
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

79

Manuscript received January 5, 2012
Manuscript revised January 20, 2012

Service-Oriented Middleware Architectures for Cyber-Physical
Systems

 Dat Dac Hoang, Hye-Young Paik Chae-Kyu Kim,

The University of New South Wales The University of New South Wales Electronics and Telecommunications
 Sydney, NSW 2052, Australia Sydney, NSW 2052, Australia Research Institute
 Daejeon, Korea

Summary
Cyber-Physical Systems (CPS) roughly refer to the integration of
computation (cyber) and physical processes. In CPS, embedded
devices/computers and various sensors are interconnected to
monitor and control the physical processes. The recent interests
research into CPS highlighted some of the design challenges in
building CPS and the need for broader research into middleware
architectures. In this paper, we first present systematic literature
survey of research outputs in CPS middleware designs to (i)
present the state-of-the-art and (ii) to bring out some research
focus on the issue. Then, we propose our early conceptual
middleware design named WebMed. The middleware is designed
with a service-oriented view point to support CPS applications.
WebMed enables access to the underlying smart devices and
integration of its device specific functionality with other software
services. It consists of five components: WebMed node, Web
service enabler, service repository, engine, and application
development. With WebMed, interacting with physical devices
becomes as easy as invoking a computation service. Using the
basics of service-oriented guidelines, we can build a loosely
coupled infrastructure that exposes the functionality of physical
devices to the Web for application development.
Key words:
Cyber-Physical Systems, Service Oriented Architectures,
Literature Review, Middleware Design

1. Introduction

Cyber-Physical Systems (CPS) are a new class of systems
that tightly embed cyber capabilities in the physical world
entities (e.g., humans, public transport, power grid,
medical systems), to transform their interactions with the
cyber world [1]. The recent developments in computing
such as sensors, Radio Frequency Identification (RFID)
and Near Field Communications (NFC) allow us to realise
this type of systems where highly collaborative
computations with real-time sensing, monitoring and
management of change are required. CPS opens up new
horizons for many applications (e.g., automated road and
traffic control, effective energy consumption monitoring in
buildings, ubiquitous healthcare and the like.
However, the design and realisation of the complex CPS
applications are not easy. CPS brings about increasing
challenges in supporting time-critical interactions, and

managing large and complex context. We believe that it is
important to have a solution for an agile, but dependable
middleware that can support dynamically changing diverse
requirements of CPS applications. The applications also
should be easily built and deployed, perhaps even by
technically inert people to suit their needs in-situ.
Considering the success of the Web as the largest
distributed system ever built, the new generation
middleware architectures such as Web-of-Things, or Web
service oriented paradigms are likely candidates to enable
the connection between physical things in CPS and the
Web in the cyber and human worlds. However, the
research into middleware architectures or platforms for
realising CPS applications is still in its infancy. While
some approaches enable physical devices connect to each
other, the capability of combining the data from multiple
devices and their functionalities to create an ad-hoc
application is very limited. Furthermore, the capability of
integrating data and functionalities of physical devices
with non-physical data and functionalities (e.g., software
services) is also limited. More importantly, their
complexity and lack of standards lead them to a rather a
small community of developers and technical users hence
their daily life usage has been limited.
In this paper, we first set out to do a systematic literature
survey on Cyber-Physical Systems with a particular focus
on middleware and architecture designs. Then, as an early
design of our on-going work, we propose a Web service-
based middleware architecture which aims to bring the
service orientation paradigms into CPS architecture design.
Service orientation leads to a standardised and unified
infrastructure, built over the Web, in supporting of the
utilisation of physical devices, computing elements and
other software services together. In our design, we aim to
address the following issue: physical devices are highly
proprietary in nature that it is difficult to create a
connected environment containing heterogeneous devices
(i.e., accesses to devices are rather tightly coupled). Even
when they can connect to each other, the capability of
combining the data from multiple devices and their
functionalities to create an ad-hoc application is very
limited. Furthermore, the capability of integrating data and

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

80

functionalities of physical devices with non-physical data
and functionalities (e.g., software services) is also limited.
Our architecture design pays particular attention to
bringing the underlying physical devices’ capabilities
directly to the application development layer, and linking
them with non-physical device services, using service
orientation principles such as loose-coupling, repository
and discovery, reuse, and composition of services.
The remainder of this paper is organized as follows. In
Sections 2 and 3, we present a systematic literature review
on realising service-oriented architecture for CPS design.
In Section 4, we present WebMed, a service-oriented
middleware for CPS. We conclude the paper and present
the future work in Section 5.

2. Systematic Literature Review

For the review of research activities in the area, we present
a systematic literature review on realising service-oriented
architecture for CPS design. We followed a methodology
proposed by Prof. Kitchenham [2] which provides a set of
guidelines for software engineering researchers for
producing a literature survey that is a fair evaluation of a
research topic by using a trustworthy, rigorous, and
auditable methodology. Hence, the structure of this section
is to explain the process of collecting the evidence of the
literature data, and then summarise the trend of CPS
research papers as an overview of the research activities.
We then, particularly focus on summarizing papers on the
service-oriented architecture aspects in the CPS
middleware design. We present the findings in the
following section.
Service orientation paradigms lead to a standardised and
unified infrastructure, built over the Web, in supporting of
the utilisation of physical devices, computing elements and
other software services together. We hoped that the review
will be useful for the researchers and developers in the
area to understand the landscape of service-oriented CPS,
the strengths and weaknesses of the current approaches,
and allow us to develop initial ideas on creating more
advanced middleware.

2.1 Review Question

The scope of research issues in CPS is large, ranging from
the areas in computer hardware and sensors/devices to
software and complex architectures. As more researchers
become involved in this “hot” area, the issues become
dynamic and rapidly changing, which has influenced the
scope of the study. Therefore, we need to specify research
questions to be used in the review in a manner that allows
us to limit the scope of the study. The research question
for the review is framed as follows.
“Consider CPS as an information system, what are the
architectural styles needed to consider when we design

and implement middleware architecture enabling a
service-oriented CPS?”

2.2 Data Collection Process

2.2.1 Search Criteria

In the first stage, we searched papers, research reports,
books, dissertations and documents for the review. The
key term “Cyber Physical Systems” was used to input into
the Google Scholar [3] search engine. No limitation was
set on the published time of the publications. The search
results were saved and processed in the selection stage.

2.2.2 Selection Criteria

The selection process was conducted as in the following
steps:

• Primary search: Papers were selected if they included
the key term in the title. At this stage, we did not
consider the quality criteria of the papers (i.e., all
papers satisfies the key term were selected for the
preliminary list).

• Preliminary list: The preliminary list was then filtered
based on the following criteria: (i) publication is
published from computer science venues (conference,
journal or computer science organisation), (ii) the
language for publication is English, (iii) publication
focuses on CPS research, (iv) publication is available
in full-text. We did not have any bias towards author
name, author's institutional organisation or author's
country. We, then, removed the duplicated search
results due to published in difference online databases
(e.g., ACM digital library, IEEE Explorer). We
downloaded and saved the full-text of selected
publications.

• Screening: In the screening step, full-texts of the
remaining publications were assessed. Since this
review focused on the middleware that enabling the
service-oriented capability of CPS, we excluded papers
that (i) are not relevant to the review question, (ii) are
not thoroughly reviewed by reviewers.

After the screening step, we ended up with a list of papers
for in-depth study.

2.2.3 Data Extraction

After the selection process, data extraction was used to
draw out key themes as part of the synthesis stage of the
review. We extracted the following information from the
full-texts: authors, author's institutional organisation,
author's country, year of publication, publication venue,
publication's focus, and publication’s result.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

81

We thoroughly reviewed the publications in term of their
architectural styles.

2.3 Synthesis

Table 1 shows the results of the search and selection steps
in the process. A total of 2,750 publications were
identified in the primary search step. In the preliminary list
step, 399 publications were selected as they came from
computer science venues. Five and eleven of which turned
out to be not in English and duplicated, respectively, then
were eliminated. We could not retrieved full-text for 57
out of 383 publications. After full-text screening step, 4
papers were excluded since they were not peer-reviewed
publications. We also eliminated 264 papers from the list
since they were not relevant to the research question. We
classified the publications into four categories: Design,
Security, Software Engineering, and Survey. We only
selected publications from the “Design” category with
their main research focuses on high-level design of the
middleware for CPS (i.e., not in physical design of the
CPS elements). Finally, 58 full-texts of publications were
chosen for the in-depth study process of the review. Figure
1 shows the number of publications by category in our
review list.

Table 1 Selection Synthesis (The numbers are as of 04 Jan
2012, by Google Scholar)

Step Elimination Result

Primary Search - 2,750

Preliminary
list

CSE venue 2,351 399
English only 5 394
Duplicated 11 383
Full-text 57 326

Screening
Reviewed 4 322
Relevant 264 58

Figure 1 Number of Publications by Category

A majority of publications (186) is on design (e.g.,
modeling, designing and developing) of CPS. A large
number of studies (62) focused on software engineering
aspects of the CPS (e.g., test, QoS, performance, reliability,

fault, resilient, privacy, evaluation). Also, a large number
of papers (53) worked on surveying CPS including survey,
taxonomy, classification, introduction, comparison, case
study, position paper, point of view, and analysis. Only a
small number of publications (21) concentrated on security
issues of CPS. The published years of selected
publications were in the period of 2006-2012.

3. Survey Findings and Discussions

3.1 General Architecture of Service-Oriented CPS

Unlike conventional embedded systems with concentration
on the physical devices, service-oriented CPS is typically
designed to coordinate the computational and physical
parts of a system. Since physical devices typically have
limited resources and computation power, it is not always
possible to design and execute complex computation and
processes. To cope with this challenge, some approaches
propose a service-oriented architecture of CPS to handle
complex processes using computational and physical
resources. The benefits of using service-oriented
architecture are twofold: (i) provide users a unified
access/communication protocol to interact with physical
and software elements, (ii) facilitate to build flexible
systems while preserving efficiency and scalability.
In general, in the reviewed works, the generic architecture
of service-oriented CPS contains three layers: access,
service, and application.

• Access layer: facilitates a standard platform for
physical devices. First, it provides a networking
environment for connecting devices (e.g., RFID, NFC
or wireless connection such as IEEE 802.15.4, ZigBee,
6LoWPAN, or Wireless M-Bus). Second, it provides a
common representation of physical devices in the
system. The data model is used to accommodate
various devices and resource data formats. The meta-
data relating to physical devices are also included such
as spatial attribute, temporal attribute, state
representation. Third, it has responsible for device
management by detecting and identifying newly
connected/disconnected physical devices and their
resources.

• Service layer: is a logical abstraction layer on top of
the access layer. The main goal of this layer is to cope
with the heterogeneity issues of different physical
components provided by the access layer and software
components. Typically, this layer relies on the Web
protocol such as TCP/IP, HTTP. First, service layer
provides mechanisms (e.g., adapter, wrapper) allowing
to transform physical device to physical service
component. It defines the data retrieval for services and
device access methods (e.g., push, pull, publish,

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

82

subscribe). Second, it allows discovering and
registering new software components (e.g.,
computational services). Third, it also provides a
common repository of component services to be used
in the system. The service repository maintains
comprehensive information about published services in
term of functionality, QoS, and context information
(e.g., sensor, actuator, temporal, spatial, and device
related information). Fourth, it also concerns the QoS
issue of the provided services. It ensures the
adaptability, composability of services so that the users
can compose applications in the application layer.

• Application layer: provides high-level management
and interaction with physical and software components.
It allows users to create applications with ease as create
Web 2.0 mashups (i.e., lightweight, ad-hoc
composition). It also offers other features such as
searchability, sharing, composition, reuse of created
application. Typically, the application layer contains a
development environment and a runtime environment
for creating and executing applications, respectively.

Table 2 Mapping of the architectural layers of reviewed work

with generic service-oriented CPS design

Paper
Architectural layers

Access Service Application

[8] Environmental
Tier Control Tier Service Tier

[4] WoT Device
WoT Kernel

WoT Overlay
WoT Context WoT API

[9] Network Layer
Dynamic
Control

Middleware

Application
Layer

[6] Local Resource
Manager

Global
Resource
Manager

Qbroker

[14] Service Provider
Tier

Gateway Tier
Negotiator

Tier

Application
Tier

[7] Physical Layer Service Layer Application
Layer

[5]
Access Layer

Federation Layer
Provision Layer

QoS/QoD
Enforcement

Layer
Event Service

Application
Layer

A majority of the publications (31) have generic functional
designs of their service-oriented CPS (e.g., [4-9]), while
four focus on domain specific design of CPS (e.g., water
distribution [10], home control [7], energy management
[11], video communication between 3G phones and
Internet hosts [12]). A majority of the publications
concentrate on theoretical design of the CPS (e.g., [4, 8,
13]) while only six publications mention the
implementations of their CPS (e.g., [9, 14-16])

In Table 2, we show how to map the architectural designs
of the reviewed works into the generic architecture of the
service-oriented CPS.

Depending on the functionality described by each layer,
we categorised it to the layer of the generic architecture.
For example, in [8], the “Environmental Tier” consists of
physical devices and an environment for interacting with
these devices so that we recognised it as the “Access
Layer”. The “Control Tier” controls devices,
receives/monitors the data and let services invoke the
physical devices so that we classify it as “Service Layer”.
Since the “Service Tier” contains a computing
environment with services in SOA and manages reusable
services, we put it into the “Application Layer”.

3.1.1 Architectural Topology

We identified three topologies of reviewed works:

• Centralised. In this topology, a middleware is
deployed in a central server while collecting data
and/or controlling sensors/actuators connecting to
physical devices in distributed areas. For example,
Llama [6], Bundle [14], AnySense [12], [17], [8], [18],
[7], [5], [4]. The benefit of the centralised topology are
(i) It makes easier for the management of CPS, (ii) It
provides more secure environment. However, as the
system complexity increases (e.g., the number of
physical devices), this tightly coupled topology
becomes problematic.

• Distributed. In a distributed topology, each physical
device implements a tiny “middleware” to control the
physical part and connects with other in peer-to-peer
model. For example, Iqbal and Lim [10] propose a
middleware containing entities called agents and actors.
These entities move across the network of sensor nodes
facilitating the adaptive load balancing, monitoring,
and activating resources. Lin et al. [19] views and
models CPS as a multi-agent system, where each local
agent communicates with other agents. Kim et al. [15]
includes a network of cyber-nodes that provide
computing resources. Each cyber-node has its own
knowledge base and database to be shared among the
network. This topology encourages scalability of the
system as the computing elements and physical devices
can be incrementally added without little interference
with other elements. Also, distributed topology has no
bottle neck point in the architecture so that it can
minimise the network congestion. However, since
these physical devices have limited resources, the
limitation of this topology is that it is not possible to
execute complex computation and processes. In
addition, the tasks of devices registration, service
discovery become harder to manage.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

83

• Nested. In the nested topology, physical things in CPS
are deployed both in centralised and distributed style.
The CPS may include one or more local CPS networks
[9].

3.1.2 Data model

In CPS, where numerous physical devices connect, process,
and exchange information to each other, a common
understanding for all devices is crucial. This leads to a
need to have a common data model accommodating
physical things and software artifacts. This data model will
be used as an integral part of the infrastructure facilitating
an agile environment with minimal coupling between all
its components. To model physical elements and software
artifacts of CPS, we need to consider functional properties
(e.g., energy, memory), non-functional properties (e.g.,
safety, reliability, latency, throughput), and interaction
between them (e.g., event). In the reviewed work, we
identified two data models used in CPS:

• Web-based data model. In this model, physical devices,
software services and data produced by them are
represented as Web resources. Interaction with
component can be done in request/response,
publish/subscribe styles. For example, users send
command to turn on a device, read temperature
information, or subscribe to get update information
about the device's status. This model and interaction
style is commonly used in the reviewed works. There
are several works based on a wide adopted ontology
model OWL-S (e.g., [13],[19]). For example, Huang et
al. [13] define PE-ontology model to describe physical
entities and services. Retrieving information from the
components, it maintains a hierarchical meta-data
structure including three main parts: ServiceProfile,
ServiceModel, and ServiceGrounding. Park et al. [9]
utilises IPv6 to enable the interaction between control
devices and control device managers. The data model
used by control devices and control device manager is
XML-based data model.

• Event-based data model. In this model, data and
events generated by physical devices and software
components are used to define consequent activities in
the workflow. We pointed out two modes of event-
based data model: periodically and sporadically. In the
periodically mode (pull-based), data is read at regular
intervals and analysed on-the-fly. This mode is
commonly used for monitoring scenarios (e.g., read the
sensor status for every 5 minutes or get humidity in the
room in every minute). In the sporadically mode (push-
based), a device emits an event whenever predefined
conditions are met (e.g., send an SMS notification as
soon as the humidity level raises above 90 percent, or
alert administrator as soon as a camera detects

movement in the room). In [10], the data model of
components includes events. Each event and
corresponding actions are critical to decide which
followed components must have an action so that the
required task is done in the correct context and under
given constrains. Tan and Goddard [20] propose a
Spatio-Temporal Event Model for CPS. It identifies the
close interaction between cyber and physical world in
both time and space and defines two event models:
time model and spatial model.

4. SOA-based CPS middleware: WebMed

In this section, we sketch the design of our middleware
named WebMed. As mentioned earlier, we believe that it
is important to have a middleware solution for an agile, but
dependable middleware with compose-able and reusable
components that can support dynamically changing
diverse requirements of CPS applications. More
importantly, The applications also should be easily built
and deployed, perhaps even by technically inert people to
suit their needs in-situ.
Considering the success of the Web as the largest
distributed system ever built, the new generation
middleware architectures such as Web-of-Things, or
service oriented paradigms are likely candidates for CPS.
WebMed aims at facilitating the service-oriented
architecture for physical devices. The middleware contains
high-level, logical representations of physical devices,
computing elements and software services that are not
necessarily linked to physical devices. WebMed caters for
three different types of users: administrators, service
developers and end-users (i.e., application users).
WebMed consists of five components: device adapter
(named WebMed node), Web service enabler, service
repository, engine, and application development (see
Figure 2). The figure also shows the components in the
physical layer which consists of physical devices and
intelligent devices (i.e., these devices are equipped with
software that enables remote control/access to the devices).
In this work, we do not focus on the physical layer of the
CPS architecture. We rely on the existing work for
providing the solution for dealing with physical devices or
intelligent devices (e.g., their device drivers and device’s
API). In the following, we outline the main functionalities
of each component.

4.1 WebMed Architecture: Overview

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

84

Figure 2 WebMed Architecture Overview

4.1.1 WebMed Node: Device Adapter

A WebMed node acts as an adapter and device aggregator
that “standardises” the heterogeneous devices’ hardware,
data structures, communication protocols and device
control issues. It is responsible for consolidating
underlying devices’ data into a common model and
controlling devices through the proprietary device drivers
and APIs. It is the point of entry for the devices to our
middleware.

Plug-and-Play. A WebMed node enables a plug-and-play
environment for adding/removing newly connected/
disconnected physical devices to the middleware. Once a
device is connected to WebMed, the administrator needs to
register and configure it so that the other components can
recognise it as a new component. The administrator needs
to upload and link new device with its driver (e.g.,
dynamic link library or java class) through an interface.
The “device control manager” module generates proxy
code for operations provided by the driver (e.g., by using
the WSDL tool in Microsoft .NET SDK framework) which

are exposed through WebMed Node control API. Since
devices only provide raw data, the “device data manager”
module processes (e.g., cleans, transforms, aggregates,
filters) the raw data and creates a device’s data table in the
consolidated database in each node. All of the data here
then be exposed as data-querying services through
WebMed Node data API, and then by the Web service
enabler.

WebMed Data Model. WebMed node contains a common
data model element that provides uniform access to its
underlying data from devices. Amongst the data managed
by the node, there is the temporal and spatial information
of physical devices, which provides the critical context
information for CPS applications. The administrator can
use either WGS-84 GPS code (e.g., latitude, longitude,
altitude) or hierarchical naming model to manage the
geographical information of originating devices. For
example, an identification Bondi.G1.L2.A5 represents for
a parking slot in Bondi Junction shopping centre garage,
garage building 1, level 2, row A, slot number 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

85

Networking protocol. WebMed node utilises various
technologies such as RFID, NFC and wireless sensor
network (e.g., ZigBee, Bluetooth, 6LoWPAN) to
communicate with the device over a network.

4.1.2 Web Service Enabler

Web service enabler provides a mechanism for the data
and functionality of the physical devices to be accessible
as Web services, that is it is responsible for service-
enabling the devices. The core elements of Web service
enabler are code generators and a Web server which
provides a hosting environment for all Web service created
by the enabler.

Web service interfaces. There are three types of Web
services supported in the architecture: REST services,
SOAP-based services and ATOM-based data feed services.

Service code generators. Based on the proxy code created
by the WebMed nodes, this component generates matching
Web services (e.g., using C# compiler application). The
database managed by “device data manager” is exposed as
REST services, as is the control functionality managed by
“device control manager” (i.e., turning a device on). The
same (or part of) operations of a WebMed node can also
be exposed as SOAP-based services or ATOM feed
services.

Operations. Web service enabler is an intermediate
gateway between physical devices and cyber/computing
elements. It plays a role as a stub for remote devices
performs following tasks: (i) Receives a request from
caller; (ii) Initiates the connection with WebMed nodes;
(iii) Invokes proper operations provided by the device data
manager and control manager; (iv) Waits for the result of
the invocation; (v) Returns the value or exception to the
caller.

Transportation protocol. The enabler relies on TCP/IP
and HTTP protocols as means for transporting messages.

4.1.3 Service Repository

Service repository contains two main types of services:
elementary and composite. The elementary services are
again divided into two categories: Web service for
interacting with physical devices (what we would refer to
as “physical services”), and any other services (what we
would refer to as “software services”). The physical
services are generated by the Web service enabler and
registered in the repository. The repository categorises
them by the meta-data relating to the spatial and temporal
attributes of physical devices. Non-physical Web services
are other Web services (i.e., that are not generated to
control physical devices). A composite service is created
by combining elementary services. A lightweight

composite service (i.e., mashups) is also considered as it
allows easier creation and sharing of applications amongst
the end users. The CPS application developers or the end
users can add more composite services to the repository,
although the elementary services are managed by the
administrator.

4.1.4 WebMed Engine

WebMed engine is the core element providing a runtime
environment for all Web services and operations in the
middleware. WebMed engine uses HTTP as transportation
protocol and contains the following modules:

Routing engine. It takes care of processing requests from
the WebMed application component and dispatches them
to the right evaluation engine. For example, invocation
request of a single Web service should go to “execution
engine” module and execution request of a mashup
application should go to “mashup engine”. Routing engine
also connects to “queue service” to control messages.

Execution engine. It is responsible for invoking services.
It also has a comprehensive locking, provenance and data
transfer model that allows multiple service invocations to
run at the same time.

Mashup engine. It enables a mashup execution by
resolving the integration logic between services. Mashup
integration logic can be defined within the request-
response interaction fashion and using pipeline mechanism.
Also, there is an event management service to manage the
control flow between services.

Alert server. It utilises the publish/subscribe paradigm
enabling users to express their interest (i.e., subscribe) in
certain kind of events and subsequently are notified by the
server (i.e., publish). This module produces data in the
format of RSS/Atom feeds.

Logging service. It records all system’s and users’
activities of the middleware.

Queue service. It stores and forwards messages from
routing engine to “execution engine” or “mashup engine”.
It also contains a persistent storage to store messages and
data. This module is used to avoid collision (e.g., two
invocation requests to operate a physical device at the
same time).

Visualisation module. It is responsible for rendering
invocation/execution results on execution environment.
The environment for visualisation is a Web browser.

Monitoring server. It allows the administrator/developers
to track message flows and detect errors in the execution.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

86

4.1.5 WebMed Application

The WebMed application component provides high-level
management of interaction and composition of Web
service components in the middleware. This component
serves as user interfaces for developers and end users to
invoke a Web service, to create a mashup application and
composite services, to monitor a physical device, or to
subscribe for alerting service of a Web service. To use the
services, users have to authenticate themselves to get
access level and personal settings. User access level (e.g.,
level 1 can only gets data from devices and cannot control
devices) is granted by administrator and personal settings
(e.g., login detail, interested device) is maintained by users.
There are two modules in this component: development
and testing/execution environments. Developers and end
users use development environment to create applications.
They can combine the functionality of a physical service
with other computing/software service or even with
mashup applications. The application is then deployed and
visualised in the execution environment. The execution
environment can also be used as a testing environment
before final deployment.

4.2 Implementation

Accordingly to the architecture described above, we intend
to implement the middleware on top of the Apache Axis
framework running on Jakarta Tomcat Web server.
Database manager is implemented by using TinyDB [21].
We rely on RESTlet [22], RSS.NET [23] frameworks to
implement control manager. The language for
implementation is Java and C#.

4.3 Car Park Management Scenario

To show case an application of WebMed middleware, let
us consider the following scenario. A big shopping centre
chain who owns car park buildings in multiple locations
commissioned WebMed middleware to be installed in all
car park buildings. Over the years, sensors were installed
in each car park slots, but the different device types and
manufacturers were used. WebMed creates several
WebMed nodes fitted to individual location to build a
middleware layer that hides the underlying heterogeneity.
Being able to use the repository which gives access to
physical services and software services enables the
administrator to manage and control car parks efficiently
(e.g., instantly knowing how many spots are occupied at
any given time, showing customers the shortest route to an
available parking slot). In addition, the ability to integrate
functionality of physical device and software services
facilitates new value added services to customers (e.g.,
reserve a parking slot, pay for parking ticket using mobile
device, SMS alert when overtime).

Figure 2 provides a high-level view of WebMed
operations from the end users’ and application developers’
perspectives. In the application level, there are some
applications such as reserve a parking slot; send a short
message to customer’s mobile number when the parking
permit is running out; send an alarm to the car park
administrator when there is a car left behind after closing
time. These applications consume existing Web services
and/or mashup applications in the WebMed service
repository. For example, there are physical services to
control parking sensors such as turn on/off a sensor (or a
group of sensors), and check for availability of a parking
slot, as well as software services such as currency
conversion, payment and send SMS Web services.
Let us say that a user wants WebMed to send an SMS to
her mobile when her reserved parking slot becomes
available earlier than the arranged time (e.g., the previous
car left the spot early). If such an application is not already
available in the repository, she can create one by
combining “Availability”
Web service (a physical service) which will sense the
parking slot becoming available, “SendSMS” service (a
software service) which sends the message, and parking
reservation application (an existing mashup application)
which allows her to complete the parking and pay process.

Figure 2 Garage Management Use Case

5. Conclusion and future work

In this paper, we presented a literature review on service-
oriented middleware architectures for CPS. We analysed
generic architecture designs, architectural topology,
component data model. We then proposed WebMed, our
early design of service oriented CPS middleware for ad-
hoc applications. Immediate future work is on the
WebMed prototype implementation and improvements,
and use case scenarios in different application domains.
We will evaluate the benefits and limitations of WebMed
through these scenarios.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

87

Acknowledgments

This work was supported by the IT R&D Program of
MKE/KEIT [10035708, "The Development of CPS
(Cyber-Physical Systems) Core Technologies for High
Confidential Autonomic Control Software"]

References

[1] Poovendran, R., Cyber-Physical Systems: Close Encounters

Between Two Parallel Worlds. Proceedings of the IEEE,
2010. 98: p. 1363-1366.

[2] Kitchenham, B., et al., Systematic Literature Reviews in
Software Engineering - A Systematic Literature Review.
Information and Software Technology, 2009. 51: p. 7-15.

[3] Google. Google Scholar Search Engine. 04-Jan-2012];
Available from: http://scholar.google.com.au/.

[4] Dillon, T.S., et al., Web-of-things Framework for Cyber-
physical Systems. Concurrency and Computation: Practice
& Experience, 2011. 23: p. 905-923.

[5] Kang, W. and S.H. Son, The Design of an Open Data
Service Architecture for Cyber-Physical Systems. ACM
SIGBED Review, 2008. 5: p. 3:1-3:2.

[6] Lin, K.-J. and M. Panahi. A Real-time Service-Oriented
Framework to Support Sustainable Cyber-Physical Systems.
in Proceedings of INDIN '10. 2010. Osaka, Japan.

[7] Lai, C.-F., et al., OSGi-based Services Architecture for
Cyber-Physical Home Control Systems. Computer
Communications, 2011. 34: p. 184-191.

[8] La, H.J. and S.D. Kim. A Service-Based Approach to
Designing Cyber Physical Systems. in Proceedings of ICIS
'10. 2010. Kaminoyama, Japan.

[9] Park, S.O., et al., A Dynamic Control Middleware for Cyber
Physical Systems on an IPv6-based Global Network.
International Journal of Communication Systems, 2011.

[10] Iqbal, M. and H.B. Lim. A Cyber-Physical Middleware
Framework for Continuous Monitoring of Water
Distribution Systems. in Proceedings of SenSys '09. 2009.
Berkeley, CA, USA: ACM.

[11] Parolini, L., et al. A Cyber-Physical Systems Approach to
Energy Management in Data Centers. in Proceedings of the
ICCPS '10. 2010. Stockholm, Sweden.

[12] Xing, G., et al. Toward ubiquitous Video-based Cyber-
Physical Systems. in Proceedings of SMC 2008. 2008.
Singapore.

[13] Huang, H.-M., et al. Cyber-physical Systems for Real-time
Hybrid Structural Testing: a Case Study. in Proceedings of
ICCPS 2010 2010. Stockholm, Sweden.

[14] Vicaire, P.A., et al. Bundle: A Group based Programming
Abstraction for Cyber Physical Systems. in Proceedings of
ICCPS '10. 2010. Stockholm, Sweden: ACM.

[15] Kim, M., et al. An Application Framework for Loosely
Coupled Networked Cyber-Physical Systems. in
Proceedings of EUC '10. 2010. Hong Kong, China.

[16] Basanta-Val, P., M. Garcí anda-Valls, and I. Esté andvez-
Ayres. Towards a Cyber-Physical Architecture for Industrial
Systems via Real-Time Java Technology. in Proceedings of
CIT 2010. 2010. Bradford, UK.

[17] Tan, Y., S. Goddard, and L.C. P\'erez, A Prototype
Architecture for Cyber-Physical Systems. ACM SIGBED
Review, 2008. 5: p. 26:1-26:2.

[18] Park, M.J., et al. Dynamic Software Updates in Cyber-
Physical Systems. in Proceedings of ICTC '10. 2010. Jeju
Island, Korea.

[19] Lin, J., S. Sedigh, and A.R. Hurson. An Agent-Based
Approach to Reconciling Data Heterogeneity in Cyber-
Physical Systems. in Proceedings of IPDPSW '11. 2011.
Anchorage, AK, USA: IEEE.

[20] Tan, Y., M.C. Vuran, and S. Goddard. Spatio-Temporal
Event Model for Cyber-Physical Systems. in Proceedings of
ICDCS Workshops '09. 2009. Montreal, Canada.

[21] Madden, S.R., et al., TinyDB: An Acquisitional Query
Processing System for Sensor Networks. ACM Transactions
on Database Systems, 2005. 30(1): p. 122-173.

[22] Noelios. Restlet - RESTful web framework for Java. 04-
Jan-2012]; Available from: http://www.restlet.org/.

[23] ToolButton. RSS.NET: An Open-source .NET Class Library
for RSS Feeds. 04-Jan-2012]; Available from:
http://www.rssdotnet.com/.

Dat Dac Hoang is a PhD candidate at the
school of Computer Science and
Engineering, University of New South
Wales, Sydney, Australia. His PhD topic
is on designing a mashup architecture on
spreadsheets. His recent research interests
include service oriented architectures,
component-based architectures, mashups
and web applications.

Hye-young Paik is a senior lecturer at the
School of Computer Science and
Engineering in University of New South
Wales (UNSW), Sydney, Australia. She
received her PhD in Computer Science
from UNSW in 2004. She is currently a
senior member of Service Oriented
Computing group at the school. Her
research focus is in service oriented

architectures and business process modeling and management.

Chae-Kyu Kim received BS in
Mathematics from Korea University, then
MS followed by PhD in computer science
from University of Technology, Sydney
(UTS) and University of Wollongong
(UoW) Australia in 1993 and 1997,
respectively. He has over 30 years of
experience in research and development in

various areas of computer systems and information management,
and has been granted numerous national awards for his
contributions in the industry. His research interests include
media services, home networks, middleware and sensor networks.
He is currently leading many research programs in IT
Convergence Technology Research Laboratory at ETRI, Korea

	Elimination
	Result

	Step

