
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

71

Manuscript received January 5, 2012
Manuscript revised January 20, 2012

An Aspect Based Pattern for Context-Awareness of Services*

Hatim Hafiddi, Hicham Baidouri, Mahmoud Nassar and Abdelaziz Kriouile,

IMS Team, SIME Lab., ENSIAS, Rabat, Morocco

* This work is supported by the FNSRSDT under the CSPT-ICTESAD project

Summary
Today, service in oriented applications need to be enhanced to
sense and react to user’s context in order to provide a better user
experience. To meet this requirement, Context-Aware Services
(CAS) have emerged as an underling design and development
paradigm for the development of context-aware applications. The
fundamental challenges for such applications development are
context management and service adaptation to the user’s context.
To cope with such requirements, we provide in this paper a
context, context provider and CAS specifications and
metamodels, and a tool to enhance a core service, in service
oriented applications, to be context-aware. This enhancement is
satisfied across a Aspect based pattern which, inspired by the
Aspect Paradigm (AP) concepts, considers the service’s
adaptations as aspects.
Key words:
Context, Context-Awareness, SOA, Context-Aware Service,
Aspect Paradigm.

1. Introduction

Today, service oriented applications need to be enhanced to
sense and react to user’s context in order to provide a better
user experience. To meet this requirement, Context-Aware
Services (CAS) [2] have emerged as an underling design
and development paradigm for the development of context-
aware applications. A CAS provides users with a
customized and personalized behavior depending on their
contexts. For example, a Restaurants Searching service
gives tourists suggestions depending on their locations,
preferences and even the used device capabilities.
Generally, this kind of information is called context. CAS
driven development of service oriented applications
enables them to sense and react to the changes observed in
their environment. This capability is particularly critical in
ubiquitous environments, where context is the central
element of mobile systems [18].

The ambiguity of the context concept and the
multiplicity of the execution contexts of services make
CASs hard to build. Moreover, traditional approaches for
CASs development produce services, generally both
platform and domain dependent, which are able to function
only in preset situations. The business logics of such
services are tightly coupled with both of context
management and adaptation logics. Consequently, the

result of such approaches is complex services whose rate of
evolution and reuse is much reduced.

CASs development can benefit from Aspect Paradigm (AP)
and Model Driven Engineering (MDE). AP [6] allows the
modification of applications with so-called aspects. Aspects
are modular units of functionality used across the
application code and woven at so-called pointcuts that
allow to transparently extending application functionalities.
In our approach, adaptations of a given service to its use
contexts are seen as aspects. MDE is a model centric
approach for software development, in which models are
used to drive software development life cycle. In our
approach, we provide context, context provider and CAS
metamodels that will guide the design of context-awareness
models. We have presented in [1] a design process for
CASs and we focus in this paper to present the aspect
based pattern to enable efficient CASs development.

The outline of this paper is as follows. We present in next
section a scenario that concerns a context-ware E-tourism
system and highlight the context-awareness challenges. In
Sect. 3, we describe our context specification and
metamodel. We present in Sect. 4 the context provider
specification and metamodel. Sect. 5 presents our CAS
specification and metamodel. We show, in Sect. 6, how
can AP be applied to fulfill CASs adaptation. Sect. 7
briefly compares related work. Finally, we conclude the
paper with plans for future work.

2. E-tourism Motivating Scenario:
Restaurants Searching Service

The following scenario illustrates the potential benefits of
context-awareness for E-tourism systems:

“Let’s take a tourist who wants to taste the local
gastronomy of a city, which he is visiting, so he connects
himself via his mobile device (e.g., PDA, iPhone,
BlackBerry, etc.) to a context-aware E-tourism system in
order to obtain a list of suitable restaurants. He
subscribes to the system and launches his request. The
service returns an adequate list of restaurants (restaurants
availability is taken into consideration), close to his site
(taking into consideration the GPS localization),

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

72

described in his language (the system will consider the
user’s language) and taking account his preferences (e.g.,
food preferences, restaurants prices, etc). Also, let’s note
that such a system resorts, if necessary, to a results
pagination mechanism to avoid its blocking (considering
the device capacities, the RAM in this case) and if ever it
detects any change in tourist’s context (e.g., weak battery
or switching of connection mode from a high mode to a
low one), it will automatically adapt its behavior (e.g.,
returned restaurants information will not include photos)
in purpose of optimization (i.e., reducing latency and
saving battery).”

The development of such E-tourism systems, in particular,
and context-aware systems, in general, imply several
challenges. First, context definition (i.e., which context
information are relevant for the adaptation of the system)
and acquisition (i.e., sensing context from the
environment) is not an evident process. Second, context-
aware systems should autonomously detect relevant
changes in the context and react to these changes by either
adapting or invoking services. Finally, the adaptation
process must be based on mechanisms in accordance with
best practices of software engineering in order to produce
well designed CASs.

3. Context

Context is the information that characterizes the
interactions between humans, applications, and the
environment [19]. Context information is domain specific,
as a type of information might be considered as context
information in one domain but not in another one. Several
context definitions were proposed in the literature (e.g.,
[25], [27], etc.) serving various domains, however the
context definition given by Dey and Abowd remains the
most referred. In fact, these authors have defined context
as “any information that can be used to characterize the
situation of an entity. An entity is a person, place or object
that is considered relevant to the interaction between a
user and an application, including the user and
applications themselves” [29]. As given in [3], we
consider context parameters as any additional information
that can be used to improve the behavior of a service in a
situation. Without such information, the service should be
operable as normal but with context information, it is
arguable that the service can operate better or more
appropriately [10].

Rather than giving context formalization, case of figure
for several researches, sometimes domain specific and
sometimes generic but not very extensible, we choose to
propose a metamodel which is, at the same time, generic
and abstract. So, in our specification (see Fig. 1) a context

is a set of parameters (e.g., language, localization, battery,
connection mode, etc.) and entities (e.g., user, device, etc.)
that can be structured on sub contexts. Sub contexts can
also be recursively decomposed into categories. Context
may be constituted of simple parameters (e.g., language),
derived parameters (i.e., computed from other parameters;
for example a distance parameter can be computed from
two GPS positions) and complex parameters (e.g., GPS)
which have representations (e.g., DMS (Degrees, Minutes,
and Seconds) and DD (Decimal, Degrees) representation
for the localization parameter).

Fig. 1 Core context metamodel.

To illustrate our metamodel, let’s project it on the case of
figure of the E-tourism system presented in the second
section. The context for this system is composed mainly of
the following sub contexts (see Fig. 2):

• DeviceSubContext: it contains parameters that describe
the entity Device. It breaks up into two categories
which are the software category (e.g., operating system,
navigator type, supported type of data, etc.) and the
hardware category (e.g., processor type, battery level,
memory size, etc);

• UserSubContext: it is a sub context that contains
parameters describing the entity User (e.g., preferences,
localization, profile, etc);

• EnvironmentSubContext: this sub context contains the
Environment parameters (e.g., time, weather, etc);

• ServiceSubContext: it contains parameters that
characterize a Service (e.g., price, availability, response
rate, etc).

4. Context Providers

The role of context providers is to gather context
information from different sources such as sensors, web
services, databases, etc. the process of collecting context

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

73

depends on context parameters nature and its sources. For instance, the user profile information is explicitly provided

Fig. 2 Succinct context model for the E-tourism scenario.

by the user and so they are characterized by an infrequent
change. However, context parameters collected from
sensors are subject to frequent changes. Its collection
requires interaction with distributed and heterogeneous
software or hardware sensors. Also, some context
parameters may aggregate or use different context
providers to be gathered.

To abstract Context-Aware Applications developers from
sensors and sensed data variety and complexity, we
provide a context provider specification that abstracts
application development stakeholders from sensors API
details.

Fig. 3 Core context provider metamodel.

In our specification, as illustrated in figure 3, a context
provider (i.e., collector of a given service execution
context) aggregates a set of parameters providers (e.g.,
LocationProvider, WethearProvider, etc.) and entities
providers (e.g., UserProvider, DeviceProvider, etc.). Both
of entities providers and parameters providers dispose of

an interface that specify whether the provider is remote
(e.g., a web service that provides weather) or local (e.g.,
GPS sensor in a mobile device) and what mode of requests
is supported (i.e., query-based or notification-based). A
provider may use some providers, parameters or entities to
get or derive context information. For example, a weather
provider uses the localization provider to get the weather
information.

Fig. 4 Succinct context provider model for the Restaurant Service.

Figure 4 gives a succinct context provider model in the
case of figure of the Restaurants Searching Service. This
provider is composed of the device provider that gathers
device context information (e.g., RAM, Battery Level,
etc.), the profile provider that provides the profile context
information (e.g., age, preferences), the location provider
and the weather provider. This last uses the location
provider to get the weather information and possesses an
interface that specifies how to interact with it.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

74

5. Context-Aware Services Layer

One of the first uses of the term context-aware appeared in
1994 [17]. A service is context-aware if it provides
customized and personalized behavior to users depending
on their contexts [29]. In Service Oriented Computing
(SOC), a service is defined as self-describing and
platform-agnostic computational element that supports
rapid, low-cost and easy composition of loosely coupled
and distributed software applications [24].

To be context-aware, a service must be able to adapt
dynamically its behavior to its several execution (i.e., use)
contexts. In other words, the service (i.e., core service)
must possess mechanisms in purpose to exploit only
relevant information of the execution context and adapt
dynamically its behavior. Henceforth, this appropriate
context information related to a specific execution
situation forms what we call the ContextView of the
service, and the result of the service adaptation to this
ContextView forms the ContextViewService (see Fig .5).

Fig. 5 Core service adaptation to its various ContextViews.

Fig. 6 illustrates our CAS metamodel. Accordingly, CAS
is seen as a specific service with a number of
ContextViews. For each one, we associate an adaptation
strategy (i.e., CVSAdaptationStrategy) which indicates
when (i.e., AdaptationCondition: classical
condition

expressed on ContextView parameters) and how (i.e.,
AdaptationRule: defines the place in the service where the
dynamic adaptations will be realized) a set of ordered
adaptations (i.e., Adaptation) must be applied, on the core
service, in order to provide the expected behavior
regarding the current execution context. The adaptation
result forms the ContextViewService. So, for a given
service, the set of its ContextViewServices (respectively
CVSAdaptationStrategies) forms the CAS (respectively
CASAdaptationStrategy).

For instance, for the E-tourism motivating scenario (c.f.
Sect. 2), battery level and connectivity mode present one
of the Restaurants Searching service ContextViews, that
will provoke service adaptation, by reducing the amount
of data returned (i.e., Adaptation) whenever this level is
lower than 20% or the connectivity is changed from a
high connectivity to a low one (i.e.,
AdaptationCondition). Fig. 7 presents a succinct CAS
model in the case of the Restaurants Searching service.

Fig. 7 Succinct CAS model for the restaurants Searching Service.

Fig. 6 Core CAS metamodel.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

75

6. Aspect Based Pattern

7.1 Context-Awareness Mechanism

Traditional approaches used for CAS design and
development present several problems. In fact, simple core
service duplication for each ContextView is a software
engineering anti-pattern (e.g., high-cost of maintenance),
also integrating adaptation logics into core service makes
it complex and decreases its ability to be reused and
maintained. So, to rationalize the development and
maintenance of CAS, we have to resort to new
mechanisms and strategies that allow core service
extension without any duplication or regression risks.
Such mechanisms will favorite loosely coupling between
the core service and its adaptations seen as crosscutting
concerns.

Inspired by Separation of Concerns [23] and Aspect
Paradigm concepts [6], our CAS design and development
approach consists in considering Adaptation as an aspect.
Thereby, the core service focuses only on business logic
and all of its Adaptations related to its ContextViews will
be defined separately as aspects called Adaptation Aspects.
These Adaptation Aspects will be dynamically woven at
runtime into the core service, by our tool named
Adaptation Aspects Weaver (A2W) (see Fig. 8), to
produce the expected ContextViewService.

Fig. 8 Adaptation Aspects Weaver mechanism.

7.2 A2W Architecture

Figure 9 illustrates the mechanism behind the A2W tool.
The Request Notifier notifies, in a synchronous or
asynchronous mode, the Decision Maker with the
executed service id and the execution context in purpose

to recuperate the adequate CASAdaptationStrategy. Then,
the Decision Maker inspects it in order to retrieve and
interpret the current ContextView. The interpretation
mechanism, operated by the Service Reconfigurator,
consists in checking the AdaptationConditions to weave
only the required Adaptation Aspects, following a set of
AdaptationRules, into the core service to produce the
corresponding ContextViewService.

Fig. 9 A2W architecture.

As shown in figure 10, once the tourist has requested a
proposition of restaurants, the Restaurants Controller (i.e.,
the entry of the system in a MVC pattern) gets the context
of the executing service from the Context Manager, and
then forwards the request with the recuperated context to
the Request Notifier. This last notifies the Decision Maker
with the appropriate serviceId, params and context. Based
on this information, the Decision maker retrieves the
pertinent CVSAdaptationStrategy which will be used by
the Service Reconfigurer in purpose to adapt the core
service and provide a relevant response to the tourist
expectations.

Figure 11 shows two views for the restaurant searching
service depending on the context state. The full view,
which contains full restaurants details, presents the
nominal view, while the reduced view (only relevant
information) presents the view returned by the service in
the case of a low connection mode or battery level
adaptation (restaurant photos are deleted from the
response in order of optimization).

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

76

Fig. 10 Sequence diagram for the Restaurants Searching Service.

Fig. 11 Full and reduced views for the Restaurants Searching Service.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

77

7.3 Tools and Frameworks Support

To develop our A2W toll, we used the Eclipse and Xcode
EDI with the following frameworks that respond to a
specific technical and architectural purpose in our
platform:

• Spring 2.5 [28] was used as IoC (Inversion of
Control) container to link all the components of our
framework, also, transaction is managed by this
framework;

• Spring AOP 2.5 [28] represents the core framework
of the A2W tool in order to make the dynamic
weaving for business service layer;

• Hibernate 3.3 [20] is the framework used in the
persistence layer of the application to map the
business model classes ;

• CXF 2.2 [14] is the soap middleware that manage all
the communication purposes in our application using
the web services technology;

• The final client of our system was developed using
the iPhone SDK [15], the client application can be
executed on iPhone and iPod devices;

• Configuration files written used XML technology is
parsed using the JAXB2 OXM standard [21].

7. Related Work

Several context models have been defined (e.g., Key-value
pairs [13], databases (e.g., CML [16]), ontologies (e.g.,
CMF [5]), profiling (e.g., CC/PP [8]), etc.) and various
context-aware middleware and frameworks have been
developed (e.g., context Toolkit [25], CoBrA [4], K-
Components [26], CORTEX [13], etc.) to deal with
context-aware applications development. In one side, the
main objective of context modeling researches is to provide
an abstraction of context information to permit easy context
management and they do not deal, in general, with the
adaptation of applications to the context. In the other side,
researches that focus on frameworks and middleware
development try to simplify context-aware applications
development and they do not deal with the modeling of
context-awareness of applications.

The rest of this section will focus on some other works
that suggest the employment of model driven approaches
for context-aware applications development. An important
effort is the work conducted by Taconet and Kazi-Aoul in
[7]. Authors define metamodels for modeling context-
aware applications by planning several model views that
model system context sensitivity, but they do not deal with
adaptability. In our approach the service adaptability to the
context is realized through the CASAdaptationStrategy
artifact and the A2W tool. Ayed [22] specify a MDD

(Model Driven Development) approach and an UML
profile to design context-aware applications independently
of the platform. He also proposes a design process that
models the contexts that impact an application and its
variability but also does not deal with applications
adaptation to the context. In ContextUML project [12],
Sheng and Benatallah define an approach for modeling
context-aware Web Services. Context in ContextUML is
specialized into AtomicContext and CompositeContext, so
the proposed metamodel does not refine context
information. Moreover, authors do not specify the
mechanism used to fulfill CAS adaptation. Another
important domain concerns Product Line Engineering
(PLE) that has a great potential in modeling service
variability. An important work is the one conducted in
CAPPUCINE project [9]. Authors focus on context-aware
adaptation in Dynamic Service-Oriented Product Line
(DSOPL) rather than context modeling, and propose two
different processes for the initial and iterative phases of
product derivation. The main challenge to be faced in this
work is to reduce non-deterministic behaviors when non
deterministic context-aware assets are introduced. In our
work, this challenge is faced by the execution of an
ordered set of adaptations.

8. Conclusion

In this paper, we proposed a context specification as a base
for the context metamodel which is generic and open to
allow its extension to various domains depending on needs.
Then we presented a context provider metamodel which
will serve for the context information acquisition. Finally,
we proposed a CAS specification and metamodel and an
adaptation mechanism that, based on the Aspect Paradigm,
considers the adaptations of a service to its execution
context as Adaptation Aspects dynamically woven by the
A2W tool.

We focused in this paper on proposing CAS artifacts
metamodels for designing context-awareness of service
oriented applications. In our future work, we project to
include our metamodels (context, context provider, CAS)
in the Eclipse Modeling Framework (EMF). Then use the
Graphical Modeling Framework (GMF) to build a
graphical editor that will allow designers to model CASs.

References

[1] H. Hafiddi, M. Nassar, H. Baidouri, B. El Asri and A. Kriouile, “A

Context-Aware Service Centric Approach for Service Oriented
Architectures”, in the 13th International Conference on Enterprise
Information Systems (ICEIS'11), Beijing, China, June 2011.

[2] H. Hafiddi, H. Baidouri, M. Nassar, B. El Asri and A. Kriouile, “A
Model Driven Approach for Context-Aware Services Development”,

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

78

in the 2nd International Conference on Multimedia Computing and
Systems (ICMCS'11), Ouarzazate, Morocco, April 2011.

[3] H. L. Truong and S. Dustdar, “A survey on context-aware web
service systems,” Int. J. of Web Information Systems, vol. 5, no. 1,
pp. 5-31, 2009.

[4] H. Chen, “An intelligent broker architecture for pervasive context-
aware systems,” Ph.D. thesis, Univ. of Maryland, Baltimore County,
2004.

[5] P. Korpipää and J. Mäntyjärvi, “An ontology for mobile device
sensor-based context awareness,” in the 4th Int. and Interdisciplinary
Conf. on Modeling and Using Context, vol. 2680 of LNCS, pp. 451-
458, Springer, 2003.

[6] G. Kiczales et al., “Aspect-oriented programming,” Proc. European
Conf. on Object-Oriented Programming, vol. 1241 of LNCS, pp.220-
242, Springer, June 1997.

[7] C. Taconet and Z. Kazi-Aoul, “Building context-awareness models
for mobile applications,” in Digital Information Management J., vol.
8, no. 2, pp. 78-87, 2010.

[8] G. Klyne et al., “Composite Capability/Preference Profile (CC/PP):
structure and vocabularies 2.0,” W3C recommendation, Tech. Rep.,
Apr. 2007.

[9] C. Parra, X. Blanc and L. Duchien, “Context awareness for dynamic
service-oriented product lines,” in the 13th Int. Software Product
Line Conf., San Francisco, USA, Aug. 2009.

[10] H. L. Truong and S. Dustdar, “Context coupling techniques for
context-aware web service systems: an overview,” in Enabling
Context-Aware Web Services: Methods, Architectures, and
Technologies, 1th ed.: Chapman and Hall/CRC, 2010, pp. 337-364.

[11] C. F. Sorensen et al., “Context-aware middleware for applications in
mobile ad hoc environments,” Proc. 2nd workshop on Middleware
for pervasive and ad-hoc computing, Toronto, Canada, Oct. 2004.

[12] Q. Z. Sheng and B. Benatallah, “ContextUML: A UML-based
modeling language for model-driven development of context-aware
web services,” Proc. 4th Int. Conf. on Mobile Business, Sydney,
Australia, July 2005, pp. 206-212.

[13] B. N. Schilit, M. M. Theimer and B. B. Welch, “Customizing mobile
applications,” Proc. USENIX Symp. Mobile and Location-Independent
Computing, Cambridge, MA, Aug.1993, pp. 129-138.

[14] http://cxf.apache.org/.
[15] http://developer.apple.com/devcenter/ios/index.action.
[16] K. Henricksen and J. Indulska, “Developing context-aware pervasive

computing applications: models and approach,” in Pervasive and
Mobile Computing J., Elsevier, vol. 2, no. 1, pp. 37-64, Feb. 2006.

[17] B. Schilit and M. Theimer, “Disseminating active map information to
mobile hosts,” IEEE Network, vol. 8, no. 5, pp. 22-32, Sep./Oct. 1994.

[18] Enabling Context-Aware Web Services: Methods, Architectures, and
Technologies. Chapman and Hall/CRC, Ed. 2010, pp. 113-135.

[19] P. Brezillon, “Focusing on context in human-centered computing,”
IEEE Intelligent Syst., vol. 18, no. 3, pp. 62-66, May 2003.

[20] http://www.hibernate.org/.
[21] http://jaxb.java.net/.
[22] D. Ayed, D. Delanote and Y. Berbers, “MDD approach for the

development of context-aware applications,” in the 6th Int. and
Interdisciplinary Conf. on Modeling and Using Context, vol. 4635 of
LNCS, pp.15-28, Springer, 2007.

[23] W. Hürsch and C. V. Lopes, “Separation of concerns,” Northeastern
Univ., Boston, Mass., Tech. Rep. NUCCS-95-03, Feb. 1995.

[24] M. P. Papazoglou, “Service oriented computing: concepts,
characteristics and directions,” in Information Syst. J., IEEE Comput.
Soc., vol. 50, no. 2, pp. 3-12, Dec. 2003.

[25] D. Salber, A. K. Dey and G. D. Abowd, “The Context Toolkit: aiding
the development of context-enabled applications,” Proc. SIGCHI
Conf. on Human Factors in Computing Syst., Pittsburgh, PA, USA,
May 1999, pp. 434-441.

[26] J. Dowling and V. Cahill, “The K-Component architecture meta-
model for self-adaptive software,” Proc. Reflection’01, vol. 2192 of
LNCS, pp. 81-88, Springer, Sep. 2001.

[27] A. Schmidt, M. Beigl and H. W. Gellersen, “There is more to context
than location,” in Computers and Graphics J., Elsevier, vol. 23, no. 6,
pp. 893-902, Dec. 1999.

[28] http://www.springsource.org/.
[29] A. K. Dey and G. D. Abowd, “Towards a better understanding of

context and context-awareness,” GVU Center, Georgia Inst. of
Technology, Tech. Rep. GIT-GVU-99-22, June 1999.

Hatim Hafiddi received the Engineer of state degree in Software
Engineering from National High School of Computer Science
and Systems Analysis (ENSIAS) in 2007. He is currently a PhD
student in the IMS (Models and Systems Engineering) Team of
SIME Laboratory at ENSIAS. His research interests are Context-
Aware Service-Oriented Computing, Aspect Oriented
Engineering, Mobile Information Systems Engineering, and
Model-Driven Engineering.

Hicham Baidouri received the Engineer of state degree in
Software Engineering from Mohammadia School of Engineers
(EMI) in 2007. He is currently a PhD student in the IMS (Models
and Systems Engineering) Team of SIME Laboratory at ENSIAS.
His research interests are Context-Aware Service-Oriented
Computing, Aspect Oriented Engineering, Mobile Information
Systems Engineering, and Model-Driven Engineering.

Mahmoud Nassar is Professor and Head of the Software
Engineering Department at National Higher School for Computer
Science and Systems Analysis (ENSIAS), Rabat, Morocco. He is
also Head of IMS (Models and Systems Engineering) Team of
SIME Laboratory. He received his PhD in Computer Science
from the INPT Institute of Toulouse, France. His research
interests are Context-Aware Service-Oriented Computing,
Component based Engineering, and Model-Driven Engineering.
He leads numerous R&D projects related to the application of
these domains in Embedded Systems, e-Health, and e-Tourism.

Abdelaziz Kriouile is a full Professor in the Software
engineering Department and a member of SI2M Laboratory at
National Higher School for Computer Science and Systems
Analysis (ENSIAS), Rabat. He is also a Head of the SI3M
Formation and Research Unit. His research interests include
integration of viewpoints in Object-Oriented Analysis/Design,
Service-Oriented Computing, and speech recognition by Markov
models. He has directed several Ph.D thesis in the context of
Franco-Moroccan collaborations.

http://cxf.apache.org/
http://developer.apple.com/devcenter/ios/index.action
http://www.hibernate.org/
http://jaxb.java.net/
http://www.springsource.org/

