A survey of machine learning techniques for Spam filtering

Omar Saad †, Ashraf Darwish † † and Ramadan Faraj † † †
University of Helwan, College of Science, Helwan, Egypt

Summary
Email spam or junk e-mail (unwanted e-mail “usually of a commercial nature sent out in bulk”) is one of the major problems of the today's Internet, bringing financial damage to companies and annoying individual users. Among the approaches developed to stop spam, filtering is an important and popular one. Common uses for mail filters include organizing incoming email and removal of spam and computer viruses. A less common use is to inspect outgoing email at some companies to ensure that employees comply with appropriate laws. Users might also employ a mail filter to prioritize messages, and to sort them into folders based on subject matter or other criteria. Mail filters can be installed by the user, either as separate programs, or as part of their email program (email client). In email programs, users can make personal, "manual" filters that then automatically filter mail according to the chosen criteria. In this paper, we present a survey of the performance of five commonly used machine learning methods in spam filtering. Most email programs now also have an automatic spam filtering function.

Key words:
E-mail classification, Spam, Spam filtering, Machine learning, algorithms.

I. Introduction
In recent years, e-mails have become a common and important medium of communication for most Internet users. However, spam, also known as unsolicited commercial/ bulk e-mail, is a bane of e-mail communication. Spam is commonly compared to paper junk mail. However the difference is that junk mailers pay a fee to distribute their materials, whereas with spam the recipient or ISP pays in the form of additional bandwidth, disk space, server resources, and lost productivity. If spam continues to grow at the current rate, the spam problem may become unmanageable in the near future.

A study estimated that over 70% of today's business e-mails are spam [1]; therefore, there are many serious problems associated with growing volumes of spam such as filling users’ mailboxes, engulfing important personal mail, wasting storage space and communication bandwidth, and consuming users’ time to delete all spam mails. Spam mails vary significantly in content and they roughly belong to the following categories: money making scams, fat loss, improve business, sexually explicit, make friends, service provider advertisement, etc.[2], One example of a spam mail is shown as Fig. 1.

E-mail users spend and increasing amount of time reading message and deciding whether they are spam or not and categorizing them into folders. E-mail service providers would like to relieve users from this burden by installing server-based spam filters that can classify e-mails as spam automatically. [3] Spam filtering classification due the following reasons:

- Continually changing – Spam is constantly changing as spam on new topics emerges. Also, spammers attempt to make their messages as indistinguishable from legitimate email as possible and change the patterns of spam to foil the filters. [4]
- False positives problem – false positives are simply unacceptable; thus the requirements on the spam filter are very exacting.
- OCR computational cost – the OCR computational cost in text embedded in images compatible with the huge amount of e-mails handled daily by server-side filter. [4]
- The use content obscuring techniques – Spammers are applying content obscuring

Fig. 1. An example of a spam mail.
techniques to images (see Fig. 2.), to make OCR systems ineffective without compromising human readability. [5]

1.1 What is Spam?

Spam is unsolicited and unwanted email from a stranger that is sent in bulk to large mailing lists, usually with some commercial nature sent out in bulk. Some would argue that this definition should be restricted to situations where the receiver is not especially selected to receive the email – this would exclude emails looking for employment or positions as research students for instance. This difficulty in definition demonstrates that the definition depends on the receiver and strengthens the case for personalized spam filtering.

1.2 Structure of an E-mail

In addition to the body message of an e-mail, an e-mail has another part called the header. The job of the header is to store information about the message and it contains many fields, for example, tracing information about which a message has passed:

- **Received**: authors or persons taking responsibility for the message
- **From**: intending to show the envelop address of the real sender as opposed to the sender used for replying
- **Return-Path**: unique of ID of this message
- **Message-ID**: format of content
- **Content-Type**: format of content
- etc.

Fig. 2. An example of a spam mail.

Fig. 3 illustrates an example of the header in an e-mail.

```
From: zsuthiongie@invitation.sms.ac Fri Mar 11 18:02:00 2005
Return-Path: <zsuthiongie@invitation.sms.ac>
Received: from smtp57.sms.ac (localhost [127.0.0.1])
by mail.nutn.edu.tw (8.12.10-Sun/8.12.9) with ESMTP id
j2BA1v5010627
for <cclai@mail.nutn.edu.tw>; Fri, 11 Mar 2005 18:01:59 +0800
(CST)
X-Authentication-Warning: mail.nutn.edu.tw: iscan owned process
doing -bs
Received: from LOCALHOST (unknown [10.1.4.231])
by smtp57.sms.ac (Postfix) with SMTP id 01EFE3825B
for <cclai@mail.nutn.edu.tw>; Fri, 11 Mar 2005 05:00:47 -0500
(EST)
SUBJECT: zsuthiongie(3rd request)
To: cclai@mail.nutn.edu.tw
CONTENT-TYPE: text/plain
Message-Id: <20050311100047.01EFE3825B@smtp57.sms.ac>
Date: Fri, 11 Mar 2005 05:00:47 -0500 (EST)
From: zsuthiongie@invitation.sms.ac
Content-Length: 441
Status: R
```

1.3 Spam Filtering

Spam filtering in Internet email can operate at two levels, an individual user level or an enterprise level (see Figure 4). An individual user is typically a person working at home and sending and receiving email via an ISP. Such a user who wishes to identify and filter spam email installs a spam filtering system on her individual PC. This system will either interface directly with their existing mail user agent (MUA) (more generally known as the mail reader) or more typically will act as a MUA itself with full functionality for composing and receiving email and for managing mailboxes.

Fig. 3. The header of an e-mail.

```
```

Fig. 4. Alternatives for spam filtering in Internet e-mail.

Enterprise-level spam filtering filters mail as it enters the internal network of an enterprise. The software is installed on the mail server and interacts with the mail transfer agent (MTA) classifying messages as they are received.
Spam email, which is identified by the enterprise spam filter, will be categorized as a spam message for all users on that network. Spam can be filtered at an individual level on a LAN also. A networked user can choose to filter spam locally as it is downloaded to their PC on the LAN by installing an appropriate system.

The vast majority of current spam filtering systems use rule-based scoring techniques. A set of rules is applied to a message and a score accumulates based on the rules that are true for the message. Systems typically include hundreds of rules and these rules need to be updated regularly as spammers alter content and behavior to avoid the filters. Systems also incorporate list-based techniques where messages from identified users or domains can be automatically blocked or allowed through the filter.

If the score for an email exceeds a threshold, the email is classified as spam. Limited learning capabilities are beginning to appear in systems such as Mozilla and the MacOS X Mail program but these systems are still in their infancy. Naïve Bayes seems to be the technique of choice for adding a learning capability to commercial spam filtering systems.

The architecture of spam filtering is shown in Fig. 5. Firstly, the model will collect individual user emails which are considered as both spam and legitimate email. After collecting the emails the initial transformation process will begin. This model includes initial transformation, the user interface, feature extraction and selection, email data classification, and analyzer section. Machine learning algorithms are employed at last to train and test whether the demanded email is spam or legitimate.

2. Spam Techniques

If a marketer has one database containing names, addresses, and telephone numbers of prospective customers, they can pay to have their database matched against an external database containing email addresses. The company then has the means to send email to persons who have not requested email, which may include persons who have deliberately withheld their email address [6].

2.1. Image spam

Image spam is an obfuscating method in which the text of the message is stored as a GIF or JPEG image and displayed in the email. This prevents text based spam filters from detecting and blocking spam messages. Image spam was reportedly used in the mid 2000s to advertise "pump and dump" stocks [7].

Often, image spam contains nonsensical, computer-generated text which simply annoys the reader. However, new technology in some programs try to read the images by attempting to find text in these images. They are not very accurate, and sometimes filter out innocent images of products like a box that has words on it.

A newer technique, however, is to use an animated GIF image that does not contain clear text in its initial frame, or to contort the shapes of letters in the image (as in CAPTCHA) to avoid detection by OCR tools.

2.2. Blank spam

Blank spam is spam lacking a payload advertisement. Often the message body is missing altogether, as well as the subject line. Still, it fits the definition of spam because of its nature as bulk and unsolicited email.

Blank spam may be originated in different ways, either intentional or unintentionally:

1. Blank spam can have been sent in a directory harvest attack, a form of dictionary attack for gathering valid addresses from an email service provider. Since the goal in such an attack is to use the bounces to separate invalid addresses from the valid ones, spammers may dispense with most elements of the header and the entire message body, and still accomplish their goals.

2. Blank spam may also occur when a spammer forgets or otherwise fails to add the payload when he or she sets up the spam run.

3. Often blank spam headers appear truncated, suggesting that computer glitches may have contributed to this problem—from poorly-written spam software to malfunctioning relay servers, or any problems that may truncate header lines from the message body.

4. Some spam may appear to be blank when in fact it is not. An example of this is the VBS.Davinia.B email worm [8] which propagates through messages that have no subject line and appears blank, when in fact it uses HTML code to download other files.
2.3. Backscatter spam

Backscatter is a side-effect of email spam, viruses and worms, where email servers receiving spam and other mail send bounce messages to an innocent party. This occurs because the original message's envelope sender is forged to contain the email address of the victim. A very large proportion of such email is sent with a forged From: header, matching the envelope sender. Since these messages were not solicited by the recipients, are substantially similar to each other, and are delivered in bulk quantities, they qualify as unsolicited bulk email or spam. As such, systems that generate email backscatter can end up being listed on various DNSBLs and be in violation of internet service providers' Terms of Service.

3. The Algorithms:

This section gives a brief overview of the underlying theory and implementations of the algorithms we consider. We shall discuss the Naive Bayes classifier, the k-NN classifier, the neural network classifier and the support vector machine classifier.

3.1 Naive Bayes Classifier

The Naive Bayes classifier is a simple statistical algorithm with a long history of providing surprisingly accurate results. It has been used in several spam classification studies [9, 10, 11, 12], and has become somewhat of a benchmark. It gets its name from being based on Bayes' rule of conditional probability, combined with the “naive” assumption that all conditional probabilities are independent [13].

Naive Bayes classifier examines all of the instance vectors from both classes. It calculates the prior class probabilities as the proportion of all instances that are spam (Pr[spam]), and not-spam (Pr[notspam]). Then (assuming binary attributes) it estimates four conditional probabilities for each attribute: Pr[true|spam], Pr[false|spam], Pr[true|notspam], and Pr[false|notspam]. These estimates are calculated based on the proportion of instances of the matching class that have the matching value for that attribute.

To classify an instance of unknown class, the “naive” version of Bayes’s rule is used to estimate first the probability of the instance belonging to the spam class, and then the probability of it belonging to the not-spam class. Then it normalizes the first to the sum of both to produce a spam confidence score between 0.0 and 1.0. Note that the denominator of Bayes’s rule can be omitted because it is cancelled out in the normalization step. In terms of implementation, the numerator tends to get quite small as the number of attributes grows, because so many tiny probabilities are being multiplied with each other. This can become a problem for finite precision floating point numbers. The solution is to convert all probabilities to logs, and perform addition instead of multiplication. Note also that conditional probabilities of zero must be avoided; instead a “Laplace estimator” (a very small probability) is used.

It is important to note that using binary attributes in the instance vectors makes this algorithm both simpler and more efficient. Also, given the prevalence of sparse instance vectors in text classification problems like this one, binary attributes offer the opportunity to implement very significant performance optimizations. Fig.6 presents the Naive Bayes training and classification algorithms used.

Naive Bayes Training Algorithm:

priorProbSpam = proportion of training set that is spam
priorProbNotSpam = proportion of training set that is not-spam

For each attribute i:

probTrueSpam[i] = prop. of spams with attribute i true
probFalseSpam[i] = prop. of spams with attribute i false
probTrueNotSpam[i] = prop. of not-spams with attribute i true
probFalseNotSpam[i] = prop. of not-spams with attribute i false

Naive Bayes Classification Algorithm:

probSpam = priorProbSpam
probNotSpam = priorProbNotSpam

For each attribute i:

if value of attribute i for message to be classified is true:

probSpam = probSpam × probTrueSpam[i]
probNotSpam = probNotSpam × probTrueNotSpam[i]

else:

probSpam = probSpam × probFalseSpam[i]
probNotSpam = probNotSpam × probFalseNotSpam[i]

spamminess = probSpam/(probSpam + probNotSpam)

Fig 6: Naive Bayes training and classification algorithms.

3.2 Support Vector Machine

Support vector machines (SVMs) are relatively new techniques that have rapidly gained popularity because of the excellent results they have achieved in a wide variety of machine learning problems, and because they have solid theoretical underpinnings in statistical learning theory [14]. Support vector machine (SVM) algorithms divide the n-dimensional space representation of the data into two regions using a hyperplane. This hyperplane always maximizes the margin between the two regions or classes. The margin is defined by the longest distance between the examples of the two classes and is computed based on the
distance between the closest instances of both classes to
the margin, which are called supporting vectors [15].
Instead of using linear hyperplanes, many implementations
of these algorithms use so-called kernel functions. These
kernel functions lead to non-linear classification surfaces,
such as polynomial, radial or sigmoid surfaces [16].

Formal definition - More formally, a support vector
machine constructs a hyperplane or set of hyperplanes in a
high- or infinite-dimensional space, which can be used for
classification, regression, or other tasks. Intuitively, a
good separation is achieved by the hyperplane that has the
largest distance to the nearest training data points of any
class (so-called functional margin), since in general the
larger the margin the lower the generalization error of the
classifier.

3.3 Artificial Neural Networks

An artificial neural network (ANN), usually called neural
network (NN), is a mathematical model or computational
model that is inspired by the structure and/or functional
aspects of biological neural networks. A neural network
consists of an interconnected group of artificial neurons,
and it processes information using a connectionist
approach to computation. In most cases an ANN is an
adaptive system that changes its structure based on
external or internal information that flows through the
network during the learning phase. Modern neural
networks are non-linear statistical data modeling tools.
They are usually used to model complex relationships
between inputs and outputs or to find patterns in data.

By definition, a “neural network” is a collection of
interconnected nodes or neurons. See fig. 7. The best-
known example of one is the human brain, the most
complex and sophisticated neural network. Thanks to this
cranial-based neural network, we are able to make very
rapid and reliable decisions in fractions of a second. [17]

Fig. 7. an artificial neural network is an interconnected group of nodes,
akin to the vast network of neurons in the human brain.

Spam presents a unique challenge for traditional filtering
technologies: both in terms of the sheer number of
messages (millions of messages daily) and in the breadth
of content (from pornographic to products and services, to
finance). Add to that the fact that today’s economic fabric
depends on email communication – which is equally broad
and plentiful and whose subject matter contextually
overlaps with that of many spam messages – and you’ve
got a serious challenge.

How it works - Since a neural network is based on pattern
recognition, the underlying premise is that each message
can be quantified according to a pattern. This is
represented below in Fig. 8. Each plot on the graph (also
known as a “vector”) represents an email message.
Although this 2-D example is an over-simplification, it
helps to visualize the principle used behind neural
networks.

Fig. 8. Distinctive patterns of good and spam messages cluster into
relatively distinct groups.

To identify these patterns, the neural network must first be
“trained”. This training involves a computational analysis
of message content using large representative samples of
both spam and non-spam messages. Essentially the
network will “learn” to recognize what we humans mean
by “spam” and “non-spam”. To aid in this process, we first
need to have a clear, concise definition of “spam”:

Spam, n., email sent in bulk where there is no direct agreement in place between the recipient and the sender to receive email solicitation.

U.B.E. (Unsolicited Bulk Email) is another acronym for
spam that effectively encapsulates this definition.
To create training sets of spam and non-spam emails, each
email is carefully reviewed according to this simple, yet
restrictive definition of spam. Although the average user
often considers all unwanted emails as "spam", emails that
border on "solicited" (it was likely requested at some point
by the user) should be rejected outright. Examples of these
might include email sent from easily recognizable domains,
such as Amazon.com or Yahoo.com. A good motto to
follow here is: “when in doubt, throw it out”. Similarly,
non-spam email should be restricted to personal email
communications between individuals or groups, and avoid
any forms of bulk mailings, regardless of whether they
were solicited or not. Once these sets have been gathered and approved, the neural network is ready for training. The ANN system now preprocesses each email in the respective training sets to determine exactly which of these relevant words are found in each spam email, and which of these words are found in the non-spam email. Next, the ANN is trained to recognize certain combinations or patterns of interesting or relevant words to identify spam, or if it sees other combinations, to identify non-spam. The artificial neural network uses a set of sophisticated mathematical equations to perform this type of computation.

As some spam and non-spam messages will often “share” characteristics, a clear distinction cannot always be made. By the “non-spam” plots or vectors that find themselves in the “spam” cluster and vice versa. In this “grey area” lies the potential for false positives. After the training is complete, the ANN can now be used to scan live-stream email. Each message is scanned to identify relevant words, which are then processed by the ANN. If the ANN again sees certain types of combinations of word usage indicating a probability of spam, it will report spam, along with a probability value. Following the example in Fig. 9, if the vector or plot computed for the message landed above the dividing line, it would be considered “spam”. Its probability or confidence level would depend on the relative distance away from the line.

To maximize detections while avoiding false positives, a well-designed heuristics engine will accommodate different sensitivity thresholds, or levels of aggressiveness, in identifying spam. What this means is that the cut-off or dividing point between spam and non-spam can be adjusted so that the likelihood of a false positive match will be greatly reduced. This can be seen in Fig. 9 below. In other words, the further away from the central dividing line between ham and spam email clusters, the lower the chance of false positive detections. Note in Fig. 9 that there are far fewer non-spam vectors or patterns above the new cut-off or dividing line.

3.4 K-nearest neighbor classifier

The k-nearest neighbor (K-NN) classifier is considered an example-based classifier, that means that the training documents are used for comparison rather than an explicit category representation, such as the category profiles used by other classifiers. As such, there is no real training phase. When a new document needs to be categorized, the k most similar documents (neighbors) are found and if a large enough proportion of them have been assigned to a certain category, the new document is also assigned to this category, otherwise not. Additionally, finding the nearest neighbors can be quickened using traditional indexing methods. To decide whether a message is legitimate or not, we look at the class of the messages that are closest to it. The comparison between the vectors is a real time process. This is the idea of the k nearest neighbor algorithm:

Stage1. Training
Store the training messages.

Stage2. Filtering
Given a message x, determine its k nearest Neighbors among the messages in the training set. If there are more spam’s among these neighbors, classify given message as spam. Otherwise classify it as legitimate mail.

We should note that the use of an indexing method in order to reduce the time of comparisons induces an update of the sample with a complexity $O(m)$, where m is the sample size. As all of the training examples are stored in memory, this technique is also referred to as a memory-based classifier [24]. Another problem of the presented algorithm is that there seems to be no parameter that we could tune to reduce the number of false positives. This problem is easily solved by changing the classification rule to the following l/k rule:

If l or more messages among the k nearest neighbors of x are spam, classify x as spam, otherwise classify it as legitimate mail.

The k nearest neighbor rule has found wide use in general classification tasks. It is also one of the few universally consistent classification rules.

3.5 Artificial Immune System classifier method

Biological immune System has been successful at protecting the human body against a vast variety of foreign pathogens. A role of the immune system is to protect our bodies from infectious agents such as viruses, bacteria, fungi and other parasites. On the surface of these agents are antigens that allow the identification of the invading agents.
(i.e., pathogens) by the immune cells and molecules, thus provoking an immune response. Recognition in the immune system is performed by lymphocytes. Each lymphocyte expresses receptor molecules of one particular shape on its surface (called antibody). An elaborate genetic mechanism involving combinatorial association of a number of gene segments underlies the construction of these receptors. The overall immune response involves three evolutionary methods: gene library evolution generating effective antibodies, negative selection eliminating inappropriate antibodies and clonal selection cloning well-performing antibodies.

In gene library evolution, antibodies recognize antigens by the complementary properties that belong only to antigens, not self-cells. Thus, some knowledge of antigen properties is required to generate competent antibodies. Because of this evolutionary self-organization process, in spam management the gene libraries act as archives of information on how to detect commonly observed antigens. An important constraint that the immune has to satisfy is not to attack self-cells. Negative selection eliminates inappropriate and immature antibodies which bind to self. Clonal selection clones antibodies performing well. In contrast, antibodies performing badly die off after a given lifetime. Thus, according to currently existing antigens, only the fittest antibodies survive. Similarly, instead of having the predefined information about specific antigens, it organizes the fittest antibodies by interacting with the current antigens. The above description is used in the following algorithm [18]:

Artificial Immune System algorithm (an email message m)

```java
For (each term t in the message) do {
    If (there exists a detector p, based on base
        String r, matches with t) then {
        If (m is spam) then {
            Increase r's spam score by s-rate;
        } else {
            Increase r's ham score by ns-rate;
        }
    } else {
        If (m is spam) then {
            Increase the age of every base string by a-rate;
        }
    }
    The differing characters are added to its
    corresponding entry in the library of
    character generalization rules;
}
A new base string t is added into the
library of base strings;
}
Decrease r's spam score by s-rate;
If (m is spam) then {
    For (each term t in the message) do {
    IF (there exists a detector p, based on base
        String r, matches with t) then {
        IF (cdmf (p, t) > threshold) then {
            The differing characters are added to its
            corresponding entry in the library of
            character generalization rules;
        } else {
            A new base string t is added into the
            library of base strings;
        }
    }
    Decrease the age of every base string by a-rate;
}
```

Conclusions

Spam is becoming a very serious problem to the Internet community, threatening both the integrity of the networks and the productivity of the users. In this paper, we propose five machine learning methods for anti-spam filtering. In this paper we discussed the problem of spam and gave an overview of learning based spam filtering techniques. There is no common definition of what spam is, but most of the sources agree that the core feature of the phenomenon is that spam messages are unsolicited. Spam causes a number of problems of both economical and ethical nature, which results in particular in the attempts of legislative definition and prohibition of spam.

The most popular and well-developed approach to anti-spam is learning based filtering. The current state of the art includes many filters based on various classification techniques applied to different parts of email messages. Email filtering is the processing of email to organize it according to specified criteria. Most often this refers to the automatic processing of incoming messages, but the term also applies to the intervention of human intelligence in addition to anti-spam techniques, and to outgoing emails as well as those being received.

Email filtering, software inputs email. For its output, it might pass the message through unchanged for delivery to the user's mailbox, redirect the message for delivery elsewhere, or even throw the message away. Some mail filters are able to edit messages during processing.

In conclusion, we can say that the field of anti-spam protection is by now mature and well-developed. Then a question arises, why our inboxes are still often full of spam? Reactivity of spammers plays a role surely, and so does the complex nature of spam data. But one more issue not to be underestimated here is that we usually do not protect against spam in all the available ways. In other words, one point which should always be remembered by server administrators and end users is that the anti-spam technologies should be not only designed and developed, but also deployed and used.

References

Prof. Dr. Omar M. Saad earned his Ph.D. in Operations Research in 1991 from Bangor, University College of North Wales, U. K. He is a professor of Pure Mathematics and Operations Research in the Department of Mathematics, Faculty of Science, Helwan University Cairo, Egypt. He published more than 75 articles in reviewed and abstracted local and international Journals. He is an editorial board member of five international journals: Trends in Applied Sciences Research", "Asian Journal of Mathematics and Statistics", "General Mathematics Notes", "Pioneer Journal of Mathematics and Mathematical Sciences" and International Journal of Mathematical Achieve".

Dr. Ashraf Darwish, Ph.D.Candidate, Computer Science Department, Faculty of Mathematics and Mechanics, Saint-Petersburg State University, Saint-Petersburg, RUSSIAN FEDERATION. He is Lecturer of Computer Science, Faculty of Science, Helwan University, Cairo, Egypt.

Ramadan Faraj: Teaching Assistant, Department of Computer, Faculty of Arts and Sciences, Elmargib University, Libya. Post Graduate (Computer Science), Faculty of Science, Helwan University, Cairo, Egypt.

