
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

23

Manuscript received January 5, 2012

Manuscript revised January 20, 2012

Security Issues in Web Services
 Kuyoro Shade O.† Ibikunle Frank†† Awodele O. † and Okolie Samuel O.†

†Babcock University, Ilishan-Remo, Ogun State, Nigeria ††Covenant University Otta, Ogun State, Nigeria

Summary
Web Services are a promising solution to an age-old need: fast
and flexible information sharing among people and businesses.
They represent the next phase of distributed computing, building
on the shoulders of the previous distributed models. Web
Services leverage the ubiquity of the Internet to link applications,
systems, and resources within and among enterprises to enable
exciting, new business processes and relationships with
customers, partners, and suppliers around the world. They enable
access to data that has previously been locked within corporate
networks and accessible only by using specialized software.
Along with the benefits of Web Services comes a serious risk:
sensitive and private data can be exposed to people who are not
supposed to see it. The security issues of Web Services in a
distributed environment are a major concern of research. Web
Services will never attain their tremendous potential unless we
learn how to manage the associated risks. The paper therefore
focuses on the general framework of security issues and the
proposed solution to web services security risks.
Key words:
security, web services, distributed computing, link applications.

1. Introduction

Web Services (Neil, 2003) are loosely coupled self-
contained, self-describing and modular applications that
can be described, published, located and invoked over a
network. Web services can be provided on any platform
and may be written in any programming language. Web
services are the newest incarnation of middleware for
distributed computing and unlike all previous forms of
middleware, it is a simpler, standards-based, and more
loosely coupled technology for connecting data, systems,
and organizations. Web Services essentially involve the
three roles of Service Oriented Architecture (SOA):
service provider, service requester and service broker. A
service provider could be an industry, business or a
company capable of providing service. A requester also
could be a company or a business that is in need of the
service, where as the broker is a place, entity or a system
that helps both service provider and service requester to
discover each other. Basically, four technologies form the
basis of Web services: eXtensible Markup Language
(XML); Simple Object Access Protocol (SOAP); Web
Services Description Language (WSDL); and Universal
Description, Discovery, and Integration (UDDI).
XML: eXtensible Markup Language (XML) was created
as a structured self-describing way to represent data that is

totally independent of application, protocol, vocabulary,
operating system, or even programming language. XML
was initially developed to overcome the limitations of
HTML, which is good at describing how things should be
displayed but is poor at describing what data to be
displayed.
SOAP: Simple Object Access Protocol (SOAP) is used
for communication among different Web Services. SOAP
was created as a way to transport XML from one computer
to another via a number of standard transport protocols.
HTTP is the most common and the most prevalent
transport used by the Web itself. SOAP (Mcintosh and
Austel, 2005) messages flow from originator to an
ultimate receiver through a SOAP message path. A SOAP
message consists of Soap Envelope which contains Soap
Body element and an optional Soap Header element. The
Soap Header element may contain a set of child elements
that describe message processing that the sender expects a
recipient to perform. Below is a typical SOAP listing.

01 <Soap: Envelope—-
02 <Soap: Header (optional)>
03 <Soap: Body> (mandatory)
04 <get Quote symbol = “——”/>
05 </Soap: Body>
06 </Soap: Envelope>
Listing 1: A Simple SOAP message

SOAP envelope is used to encapsulate the SOAP message.
SOAP header is the optional part of the SOAP protocol.
Header contains information for the SOAP node, the
processor of the SOAP message, how to process the
SOAP message. This may be authentication, routing etc.
Soap body contains the targeted to the SOAP message
receiver. Get Quote element is the child of SOAP body.
WSDL: Web Service Description Language (WSDL) is
used to describe the functionalities of the services. It is an
XML language that defines what the input and output
structure will be for a Web service, and what one expects
to see in the payload XML message. WSDL is how one
service tells another which way to interact with it, where
the service resides, what the service can do, and how to
invoke it. Once the requester receives the WSDL
document for the candidate Web service, it must be
validated. The simplest method of doing this is to provide
a digital signature of the WSDL document for the
requester to use. Requesters cannot connect to most
providers without some form of authentication.
UDDI: Universal Description Discovery and Integration
(UDDI) is used as a registry of information for Web

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

24

Services, that is, to publish and discover information.
UDDI service is an industry-wide effort to bring a
common standard for business-to-business (B2B)
integration. It defines a set of standard interfaces for
accessing a database of Web services. The purpose of
UDDI is to allow users to discover available Web services
and interact with them dynamically. The process can be
divided into three phases: Searching (discovery), Binding
and Executing.

Web Service is an attractive and powerful technology for
development of distributed application as well as for
integration. Web Services provides interoperability across
security policy domains. But, while they offer attractive
advantages, Web Services also present daunting
challenges relating to privacy and security. These range
from random acts of Net vandalism to sophisticated,
targeted acts of information theft, fraud, or sabotage. What
makes security for Web Services so challenging is the
distributed, heterogeneous nature of these services. For
wide acceptability by the developers and consumers in
business-to-business (B2B) and business-to-consumers
(B2C) scenarios, Web services must be secured. Therefore
study of security issues in Web Services is a need of the
hour. This work presents what the security challenges of
Web Services are and how to face them. The following
section describes the security trend of web services. The
remaining sections are arranged as follows. Section 3.0
presents general security frameworks of web services,
section 4.0 describes various security threats to web
services, section 5.0 presents current technologies in web
services security, section 6.0 highlights the proposed
solution to web services security risks and section 7.0
concluded the discussion with some future directions.

2. Security Trend of Web Services

Twenty years ago life was reasonably simple for the
security professionals. Sensitive data resided on
monolithic back-office data stores. There were only a
few physical access paths to the data, which were
protected by well-understood operating system access
control mechanisms. Policies, procedures, and tools had
been in place for many years to protect legacy data
stores. Then, several years ago, Web-based applications
came on scene with the advent of e-commerce such that
secure access to Web servers was extremely important.
Today, there are many mature perimeter security
technologies, such as Secure Socket Layer (SSL),
firewalls, and Web authentication/authorization servers
that enforce security between browser clients and
corporate Web servers.

Figure 1 illustrates new and existing security
mechanisms for securing Web Services at different
security tiers.

Fig. 1 A typical Web Service Security implementation

3. General Security Framework

Some core security services that are fundamental to end-
to-end application security across multitier applications
are defined here. They are:
Authentication: verifies that principals (human users,
registered system entities, and components) are who they
claim to be. The result of authentication is a set of
credentials, which describes the attributes (identity, role,
group, and clearance) that may be associated with the
authenticated principal.
Authorization: grants permission for principals to access
resources, providing the basis for access control, which
enforces restrictions of access to prevent unauthorized use.
Access controls ensure that only authorized principals may
modify resources and that resource contents are disclosed
only to authorize principals.
Cryptography: provides cryptographic algorithms and
protocols for protecting data and messages from disclosure
or modification. Encryption provides confidentiality by
encoding data into an unintelligible form with a reversible
algorithm, which allows the holder of the decryption
key(s) to decode the encrypted data. A digital signature
provides integrity by applying cryptography to ensure that
data is authentic and has not been modified during storage
or transmission.
Availability: states that resources, services should be
available to authorized parties at all times.
Accountability: ensures that principals are accountable
for their actions. Security auditing provides a record of
security-relevant events and permits the monitoring of a

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

25

principal’s actions in a system. Non-repudiation provides
irrefutable proof of data origin or receipt.
Security administration: defines the security policy
maintenance life cycle embodied in user profiles,
authentication, authorization, and accountability
mechanisms as well as other data relevant to the security
framework.
Integrity: asserts that no one has tampered with a message
since it was initially created. This assures the sender and
the receiver that every bit produced by the sender is
received by the recipient in precisely unaltered form. Data
integrity is accomplished by using digital signatures.
Messages in which data integrity is required must
explicitly or implicitly include the identity and credentials
of the sender to enable this kind of message-level security.
Confidentiality: keeps the message secret. This process
requires encryption, which scrambles the message in such
a way that only authorized identities can decrypt and see
the data. To do this, a shared secret and an algorithm for
encrypting and decrypting the message is exchanged. In
the real world, these algorithms are very challenging
mathematical functions with keys that are very large
numbers, and the time to do the analysis is technically
infeasible even with modern computers.
Non-repudiation: proves that one identity sent the data
only to another identity. This then proves that the specific
transaction was entered into by the recipient, and neither
party can refute or deny that it occurred later. If the
transaction is challenged legally, a contract that was
supposedly executed must be shown to have been entered
into by both parties. Each party must have seen the
contract signed, and their identities -confirmed
traditionally by validating wet signatures on paper and
notary witnesses- must have been confirmed at the time of
signing. These are difficult, and as yet legally
unchallenged, tenants to uphold in a digital and
anonymous world, but that day is coming. Non-
repudiation depends on public key cryptography
technology.

4. Security Threats to Web Services

There are many complexities specific to, and inherent in
Web services that complicate their security. Numerous
threats can compromise the confidentiality, integrity, or
availability of a Web service or the back-end systems that
a Web service might expose. Some of these threats are
shared with conventional Web application systems (Web
sites), while others are specific to Web services. The
following are the general security threats that can occur in
any Web application.
SQL Injections: When SQL statements are dynamically
created as software executes, there is an opportunity for a

security breach. If the hacker is able to break perimeter
security and pass fixed inputs into the SQL statement, then
these inputs can become part of the SQL statement. SQL
injections can be generated by inserting spatial values or
characters into SOAP requests, Web form submissions, or
URL parameters. A hacker who knows his SQL can use
this technique to gain access to privileged data, log-in to
password-protected areas without a proper log-in, remove
database tables, add new entries to the database, or even
log-in to an application with admin privileges.
Capture and Replay Attacks: As Web messages are
transmitted over the Internet, they are prone to man-in-the-
middle attacks. Such an attack occurs when a malicious
party gains access to some point between the peers in a
message exchange. For instance, a hacker might capture
and replay a SOAP request to make a monetary transfer,
or modify the request before it reaches its destination -
ultimately causing severe losses for any of the peers in the
message exchange.
Buffer Overflows: Native applications can suffer from
unchecked input data sizes. If inputs are not validated, a
buffer overflow attack can transpire remotely via SOAP
requests or Web form submissions. Buffer overflow
attacks occur when a hacker manages to specify more data
into one or more fields and write to the buffer beyond the
size of the memory allocated to hold the data. Buffer
overflows can result in application or system crashes or,
when crafted carefully, they can even allow attackers to
compromise the system and access unauthorized
information or initiate unauthorized processes. The hacker
can exploit this weakness so that the function returns to a
hacker-designated function, or so that the function
executes a hacker designated procedure.
Denial-of-Service Attacks: Denial-of-service (DoS)
attacks are launched to compromise system availability.
There are two ways to mount DoS attacks. First, attackers
can consume Web application resources to a point where
other legitimate users can no longer access or use the
application. This can be accomplished by sending a query
for large amounts of data. The second approach can occur
when attackers lock users out of their accounts or even
cause the entire application to fail by overloading the
service with a large number of requests. Attackers could
combine these two approaches with Web service specific-
attacks to maximize damage.
Improper Error Handling: Many application servers
return details if an internal error occurred. Such details
typically include a stack trace. These details are useful
during development and debugging, but once the
application is deployed, it is important that such details do
not find their way to regular users because the details may
include information about the implementation and could
expose vulnerabilities. For instance, an error message
about a bad SQL query indicates to a malicious user that

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

26

his or her inputs are used to generate database queries,
thus possibly exposing SQL injection vulnerability.
Another instance, a request that includes a wrong
username or password should not be met with a response
that indicates whether or not the username is valid; this
would make it easier for an attacker to identify valid
usernames, and then use them to guess the passwords.
Eavesdropping: Eavesdropping is another security risk
posed to web services. Classified information and
transactions are frequently transmitted using Web services.
By carefully examining the data, attackers can eavesdrop
to intercept SOAP messages and read all of the
information contained therein. Therefore, it is important to
maintain a secure transmission so that this type of
eavesdropping by unauthorized parties is eliminated.
Some of the most damaging things that get sniffed include
passwords and credit card information.

Session Hijacking: Session hijacking involves gaining
illegal control of a legal user’s session state. It occurs
when an attacker steals a valid session ID (valid session
cookie), and uses it to gain that particular user’s privileges
in the application. By intercepting or sniffing SOAP
messages, an attacker can hijack a user’s session in the
same ways as with normal web application attacks,
however once a hacker is authenticated as a valid user he
may perform more dangerous activities.

5. Web Services Security Current Technology

WS-Security: WS-Security is a building block that is
intended to be used in conjunction with other Web
Services and application specific protocols; to
accommodate a wide variety of security models. WS-
Security (Kearney et al., 2004) does not claim to provide a
complete solution to securing Web services. The XML
signature and XML encryption specifications provide
standard methods for digitally signing and encrypting
XML documents including SOAP messages. Not only can
whole documents be signed or encrypted, but also
individual parts. WS-Security defines how XML signature
data can be included in a SOAP message. This provides
persistent confidentiality beyond a single SOAP
communication.
Secure Socket Layer: Secure Socket Layer (SSL) is a
protocol or technology, which is used to protect
companies from Web Service Security attacks. SSL used
in encryption technique, which are in turn used to
implement for data protection. SSL creates a secure tunnel
in between originator and destination computers based on
public key encryption technique. A common protective
measure is to send messages over a secure connection that
is using SSL. For instance, an SSL connection between

two points may be sufficient for simple applications. For
multiple Web Services, complete message or individual
part of messages may be encrypted and signed to protect
the confidentiality and integrity of Web Service messages
(Kearney et al., 2004).
XML Encryption: XML Encryption provides end-to-end
security for applications that require secure change of
structured data. XML Encryption is mainly ensuring
confidentiality to encrypt the XML data. XML based
Encryption is the natural way to handle requirements for
security in data interchange applications. XML Encryption
is not intended to replace or supersede Secure Socket
Layer (SSL). Rather, it provides a mechanism for security
requirements that are not covered by SSL. XML
encryption is ideal for confidentiality. XML Encryption
does not introduce any new cryptography algorithms or
techniques. RSA Encryption may still be used for actual
encryption.
SAML: Security Assertion Markup Language (SAML) is
a protocol for asserting authentication and authorization
information. It also provides attributes of an end-user in
XML format. It allows information to be placed on a
SOAP message. SAML servers can be accessed for
authentication and authorization data in order to enable
Single- Sign-On (SSO). If the recipient of this SOAP
message trusts the sender of the SAML data, the end user
can also be authorized for the Web Service.
XACML: eXtensible Access Control Markup Language
or XML-Access Control Markup
Language (XACML) is designed to express access control
rules in XML format. Although the two technologies are
not explicitly linked, XACML may be used in conjunction
with SAML. An authorization decision expressed in a
SAML assertion may have been based on rules expressed
in XACML.

6. Proposed Solution

The main objective of this work is to bring into focus the
review of security issues in Web services and discuss a
common framework of general security issues. Also some
new security issues in Web Service Security (WSS) along
with their attacks are highlighted. The key to effective
Web services security is to know the threats as described
above, understand the technical solutions for mitigating
these threats, and then establish and follow a defined
engineering process that takes security into consideration
from the beginning and throughout the Web service life
cycle. This process can be established in the following
four steps:
1. Determine a suitable Web service security architecture.
2. Adhere to technology standards.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

27

3. Establish an effective Web services testing process.
4. Create and maintain reusable, re-runnable tests.
By following these four steps, one can ensure complete
Web service security.

7. Conclusion

Web services security is still a work in progress and one
needs to understand the potential security risks and
proactively minimize those risks so that Web services are
less vulnerable to attack. In the present work a review of
security issues in Web services is done under a common
security framework. Some new security issues are
highlighted. New security architecture based upon Web
services that support authentication, authorization and
integrity is a central point for future research.

References
[1] Cerami E. (2002). Web Services Essentials: Distributed

Applications with XML-RPC, SOAP, UDDI & WSDL.
O'Reilly Publisher

[2] Hartman B., Flinn D. J., Beznosov K. and Kawamoto S.
(2003). Mastering Web Services Security. Wiley Publishing
Inc. Indianapolis, Indiana

[3] Kearney P., Chapman J., Edwards N., Gifford M. and He I.
(2004). An Overview of Web Services Security. BT tech.
Journal. 22(1): 27-42

[4] Mcintosh, M.; Austel, P.(2005). XML Signature Element
Wrapping Attacks and Countermeasures. Fairfax. Virginia.
USA

[5] Michael N. H.; Singh, M. P.(2005). Service-Oriented
Computing: Key concepts and principles. IEEE Internet
computing. 9(1):75-81

[6] Neil. M.O. (2003). Web-Service Security. Tata Mcgraw-Hill
Pub. New York

[7] Peterson G. and Lipson H. (2006). Security Concepts,
Challenges, and Design Considerations for Web Services
Integration. Carnegie Mellon University and Cigital, Inc

[8] Rami Jaamour (2005). Securing Web Services. Information
System Security www.infosectoday.com

[9] Sinha S. , Sinha, S. K. and Purkayastha B. S. (2010).
Security Issues in Web Services: A Review and
Development Approach of Research Agenda. Assam
University Journal of Science & Technology: Physical
Sciences and Technology. 5(2):134-140

Kuyoro Shade O. received the B.Sc. and M.Sc. degrees in Computer
Science from Olabisi Onabanjo University (2004) and University of
Ibadan (2010) respectively. She is an assistant lecturer at Computer
Science Department, Babcock University, Ogun State, Nigeria. Her
research interests are in the area of computer networking, machine
learning and artificial intelligence.

Ibikunle Frank is a Senior Lecturer at Computer Science Department,
Covenant University Otta, Ogun State, Nigeria His research interest is in
the area of computer networking.

Awodele Oludele is a Senior Lecturer at Computer Science Department,
Babcock University Ilishan-Remo, Ogun State, Nigeria. His research
interest is in the area of artificial intelligence.

Okolie Samuel O. is a Senior Lecturer at Computer Science Department,
Babcock University Ilishan-Remo, Ogun State, Nigeria. His research
interest is in the area of numerical analysis.

	Eavesdropping: Eavesdropping is another security risk posed to web services. Classified information and transactions are frequently transmitted using Web services. By carefully examining the data, attackers can eavesdrop to intercept SOAP messages and...

