly 
generate alerts when an attack is detected. An 
alert can contain information about the attack, 
such as attack description, time of attack, source 
IP, user account, etc. The alerts are then used by 
the administrator to select the reactive measures 
to apply, if any. This approach is not designed to 
prevent attacks or return system to a safe mode. 
The major challenge in this approach is the delay 
between the intrusion and the human response. 
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• Manual response systems: In these systems, 
there are some preconfigured sets of responses 
based on the type of attack. A preconfigured set 
of actions is applied by the administrator when a 
problem arises. This approach is more highly 
automated than the notification system approach. 

• Automated response systems: These systems are 
designed to be fully automated, so that no human 
intervention is required, unlike the two methods 
described above, where there is a delay between 
intrusion detection and response. One of the 
major problems with this approach is the 
possibility that an inappropriate response will be 
executed when a problem arises. Another 
challenge with executing an automated response 
is to ensure that the response is adequate to 
neutralize the attack. The characteristics of this 
approach are depicted in Figure 1, and are the 
following: 

 

2.1. IRS input 
IDS are tools that monitor systems for signs of malicious 
activities. They are closely related to automated fault 
identification tools. We use network-based IDS (NIDS) to 
monitor the network and host-based IDS (HIDS) to 
monitor the health of a system locally [21], [28], [30], 
[36], [20]. 
  IDS are divided into two categories: anomaly-based, 
and signature-based. In anomaly-based techniques, a two 
step process is employed. In the first step, called the 
training phase, a classifier is extracted using a popular 
algorithm, such as a Decision Tree, a Bayesian Network, a 
Neural Network, etc. [19], [35], [37]. The second step, the 
testing phase, concentrates on classifier accuracy. If the 
accuracy meets our threshold, it can be used to detect 
anomalies. Anomaly-based detection is able to detect 
unknown attack patterns and does not need predefined 
signatures. However, it is difficult to define normal 
behavior, and the malicious activity may look like a 
normal usage pattern. In signature-based techniques (also 
known as misuse detection) [41], we compare captured 
data with well-defined attack patterns. Pattern matching 
makes this technique deterministic, which means that it 
can be customized for every system we want to protect, 
although it is difficult to find the right balance between 
precision, which could lead to false negatives, and 
genericity, which could lead to false positives [33], [53]. 
Moreover, signature-based techniques are stateless. Once 
an attack matches a signature, an alert is issued and the 
detection component does not record it as a state change. 
One solution to the limitation of detection based only on 

stateless signatures is to use a finite state machine (FSM) 
to track the evolution of an attack [4]. That way, while an 
attack is in progress, the state changes and we can trigger 
appropriate responses based on a confidence level 
threshold, which would result in a lower false positive rate. 
The detection component has all the detailed information 
about the malicious activity, such as severity, confidence 
level, and the type of resource targeted. The output of the 
detection component is based on the Intrusion Detection 
Message Exchange Format (IDMEF) [44]. This is a 
standard that can be used to report alerts about attacks or 
malicious behaviors. Briefly, each alert embodies the 
following: 
 

• Analyzer Identification: the analyzer that 
originated the alert. 

• Create Time: the time at which the alert was 
created. 

• Detect Time: the time at which the event(s) 
leading up to the alert occurred. 

• Analyzer Time: the current time on the analyzer. 
• Source: the source of the event leading up to the 

alert, including Node, User, Process, and Service. 
• Target: the intended victim of the event leading 

up to the alert, including Node, User, Process, 
Service, and File. 

• Classification: name and description of the alert. 
• Assessment: consisting of three fields (Impact, 

Action, and Confidence):  
 

◦ Impact: This field shows the analyzers 
assessment of the events impact on the target. 
The Impact field has three attributes: 
Severity, Completion, and Type. The severity 
attribute value can be high, medium, or low, 
and is very important information for the 
prediction component, as explained in the 
prediction section. The completion attribute 
indicates whether or not the attack was 
successful, and so its value can be failed or 
successful. If we want to detect the progress 
of the attack early on, an FSM can send an 
alert for each state reached. Thus, the 
completion attribute of all the alerts 
generated while the attack is in progress will 
be recorded as failed. Only the final alert of 
each FSM execution will earn the successful 
completion value. The type attribute 
indicates the nature of the attempt related to 
the alarm. 
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Fig. 1  Taxonomy of Intrusion Response Systems. 

 
◦ Action: This field is filled in if the IDS 

detects an attack and reacts to it. Otherwise, 
it will be left blank.  

◦ Confidence: This field reflects the validity of 
the analyzer estimation. Its value can be low, 
medium, or high. However, different values 
can be assigned to it. For example, in the 
FSM mechanism, a weight can be associated 
with each state, the sum of all the weights 
being 100. Confidence in this case means 
confidence level. The confidence level 
related to each alert is equal to the sum of the 
weights of all the states previously seen. 

  

2.2. Response cost model 

Response cost evaluation is a major part of the IRS. 
Although many automated IRS have been proposed, most 
of them use statically evaluated responses, avoiding the 
need for dynamic evaluation. However, the static model 
has its own drawbacks, which can be alleviated by 
designing a dynamic evaluation model for the responses. 
Dynamic evaluation will also more effectively protect a 
system from attack, as threats will be more predictable. 
Verifying the effect of a response in both dynamic mode 
and static mode is a challenge, as accurate parameters are 
required to evaluate that response. If, for example, we 
have an Apache process under the control of an attacker, 

this process is now a gateway for the attacker to access our 
network. The accepted countermeasure would be to kill 
this hijacked process that has become potentially 
dangerous. When we apply this response, we will increase 
our data confidentiality and integrity (C and I of CIA) if 
the process was doing some damage on our system. But, 
the negative impact is that we lose Apache availability (A 
of CIA), since our Web server is now dead and our website 
is down. Let us imagine another scenario, where we have a 
process on a server consuming a considerable amount of 
CPU resources that is doing nothing but slowing down our 
machine (a kind of CPU DoS). This time, killing the 
process will improve service availability (system 
performance), but will not change anything in terms of 
data confidentiality and integrity. We now have two very 
different results for the same response. Also, some of the 
responses effects depend on the network infrastructure. 
For example, applying a response inside the external DMZ 
is probably very different from doing so inside the LAN or 
"secure zone" in terms of CIA. Responses cannot be 
evaluated without considering the attacks themselves, 
which are generally divided into the following four 
categories [13], [23]: 
 

1. Denial of service (DoS): The attacker tries to 
make resources unavailable to their intended 
users, or consume resources such as bandwidth, 
disk space, or processor time. The attacker is not 
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looking to obtain root access, and so there is not 
much permanent damage.  

2. User to root (U2R): An individual user tries to 
obtain root privileges illegally by exploiting 
system vulnerabilities. The attacker first gains 
local access on the target machine, and then 
exploits system vulnerabilities to perform the 
transition from user to root level. After acquiring 
root privileges, the attacker can install backdoor 
entries for future exploitation and change system 
files to collect information [64].  

3. Remote to local (R2L): The attacker tries to gain 
unauthorized access to a computer from a remote 
machine by exploiting system vulnerabilities.  

4. Probe: The attacker scans a network to gather 
information and detect possible vulnerabilities. 
This type of attack is very useful, in that it can 
provide information for the first step of a multi-
step attack. Examples are using automated tools 
such as ipsweep, nmap, portsweep, etc. 

 
 In the first category, where the attacker is slowing 
down our system, we are looking for a response that can 
increase service availability (or performance). In the 
second and third categories, since our system is under the 
control of an attacker, we are looking for a response that 
can increase data confidentiality and integrity. In the fourth 
category, attackers are attempting to gather information 
from the network and about possible vulnerabilities. Thus, 
responses that improve data confidentiality and service 
availability are called for in this case. A dynamic response 
model offers the best response based on the current 
situation of the network, and so the positive effects and 
negative impacts of the responses must be evaluated online 
at the time of the attack. Evaluating the cost of the 
response in online mode can be based on resource 
interdependencies, the number of online users, the users 
privilege level, etc. There are three types of response cost 
model: 
 

1.  Static cost model: The static response cost is 
obtained by assigning a static value based on 
expert opinion. So, in this approach, a static value 
is considered for each response (

€ 

RCs = 
CONSTANT).  

2.  Static evaluated cost model: In this approach, a 
statically evaluated cost, obtained by an 
evaluation mechanism, is associated with each 
response (

€ 

RCse  = f(x)). The response cost in the 
majority of existing models is statically 
evaluated. A common solution is to evaluate the 
positive effects of the responses based on their 
consequences for the confidentiality, integrity, 
availability, and performance metrics. To evaluate 
the negative impacts, we can consider the 

consequences for the other resources, in terms of 
availability and performance [11], [12]. For 
example, after running a response that blocks a 
specific subnet, a Web server under attack is no 
longer at risk, but the availability of the service 
has decreased. After evaluating the positive effect 
and negative impact of each response, we then 
calculate the response cost. One solution is as 
follows [17], obviously the higher RC, the better 
the response in ordering list: 

 

€ 

RCse = Positiveeffect /Negativeimpact    (1) 

 
3.  Dynamic evaluated cost model: The dynamic 

evaluated cost is based on the network situation 
(

€ 

RCde ). We can evaluate the response cost 
online based on the dependencies between 
resources and online users. For example, the 
consequences of terminating a dangerous process 
varies with the number of interdependencies of 
other resources on the dangerous process and 
with the number of online users. If the cost of 
terminating the process is high, maybe another 
response would be better. Evaluating the response 
cost respect to the resource dependencies, the 
number of online users, and the user privilege 
level leads us to have an accurate cost-sensitive 
response system. The following example will 
explain why the response effect has to be 
calculated based on resource dependencies. Let us 
imagine two scenarios: 1) all services (web and 
mail) are using the MySQL shared user 
application (db-user) Figure 2a; and 2) all 
services (web and mail) are using a separate user 
application (web-user and mail-user) Figure 2b. If 
the web services in scenario 1 are attacked and 
we remove db-user when the attack is detected, it 
is obvious that web and mail processes cannot 
continue to run . In contrast, if the web services in 
scenario 2 are attacked and we remove web-user, 
the mail process and other web service processes 
will be unaffected. Thus, in the first scenario, 
where all the services are using the same MySQL 
user, selecting other locations (based on the attack 
path such as a firewall point or web server point) 
or other responses, are the better options. Thus, 
resource dependency model improves IRS in 
terms of their ability to apply appropriate 
responses, while meeting users needs in terms of 
QoS and the interdependencies of critical 
processes. The majority of the proposed IRS uses 
Static Cost or Static Evaluated Cost models, as 
Table 1 in Section 3 illustrates. 
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(a) REMOVE APPLICATION USER (db-user) (b) REMOVE APPLICATION USER (web-x) 

Fig. 2 Two scenarios of in which the application user is removed 
 

2.3. Adjustment ability 

There are two types of adjustment model: 1) non-adaptive; 
and 2) adaptive. In the non-adaptive model, the order of 
the responses remains the same during the life of the IRS 
software. In fact, there is no mechanism for tracing the 
behaviors of the deployed responses. In the adaptive 
model, the system has the ability to automatically and 
appropriately adjusts the order of the responses based on 
response history [15]. We can define a Goodness (G) 
metric for each response. Goodness is a dynamic 
parameter that represents the history of success (S) and 
failure (F) of each response for a specific type of host [14]. 
This parameter guarantees that our model will be adaptive 
and helps the IRS to prepare the best set of responses over 
time. The following procedure can be used to convert a 
non-adaptive model to an adaptive one [14]: 
 

€ 

G t( )= S − F   

€ 

Reffectivness t0( )= RCs |RCse |RCde( )∗G t( )   

€ 

Reffectivness t( )= Reffectivness t −1( )∗G         (2) 

 
 One way to measure the success or failure of a 
response, or a series of responses, is to use the result of the 
online risk assessment component. We discuss this in the 
"Response execution" section. Now, G can be calculated as 
proposed in [14]: if the selected response succeeds in 
neutralizing the attack, its success factor is increased by 
one, and if it fails, that factor is decreased by one. The 
important point to bear in mind is that the most recent 
results must be considered more valuable than earlier ones. 
Let us imagine an example where the results of G and F 
for a response are 10 and 3 respectively, the most recent 
result being F=3. Unfortunately, although G=7 indicates 
that this response is a good one, and it was appropriate for 
mitigating the attack, over time and with the occurrence of 

new attacks, this response is not sufficiently strong to 
stage a counter attack. 
 

2.4. Response selection 

There are three response selection models: 
 

1.  Static mapping: An alert is mapped to a 
predefined response. This model is easy to build, 
but its major weakness is that the response 
measures are predictable. 

2.  Dynamic mapping: The responses of this model 
are based on multiple factors, such as system 
state, attack metrics (frequency, severity, 
confidence, etc.), and network policy [5]. In other 
words, responses to an attack may differ, 
depending on the targeted host, for instance. One 
drawback of this model is that it does not learn 
anything from attack to attack, so the intelligence 
level remains the same until the next upgrade 
[10], [46].  

3.  Cost-sensitive mapping: This is an interesting 
technique that attempts to attune intrusion 
damage and response cost [16], [17]. Some cost-
sensitive approaches have been proposed that use 
an offline risk assessment component, which is 
calculated by evaluating all the resources in 
advance. The value of each resource is static.  In 
contrast, online risk assessment component can 
help us to accurately measure intrusion damage. 
The major challenge with the cost-sensitive 
model is the online risk assessment and the need 
to update the cost factor (risk index) over time. 

 
2.5. Response execution 

There are two types of response execution: 
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1.  Burst: In this mode, there is no mechanism to 
measure the risk index of the host/network once 
the response has been applied. Its principal 
weakness is the performance cost, as all the 
responses are applied when a subset may be 
enough to neutralize the attack. The majority of 
the proposed IRS use burst mode to execute 
responses. 

2.  Retroactive: there is a feedback mechanism 
which can measure the response effect based on 
the result of the most recently applied response, 
the idea being to make a decision before applying 
the next in a series of responses. There are some 
challenges that must be addressed if this mode is 
to be used in the adaptive approaches; for 
example, how to measure the success of the most 
recently applied response, and how to handle 
multiple occurrences of malicious activities [18]. 
As shown in Figure 1, we have to measure the 
risk index after running each response. The risk 
assessment component can help us do this, but the 
difficulty is that the risk assessment must be 
conducted online. Retroactive approach is firstly 
proposed in [17]. We have named it retroactive. 
As mentioned, the idea is to have a decision-
making before applying the next response in a set 
of responses. There are a number of ways to 
implement the retroactive approach, among them 
the following: 1) Use a response selection 
window: the first idea that firstly proposed in [17] 
is using response selection window. Every 
response has a static risk threshold associated 
with it. The permission to run each response 
corresponds to the current risk index of the 
network. When the risk index is higher than the 
static threshold of the response, the next response 
is allowed to run. With a response selection 
window, the most effective responses are selected 
to repel intrusions. 2) Run responses 
independently: This is a simple idea, which 
involves measuring the risk index of one 
response, to make a decision about the next one. 
3) Group responses: This is a good idea if 
measuring the risk index of a single response 
does not provide enough information to make the 
decision about running the next response and 
cannot be applied in a production environment. It 
involves defining a round-based response 
mechanism. Figure 3 illustrates six responses to a 
specific malicious activity which are ready in the 
pending queue before the start of the first round. 
Whether or not to run the next round of responses 
is based on the risk index of the network. Once a 
round of responses has been run, a new risk index 
is measured by the Online Risk Assessment 

component after a specific delay. As shown in 
Figure 3, every response has a Response 
Effectiveness, which defines how the selected 
response is ordered in the pending queue. Figure 
4 shows two possible scenarios for consideration 
after the first round of responses has been 
launched. In the first scenario, the risk index of 
the network decreases, so the next round is not 
required. With this knowledge, the network can 
be prevented from being overly impacted. In 
contrast, in the second scenario, the risk index 
shows that malicious activity is continuing, in 
spite of the application of the first round of 
responses. In this case, the second round of 
responses has to be applied. There are some 
challenges to be overcome here. The first is to 
determine how many responses in a round is 
considered enough to neutralize an attack. Is the 
number sufficient to avoid having to run the next 
round and overly impact the network? Is the 
number sufficient to accurately measure the risk 
index? Clearly, it would be helpful to define some 
attributes for the responses, in order to analyze 
them better and order them more effectively. The 
responses with fewer characteristics could be 
placed in a group and applied as a group. 
Unfortunately, there is no strong attack dataset 
available for testing the ideas of IRS researchers 
[40]. This problem is common to all security 
researchers. Such a dataset would enable us to 
determine whether or not one round of responses 
is enough or if the number of responses in a 
round is sufficient to neutralize an attack. This 
was also a challenge in [17], as the authors could 
not establish the strength of their proposed model. 

 
2.6. Prediction and risk assessment 

As we know, an IDS or individual detection components 
usually generate a large number of alerts, and so the output 
of an IDS is stream data, which is temporally ordered, fast 
changing, potentially infinite, and massive. There is not 
enough time to store these data and rescan them all as 
static data [37], [38], [39]. Thus, if we connect the 
detection component to the intrusion response component. 
After a few hours, the impact on our network is huge, and 
results in a DoS. The goal of designing prediction and risk 
assessment components is to help response systems to be 
more intelligent in terms of preventing the problem from 
growing and in returning the system to a healthy mode. 
Since the output of an IDS is stream data, prediction and 
risk assessment components must cope with these data, 
and we have to find appropriate algorithms to deal with 
them. These algorithms are used in IRSs, and their 
components are the following:
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Fig. 3   Ordered pending responses before the start of the first round. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4   Two possible outcomes for decision-making after the first round of responses has been run. 
 

2.6.1. Prediction 
In the prediction view, we have two types of IRS: 1) 
Reactive; and 2) Proactive [15], [51]. In the reactive 
approach, all responses are delayed until the intrusion is 
detected. The majority of IRS use this approach, although 
this type of IRS is not useful for high security. For 
example, suppose the attacker has been successful in 
accessing a database and has illegally read critical 
information. Then, the IDS sends an alarm about a 
malicious activity. In this case, a reactive response is not 
useful, because the critical information has already been 
disclosed. In general, the disadvantages of a reactive 
response are the following [51]: 
 

• It is applied when an incident is detected, so the 
system remains in the unhealthy state it was in 
before the detection of the malicious activity until 
the reactive response is applied. 

• It is sometimes difficult to return the system to 
the healthy state. 

• The attacker has the benefit of time between the 
start of the malicious activity and the application 
of the reactive response. 

• It takes more energy to return the system to the 
healthy state than to maintain it in that state. 

• Since it is applied after an incident is detected, 
the system is exposed to greater risk of damage. 

 
 In contrast, the proactive approach attempts to control 
and prevent a malicious activity before it happens, and 
plays a major role in defending hosts and networks. A 
number of different schemes that predict multi-step attacks 
have been proposed. Some researchers have inserted the 
prediction step in the detection component. For example, 

the authors of [34] believed that, since existing solutions 
are only able to detect intrusions when they occur, either 
partially or fully, it is difficult to block attacks in real time. 
So they proposed a prediction function based on Dynamic 
Bayesian Networks, with a view to predicting the goals of 
intruders. Other researchers have worked on prediction 
algorithms based on detection output. In this method, 
detection components are distributed across a network and 
alerts are sent to the prediction component. Of course, 
there may be aggregation and correlation components 
between the detection and prediction components to 
reduce the number of false positives. Yu and Frincke [29] 
and Shameli-Sendi et al. [3] proposed the Hidden Colored 
Petri-Net (HCPN) and Alert Severity Modulating 
respectively to predict the intruders next goal. While most 
researchers use alert correlation to differentiate true alerts 
from alerts generated by detection components, called the 
Alert Filtering approach, the authors of [29] and [3] have 
taken a different approach. They maintain that, while 
multi-step attack actions are unknown, they may be 
partially detected and reported as alerts. They also 
maintain that all alerts can be useful in prediction, as the 
task of alert correlation is not only to find good alerts or to 
remove alerts. 
 

2.6.2. Risk assessment 

Again, most IDS generate a huge number of alerts over 
time. A large number of these alerts are duplicates and 
false positives [20], [61]. Many schemes have been 
proposed to overcome these weaknesses, some of which 
use an alert aggregation mechanism to reduce the number 
of alerts [20]. Others use an alert correlation mechanism to 
extract attack scenarios [26], [27], while a third group is 
attempting to assess the threat of intrusion [18], [23], [54], 
[55]. Also, alert information has only the severity field 
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(IDMEF format), which does not allow for a 
comprehensive description of the risk assessment or the 
level of threat. Risk assessment is the process of 
identifying and characterizing risk. In other words, risk 
assessment helps the IRS component determine the 
probability that a detected anomaly is a true problem and 
can potentially successfully compromise its target [18]. 
 Thus, there are two types of risk assessment: 1) static: 
many researchers use offline risk assessment in IRS, 
assigning a static value to every resource in the network. 
Offline risk assessment has been reviewed in the 
Information Security Management System (ISMS) 
standards that specify guidelines and a general framework 
for risk assessment. It is described in many existing 
standards, such as NIST and ISO 27001 [43], [56]. 
Although they cannot satisfy the requirements of the 
online risk assessment environment, these standards are 
nevertheless fundamental and useful [2]. 2) dynamic: 
online risk assessment is a real time process of evaluation 
and provides a risk index related to the host or network 
[31]. Online risk assessment is very important in terms of 
minimizing the performance cost incurred. It does this by 
applying a subset of all the available sets of responses 
when that may be enough to neutralize the attack. In the 
second model, we can dynamically evaluate attack cost by 
propagating the impact of confidentiality, integrity and 
availability through service dependencies model or attack 
graph [1], [49], [66] or by general model based on attack 
metrics [18], [23], [3]. The type of IDS that works based 
on tracers [4] is capable of improving its analysis results 
by adding a "system state" feature [25]. A system state 
database provides a view of the state of each host, 
including CPU usage, memory usage, disk space, and a 
resource graph showing the number of running processes, 
the number of running threads, memory maps, file 
descriptors, etc. In fact, without knowledge of the state of 
the system, a real and accurate online risk assessment is 
impossible. So, an online response system that supports 
the system state would be a very novel model.  
 

2.7. Response deactivation 

The need to deactivate a response action is not recognized 
in the majority of existing automated IRS. The  importance 
of this need was first suggested in [6]. These authors 
believe that most responses are temporary actions which 
have an intrinsic cost or induce side effects on the 
monitored system, or both. The question is how and when 
to deactivate the response. The deactivation of policy-
based responses is not a trivial task. An efficient solution 
proposed in [6] is to specify, two associated event-based 
contexts for each response context: Start (response 
context), and End (response context). The risk assessment 
component can also help us decide when a countermeasure 
has to be deactivated. In [6], countermeasures are 
classified into one of two categories, in terms of their 

lifetime: 1) One-shot countermeasures, which have an 
effective lifetime that is negligible. When a response in 
this category is launched, it is automatically deactivated; 
and 2) Sustainable countermeasures, which remain active 
to deal with future threats after a response in this category 
has been applied. 
 

2.8. Attack path 

The majority of existing automated IRS apply responses 
on the attacked machine, or the intruder machine if it is 
accessible. By extracting the "attack path", we can identify 
appropriate locations, those with the lowest penalty cost, 
for applying them. Moreover, responses can be assigned to 
calculate the dynamic cost associated with the location 
type, as discussed in the "Response cost model" Section. 
The numerous locations and the variety of responses at 
each location will constitute a more effective framework 
for defending a system from attack, as its behavior will be 
less predictable. An attack path consists of four points: 1) 
the start point, which is the intruder machine; 2) the 
firewall point, which includes firewalls and routers; 3) the 
midpoint, which includes all the intermediary machines 
that the intruder exploits (through vulnerabilities) to 
compromise the target host; and 4) the end point, which is 
the intruders target machine. Although, research on the 
attack path has been carried out and some ideas as to its 
usefulness have been formulated [58], [63], [65], it has 
rarely been implemented in an IDS or IRS. 
 

3. Classification of existing models 
In this section we discuss recent IRS and provide a 
summary of all the proposed IRS of interest in Table 1,  
which presents their detailed characteristics as is given in 
[15]. Curtis et al. [7], [8], [5] propose a complex dynamic 
mapping based on an agent architecture (AAIRS). In 
AAIRS, multiple IDS monitor a host and generate alarms. 
The alarms are first processed by the Master Analysis 
agent. This agent indicates the confidence level of the 
attack and passes it on to an Analysis agent, which then 
generates a response plan based on degree of suspicion, 
attack time, attacker type, attack type, attack implications, 
response goal, and policy constraints. Lee et al. [13] 
propose a cost-sensitive model based on three factors: 1) 
operational cost, which refers to the cost of processing the 
stream of events by IDS; 2) damage cost, which refers to 
the amount of damage to a resource caused by an attacker 
when the IDS is ineffective; and 3) response cost, which is 
the cost of applying a response when an attack is detected. 
The authors focus on the DARPA 1998 dataset, which is 
based on network connections. The resources that are 
being attacked in this dataset are network services and 
applications on some hosts. Damage and response costs 
have been statically defined based on four categories 
(ROOT, R2L, DoS, and PROBE ).
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Table 1: Classification of existing IRSs based on proposed taxonomy. 
 

IRS Year Response Selection Risk Assessment Risk Assessment 
Criteria 

 Prediction 
ability 

Adjustment 
ability 

Response evaluation 
model 

Response 
execution Response lifetime 

DC&A [45] 1996 Dynamic mapping   Reactive Non-adaptive Static Cost Burst Sustainable 

CSM [10] 1996 Dynamic mapping   Reactive Non-adaptive Static Cost Burst Sustainable 

EMERALD [46] 1997 Dynamic mapping   Reactive Non-adaptive Static Cost Burst Sustainable 

BMSL-based response [32] 2000 Static Mapping   Reactive Non-adaptive Static Cost Burst Sustainable 

SoSMART  [60] 
 2000 Static Mapping   Reactive Non-adaptive Static Cost Burst Sustainable 

PH [52] 2000 Static Mapping   Reactive Non-adaptive Static Cost Burst Sustainable 

Lee's IRS [13] 2000 Cost-sensitive Static  Reactive Non-adaptive Static Cost Burst Sustainable 

AAIRS [5], [7], [8], [9] 2000 Dynamic mapping   Reactive Adaptive Static Evaluated Cost Burst Sustainable 

SARA [59] 2001 Dynamic mapping   Reactive Non-adaptive Static Cost Burst Sustainable 

CITRA [62] 2001 Dynamic mapping   Reactive Non-adaptive Static Cost Burst Sustainable 

TBAIR [57] 2001 Dynamic mapping   Reactive Non-adaptive Static Cost Burst Sustainable 

Network IRS [16] 2002 Cost-sensitive Static  Reactive Non-adaptive Dynamic Evaluated 
Cost Burst Sustainable 

Tanachaiwiwat 's IRS [50] 2002 Cost-sensitive Static  Reactive Non-adaptive Static Cost Burst Sustainable 

Specification-based IRS [49] 2003 Cost-sensitive Dynamic Resource 
Dependencies  Reactive Non-adaptive Dynamic Evaluated 

Cost Burst Sustainable 

ADEPTS [48] 2005 Cost-sensitive Static  Proactive Adaptive Static Cost Burst Sustainable 

FAIR [47] 2006 Cost-sensitive Static  Reactive Non-adaptive Static Evaluated Cost Burst Sustainable 

Stakhanova's IRS [14] 2007 Cost-sensitive Static  Proactive Adaptive Static Evaluated Cost Burst Sustainable 

DIPS [23] 2007 Cost-sensitive Dynamic Attack metrics Proactive Non-adaptive Static Cost Burst Sustainable 

Jahnke [66] 2007 Cost-sensitive Dynamic Attack Graph Reactive Non-adaptive Dynamic Evaluated 
Cost Burst Sustainable 

Strasburg's IRS [12] 2008 Cost-sensitive Static  Reactive Adaptive Static Evaluated Cost Burst Sustainable 

IRDM-HTN [17] 2010 Cost-sensitive Dynamic Attack metrics Reactive Non-adaptive Static Evaluated Cost Retroactive Sustainable 

OrBAC [6] 2010 Cost-sensitive Dynamic Resource 
Dependencies  Proactive Adaptive Static Evaluated Cost Burst Deactiveable 

Kheir's IRS [1] 2010 Cost-sensitive Dynamic Resource 
Dependencies  Proactive Non-adaptive Dynamic Evaluated 

Cost Burst Sustainable 

          

 Toth and Kruegel [16] present a network model that 
takes into account relationships between users and 
resources, since users perform their activities by utilizing 
the available resources. The goal of a response model is 
to keep the system in as high a state of usability as 
possible. Each response alternative (which node to 
isolate) is inserted temporarily into the network model 
and a calculation is performed to determine which 
response has the lowest negative impact on services. In 
this model, every service has a static cost, and there is 
only the "block IP" response to evaluate as a way to repel 
an attack. When the IDS detects an incoming attack, an 
algorithm attempts to find the firewall/gateway that can 
effectively minimize the penalty cost of the response 
action. 
 Tanachaiwiwat et al. [50] propose a cost-sensitive 
method. Although they claim that their method is 
adaptive, they have, in fact, implemented a non adaptive 
mechanism. They point out that verifying the 
effectiveness of a response is quite expensive. They 
check, IDS efficiency, alarm frequency (per week), and 
damage cost, in order to select the best strategy. The 

alarm frequency reveals the number of alarms triggered 
per attack, and damage cost assesses the amount of 
damage that could be caused by the attacker. An 
appropriate list of response is available in the proposed 
model. 
 Balepin et al. [49] propose two different ways to 
arrange resources: in a resource type hierarchy, or on a 
system map. They have adopted a dynamic way to add 
new nodes for every type of alert that is raised by the 
IDS that did not already exist on the map. Actually, every 
node is representative of a system object, such as a file, a 
running process, a socket, etc. Also, each node has a list 
of response actions that depend on the type of node, and 
there is a mechanism to assign a cost to each node. 
 Foo et al. [48] present a graph-based approach, 
called ADEPTS. The responses for the affected nodes are 
based on parameters such as confidence level of attack, 
previous measurements of responses in similar cases, etc. 
Thus, ADEPTS uses a feedback mechanism to estimate 
the success or failure of an applied response. This model 
is non adaptive, because it does not observe or analyze 
the behaviors of the deployed responses. 
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 Papadaki and Furnell [47] proposed a cost-sensitive 
response system that assesses the static and dynamic 
contexts of the attack. A database for analyzing the static 
context is needed to manage important characteristics of 
an attack, such as targets, applications, vulnerabilities, 
and so on. In terms of evaluating the dynamic context of 
an attack, there are some interesting ideas embodied in 
the proposed model. The two main features of this model 
are: 1) the ability to easily propose different orders of 
responses for different attack scenarios; and 2) the ability 
to adapt decisions in response to changes in the 
environment. To evaluate the characteristics of each 
response action, they have proposed the following 
parameters: counter-effects, stopping power, 
transparency, efficiency, and confidence level.  
 In [14], Stakhanova et al. proposed a cost-sensitive 
preemptive IRS. This model focuses on detecting 
anomalous behavior in software systems. It monitors 
system behaviors in terms of system calls, and has two 
levels of classification mechanism to detect intrusion. In 
the first detection step, when both normal and abnormal 
patterns are available, the model attempts to determine 
what kind of pattern is triggered when sequences of 
system calls are monitored. If the sequences do not 
match the normal or abnormal patterns, the system relies 
on machine learning techniques to establish whether the 
system is normal or anomalous. These authors have 
presented a response system that is automated, cost-
sensitive, preemptive, and adaptive. The response is 
triggered before the attack completes. There is a mapping 
between system resources, response actions, and 
intrusion patterns which has to be defined in advance. 
Whenever a sequence of system calls matches a prefix in 
an abnormal graph, the response algorithm decides 
whether to repel the attack or not, based on a confidence 
level threshold. Multiple candidate responses may be 
available, and the one with the least negative effect is 
selected based on utility theory. The effectiveness of each 
applied response is measured for future response 
selection. If the selected response succeeds in 
neutralizing the attack, its success factor is increased by 
one; otherwise it is decreased by one. 
 Haslum et al. [23] have proposed a real time 
intrusion prevention model. This model is cost-sensitive, 
and the prediction module has been implemented, as well 
as a dynamic risk assessment module based on a fuzzy 
model. Fuzzy logic is used here to capture and automate 
the risk estimation process that human experts carry out 
using their experience and judgment based on a number 
of dependent variables. In a fuzzy automatic inference 
system, the knowledge of security and risk experts is 
embedded into the rules for creating the fuzzy model. 
They have also designed a prediction model based on the 
hidden Markov model (HMM) to model the interaction 
between the intruder and the network [24]. That model 

can detect the U2R, R2L, and PROBE categories of 
attacks, but not the DoS category. 
 Jahnke et al. [66] present a graph-based approach for 
modeling the effects of attacks against resources and the 
effects of the response measures taken in reaction to 
those attacks. The proposed approach extends the idea 
put forward in [16] by using general, directed graphs 
with different kinds of dependencies between resources 
and by deriving quantitative differences between system 
states from these graphs. If we assume that G1 and G2 
are the graphs we obtain before and after the reaction 
respectively, then calculation of the response’s positive 
effect is the difference between the availability plotted in 
the two graphs: A(G2)-A(G1). Like [16, 49], these 
authors focus on the availability impacts. Strasburg et al. 
[12] proposed a structured methodology for evaluating 
the cost of a response based on three parameters: 
operational cost (OC), impact of the response on the 
system (RSI), and response goodness (RG). The response 
cost model is: RC = OC + RSI - RG. OC refers to the 
cost of setting up and developing responses. The RSI 
quantifies the negative effect of the response on the 
system resources. RG is defined based on two concepts: 
1) the number of possible intrusions that the response can 
potentially address; 2) the amount of resources that can 
be protected by applying the response. 
 Mu and Li [17] presented a hierarchical task 
network planning model to repel intrusions, in which 
every response has an associated static risk threshold that 
can be calculated by its ratio of positive to negative 
effects. The permission to run each response is based on 
the current risk index of the network. When the risk 
index is greater than the response static threshold, the 
next response is allowed to run. They propose a response 
selection window, where the most effective responses are 
selected to repel intrusions. There is no evaluation of 
responses in this work, however, and it is unclear how 
the positive and negative effects of responses have been 
calculated. In that framework, the communication 
component is responsible for receiving alerts from 
multiple IDS. An alert filter, and verification and 
correlation components have all been considered. 
Intrusion response planning is in place to find a sequence 
of actions that achieve a response goal. These goals are 
the same as those in [5]: analyze the attack, capture the 
attack, mask the attack, maximize confidentiality, 
maximize integrity, recovery gracefully, and sustain 
service. Each goal has its own sequence of responses. 
For example, if the goal is to analyze an attack, the 
earlier responses in the sequence have to be weak, but 
later responses have to be strong. In [18], the authors 
propose a D-S evidence theory to assess risk.  
 Kanoun et al. [6] were the first to propose a risk-
aware framework to activate and deactivate response 
policies, which consists of an online model and its 
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architecture. The likelihood of success of an ongoing 
threat or an actual attack, as well as the cumulative 
impacts of the threat and the response, are all considered 
before activating/deactivating a strategic response. The 
main contribution of the proposed model is to determine 
when a strategic response should be deactivated and how. 
These authors believe that the deactivation phase is as 
important as the activation phase. 
 Kheir et al. [1] propose a dependency graph to 
evaluate the confidentiality and integrity impacts, as well 
as the availability impacts. The confidentiality and 
integrity criteria were not considered in [16, 49, 66]. In 
[1], the impact propagation process proposed by Jahnke 
et al. is extended by adding these impacts. Now, each 
resource in the dependency graph is described with a 3D 
CIA vector, the values of which are subsequently 
updated, either by active monitoring estimation or by 
extrapolation using the dependency graph. In the 
proposed model, dependencies are classified as structural 
(inter-layer) dependencies, or as functional (inter-layer) 
dependencies. 
 

4. Discussion 
In this paper, we have reviewed all the recently proposed 
IRS models. Although an appropriate taxonomy was 
proposed in 2007 in [15], we are looking for new 
features to improve their design as well as network 
security, in an effort to neutralize attacks. The new IRS 
features we have introduced here are capable of repelling 
attack perfectly. 
 In the last five years or so, we have seen impressive 
changes in the ways in which attackers gain access to 
systems and infect computers. The main problem with 
choosing a security measure is identifying the security 
problem. It is important, for example, that we not isolate 
a whole server from a network and disrupt the many 
services we have installed there, nor do we want to kill 
processes that are using considerable amounts of CPU 
resources if we are not sure they have been attacked. 
Consequently, the appropriate algorithms must be 
implemented in an IRS, and the right set of responses 
with a very high positive value must be selected whether 
or not an attack is in progress. To design an appropriate 
algorithm to trigger responses, the attack level (user 
access, root access, application access) and, most 
importantly, the context of the attack (resource 
exhaustion, a malware dropper, a rootkit, malware itself, 
port opening, remote access, etc.) has to be considered. 
Countering attacks requires preparation of a complete list 
of responses, an accurate evaluation of those responses in 
a network model, and understanding the impact of each 
response in every element of the network. Otherwise, our 
automated IRS will: 
 

•  reduces network/host performance, 
•  wrongly disconnect users from the 

network/host, 
•  result in high costs for administrators re-

establishing services, and 
•  become a DoS attack for our network, which 

will eventually have to be disabled. 
 
 Today, many services are available and used by large 
numbers of users. It is extremely important to maintain 
the users QoS, the response time of applications, and 
critical services in high demand. We have discussed 
some techniques to control the number of responses 
applied when a problem arises. As we have pointed out, 
running responses in burst mode decreases not only 
network performance, but also that of the attacked 
machine. Also, we have explained how to use the 
retroactive approach to determine the number of 
effective responses for repelling an attack. Another 
important issue related to IRS support that we have 
mentioned is identifying the attack path, since extracting 
it can enable us to specify the appropriate locations for 
applying responses. With respect to the location type, 
appropriate responses can be assigned to calculate 
dynamic cost. In this way, an attack path-based IRS finds 
the best locations for applying responses at the lowest 
penalty cost.  We also discussed two important 
components that provide IRS intelligence: 1) the risk 
assessment component; and 2) the prediction component, 
and the challenges associated with using these algorithms 
in streaming mode. Below are some suggestions for 
future research on the development of IRS: 
 

• Design a rapid and accurate online response 
cost evaluation framework for IRS to meet 
network demands. 

• Propose a framework for adaptive IRS taking 
into account response history in order to tackle 
weaknesses in the response goodness 
calculation over time mentioned in this paper. 

• Design a retroactive approach based on the 
concept of grouping, in order to prevent overly 
impacting the network and to accurately 
measure the risk index. 

• Prepare a strong, real dataset of single and 
multi-step attacks. Such a dataset is needed by 
all security researchers and will be useful for 
testing the retroactive approach incorporating 
the grouping concept. 

• Design an Online Risk Assessment component 
with a "system state" feature, in order to 
accurately measure the risk index. 

• Design an IRS that supports an attack path, in 
order to meet users needs in terms of QoS and 
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to enable the application of responses where the 
penalty cost is the lowest. 

 

5. Conclusion 
In the past decade, various very effective Intrusion 
Response Systems have been developed. At the same 
time, we have seen impressive changes in the way 
attackers infect computers. As a result, it is impossible to 
create a perfect IRS that repels the majority of attacks. 
As mentioned in this paper, existing automated IRS 
suffer from weaknesses that prevent them from 
neutralizing attacks. Significant research will be required 
to address all those weaknesses and design a framework 
with a high level of capability. We have proposed a 
taxonomy of IRS and discussed future research that 
could improve the current systems substantially, which 
would in turn improve the intrusion response mechanism 
to enable it to accommodate more intelligence for the 
decision making process. 
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