
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.2, February 2012

74

Manuscript received February 5, 2012
Manuscript revised February 20, 2012

Matrix Multiplication Algorithms

Khaled Thabet

Faculty of Computer Sciences & IT, King Abdulaziz
University, Jeddah, KSA

Sumaia AL-Ghuribi

Faculty of Computer Sciences & IT, King Abdulaziz
University, Jeddah, KSA

Summary
Algorithm can be written in various ways, executes sequential or
parallel, and gives the same results. One of the main factors of
determining the efficient of an algorithm is the execution time
factor, how much time the algorithm takes to accomplish its
work. Because matrix multiplication widely used in a variety of
applications and is often one of the core components of many
scientific computations, it will be taken as a problem in this work
and different algorithms are given to solve this problem. Then
the execution time of all the methods will be calculated to find
the best method for matrix multiplication. After testing Twenty
three methods, we find that parallel Strassen algorithm is the best
method for finding matrix multiplication.
Key words:
Algorithm, parallel execution, matrix multiplication, Strassen
algorithm.

1. Introduction

Algorithm is a set of instructions for solving a problem
and the efficiency of implementation of the algorithm
depends upon speed, size, and resources consumption.
Many instructions can give the same result for a particular
problem .On the other hand, the execution of these
instructions are different. Some of them take less time and
space than the others. Some of them become more
efficient when it executes parallel. As a result, we try to
select the suitable instruction that gives the best execution,
less time and space.
Small Algorithms need one processor to execute
efficiently and give the required result in a record time.
But one processor is not enough for executing large and
complex problems, so we need more than one processor to
enhance the execution time of algorithm and this called
parallel computing.
In the simplest sense, parallel execution is the
simultaneous use of multiple compute resources to solve a
computational problem. Parallel execution has the
following characteristics, use multiple CPUs, the problem
to be solved is broken to sub problems that can be solved
concurrently, each sub problem is broken down to a series
of instructions and instructions from each sub problem
executes simultaneously on different CPUs .
The complexity of matrix multiplication has attracted a lot
of attention in the last forty years. In this paper we will
consider matrix multiplication as the problem, give

various methods to solve this problem and find the best
one that takes the least time.
Matrix multiplication is the kernel of many scientific
applications [8, 9]. It is a binary operation that takes a pair
of matrices, and produces another matrix. If A is an n-by-
m matrix and B is an m-by-p matrix, the result AB of their
multiplication is an n-by-p matrix defined only if the
number of columns m of the left matrix A is the equal to
the number of rows of the right matrix B. The result of
matrix multiplication is a matrix whose elements are found
by multiplying the elements within a row from the first
matrix by the associated elements within a column from
the second matrix and summing the products. The
procedure for finding an element of the resultant matrix is
to multiply the first element of a given row from the first
matrix times the first element of a given column from the
second matrix, then add to that the product of the second
element of the same row from the first matrix and the
second element of the same column from the second
matrix, then add the product of the third elements and so
on, until the last element of that row from the first matrix
is multiplied by the last element of that column from the
second matrix and added to the sum of the other products.
Ex:

As we mentioned before there are many methods to
calculate the multiplication of matrixes. All of them give
the same result but each one consumes different space in
memory and takes different processor time. The methods
that we will test are:

1. Row by Column method
2. Row by Row method
3. Column by Column method
4. Strassen method

We will test each of them with all the possible types of
each one, “sequential, blocked and parallel”.
The rest of this paper is organized as follows: in section II,
we give a brief review of some related works about matrix
multiplication, in section III we presents Row by Column
method with all its type, section IV displays Row by Row

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.2, February 2012

75

method with all its type, section V Column by Column
method with all its type, Section VI compares between the
previous three methods, Section VII shows Strassen’s
method and finally we conclude this work and outline
future research in Section VIII.

2. Related Works

A brief review of some related works about matrix
multiplication has been done.
In [2], the authors in this paper interested in reducing the
cost of multiplication for matrices of small size, say up to
30.Following the previous work of Probert & Fischer,
Smith, and Mezzarobba, in a similar vein, they base their
approach on the previous algorithms for small matrices,
due to Strassen, Winograd, Pan, Laderman, and others and
show how to exploit these standard algorithms in an
improved way. They illustrated the use of their results by
generating multiplication codes over various rings, such as
integers, polynomials, differential operators and linear
recurrence operators.
In [3], the authors analyzed the performance and
scalability of a number of parallel formulations of the
matrix multiplication algorithm and predict the conditions
under which each formulation is better than the other.
They showed that the GK algorithm that they present in
their paper outperforms all the well known algorithms for
a significant range of number of processors and matrix
sizes.
In [4], the authors reported on an implementation of
Strassen algorithm that uses several unconventional
techniques to make the algorithm memory-friendly. First,
the algorithm internally uses a nonstandard array layout
known as Morton order that is based on a quad-tree
decomposition of the matrix. Second, they dynamically
select the recursion truncation point to minimize padding
without affecting the performance of the algorithm, which
they can do by virtue of the cache behavior of the Morton
ordering. Each technique is critical for performance, and
their combination as done in their code multiplies their
effectiveness. Performance comparisons of their
implementation with that of competing implementations
showed that their implementation often outperforms the
alternative techniques (up to 25%). They also noted that
the time required converting matrices to/from Morton
order is a noticeable amount of execution time (5% to
15%).
In [5], the authors reported on the development of an
efficient and portable implementation of Strassen’s matrix
multiplication algorithm. Their implementation is designed
to be used in place of DGEMM, the level 3 BLAS matrix
multiplication routine. Efficient performance will be
obtained for all matrix sizes and shapes and the additional
memory needed for temporary variables has been

minimized. Their performance data reconfirms that
Strassen’s algorithm is practical for realistic size matrices.
In [6], the author proposed a new distribution scheme for a
parallel Strassen’s matrix multiplication algorithm on
heterogeneous clusters. Their scheme achieves both load
balancing and reduction of the total operation count. As a
result, they achieved a speedup of nearly 21.7% compared
to the conventional parallel Strassen’s algorithm in a
heterogeneous clustering environment.

3. Row by Column Method

Suppose that B is a i x K matrix, and C is a K x j matrix.
Then, the matrix product BC results in a matrix A, which
has i rows and j columns; and each element in A can be
computed according to the following formula: Aij = Σk
BikCkj
Where : Aij = the element in row i and column j from
matrix A;Bik = the element in row i and column k from
matrix B;Ckj= the element in row k and column j from
matrix C;Σk = summation sign, which indicates that the
BikCkj terms should be summed over k.
Row by column method can be represented in many
various ways. Following are six ways for representing it:

III.1 Sequential

for (i = 0; i < size; i++)
 for (j = 0; j < size; j++)
 for (k = 0; k < size; k++)
 {
 A[i, j] += B[i, k] * C[k, j];
 }

III.2 Enhanced Sequential
for (i = 0; i < size; i++)

f or (j = 0; j < size; j++)
 {
 sum = 0;
 for (k = 0; k < size; k++)
 sum += B[i, k] *C[k,j];
 A[i, j] = sum;
 }
 }

III.3 Sequential block
for (i1 = 0; i1 < size; i1 += bsize)
 for (j1 = 0; j1 < size; j1 += bsize)

for (k1 = 0; k1 < size; k1 += bsize)
for (i = i1; i < i1 + bsize && i < size; i++)

for (j = j1; j < j1 + bsize && j < size; j++)
for (k = k1; k < k1 + bsize && k < size; k++)

A[i, j] += B[i, k] * C[k, j];

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.2, February 2012

76

III.4 Parallel Block

System.Threading. Parallel.Do(delegate()
 { for (i1 = 0; i1 < size; i1 += bsize)
 for (j1 = 0; j1 < size; j1 += bsize)

 for (k1 = 0; k1 < size; k1 += bsize)
 for (i = i1; i < i1 + bsize && i < size; i++)
 for (j = j1; j < j1 + bsize && j < size; j++)
 for (k = k1; k < k1 + bsize && k < size; k++)
 A[i, j] += B[i, k] * C[k, j];

 });

III.5 Enhanced Parallel Block

System.Threading.Parallel.Do(() =>
 { for (i1 = 0; i1 < size / 2; i1 += bsize)
 for (j1 = 0; j1 < size ; j1 += bsize)
 for (k1 = 0; k1 < size ; k1 += bsize)
 for (i = i1; i < i1 + bsize && i < size; i++)
 for (j = j1; j < j1 + bsize && j < size; j++)
 for (k = k1; k < k1 + bsize && k < size;

k++)
 A[i, j] += B[i, k] * C[k, j];
 }, () =>
 { for (i1 = size / 2; i1 < size; i1 += bsize)
 for (j1 = 0; j1 < size ; j1 += bsize)
 for (k1 = 0; k1 < size ; k1 += bsize)
 for (i = i1; i < i1 + bsize && i < size; i++)
 for (j = j1; j < j1 + bsize && j < size; j++)
 for (k = k1; k < k1 + bsize && k < size;

k++)
 A[i, j] += B[i, k] * C[k, j];

 });

III.6 Parallel

System.Threading.Parallel.For(0, size, (i) =>
 { for (j = 0; j < size; j++)
 for (k = 0; k < size; k++)
 A[i, j] += B[i, k] * C[k, j];
 }
);

Where
A is the result matrix of multiplying B and C size is the
size of the matrix bsize is the size of the block
We tested the previous methods in different cases starting
with matrix size 50 elements until 1000 elements and the
result appeared as the following diagram

Figure (1). Comparing the average execution time of all

algorithms of Row by Column method.

4. Row by Row

Row by Row method can also be represented in many
various ways. Following are six ways for representing it:

IV.1 Sequential

for (i = 0; i < size; i++)
 for (j = 0; j < size; j++)
 for (k = 0; k < size; k++)
 {
 A[i, k] += B[i, j] * C[j, k];
 }

IV.2 Enhanced Sequential
for (i = 0; i < size; i++)
 f or (j = 0; j < size; j++)
 {
 a1 = B[i,j];
 for (k = 0; k < size; k++)
 A[i,k] += a1 *C[j,k];
 }

IV.3 Sequential block
for (i1 = 0; i1 < size; i1 += bsize)
 for (j1 = 0; j1 < size; j1 += bsize)
 for (k1 = 0; k1 < size; k1 += bsize)
 for (i = i1; i < i1 + bsize && i < size; i++)
 for (j = j1; j < j1 + bsize && j < size; j++)
 for (k = k1; k < k1 + bsize && k < size; k++)
 A[i, k] += B[i, j] * C[j,k];

IV.4 Parallel Block
System.Threading.Parallel.Do(delegate()
 {
 for (i1 = 0; i1 < size; i1 += bsize)
 for (j1 = 0; j1 < size; j1 += bsize)
 for (k1 = 0; k1 < size; k1 += bsize)
 for (i = i1; i < i1 + bsize && i < size; i++)
 for (j = j1; j < j1 + bsize && j < size; j++)
 for (k = k1; k < k1 + bsize && k < size; k++)
 A[i,k] += B[i, j] * C[j,k];
 });

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.2, February 2012

77

IV. 5 Enhanced Parallel Block
System.Threading.Parallel.Do(() =>
 { for (i1 = 0; i1 < size / 2; i1 += bsize)
 for (j1 = 0; j1 < size ; j1 += bsize)
 for (k1 = 0; k1 < size ; k1 += bsize)
 for (i = i1; i < i1 + bsize && i < size; i++)
 for (j = j1; j < j1 + bsize && j < size; j++)
 for (k = k1; k < k1 + bsize && k < size; k++)
 A[i,k] += B[i, j] * C[j, k];
 }, () =>
 { for (i1 = size / 2; i1 < size; i1 += bsize)
 for (j1 = 0; j1 < size ; j1 += bsize)
 for (k1 = 0; k1 < size ; k1 += bsize)
 for (i = i1; i < i1 + bsize && i < size; i++)
 for (j = j1; j < j1 + bsize && j < size; j++)
 for (k = k1; k < k1 + bsize && k < size; k++)
 A[i, k] += B[i, j] * C[j,k];
 });

IV.6 Parallel

System.Threading.Parallel.For(0, size, (i) =>
 {
 for (j = 0; j < size; j++)
 for (k = 0; k < size; k++)
 A[i,k] += B[i, j] * C[j,k];
 }
);

Where
A is the result matrix of multiplying B and C size is the
size of the matrix bsize is the size of the block

We also tested the previous methods in different cases
starting with matrix size 50 elements until 1000 elements
and the result appeared as the following diagram

Figure (2). Comparing the average execution time of all

algorithms of Row by Row method.

5. Column by Column

Column by Column method can also be represented in
many various ways. Following are six ways for
representing it:

V.1 Sequential

for (i = 0; i < size; i++)
 for (j = 0; j < size; j++)
 for (k = 0; k < size; k++)
 {
 A[k,i] += B[k,j] * C[j,i];

}

V.2 Enhanced Sequential
for (i = 0; i < size; i++)
 f or (j = 0; j < size; j++)
 {
 c1 = C[j,i];
 for (k = 0; k < size; k++)
 A[k,i] += B[k,j] *c1;
 }

V.3 Sequential block

for (i1 = 0; i1 < size; i1 += bsize)
 for (j1 = 0; j1 < size; j1 += bsize)
 for (k1 = 0; k1 < size; k1 += bsize)
 for (i = i1; i < i1 + bsize && i < size; i++)
 for (j = j1; j < j1 + bsize && j < size; j++)
 for (k = k1; k < k1 + bsize && k < size; k++)
 A[k,i] += B[k,j] * C[j,i];

V.4 Parallel Block

System.Threading.Parallel.Do(delegate()
 {
 for (i1 = 0; i1 < size; i1 += bsize)
 for (j1 = 0; j1 < size; j1 += bsize)
 for (k1 = 0; k1 < size; k1 += bsize)
 for (i = i1; i < i1 + bsize && i < size; i++)
 for (j = j1; j < j1 + bsize && j < size; j++)
 for (k = k1; k < k1 + bsize && k < size; k++)
 A[k,i] += B[k,j] * C[j,i];
 });

V .6 Parallel
System.Threading.Parallel.For(0, size, (i) =>
 {
 for (j = 0; j < size; j++)
 for (k = 0; k < size; k++)
 A[k,i] += B[k, j] * C[j,i];
 }
);

Where
A is the result matrix of multiplying B and C size is the
size of the matrix bsize is the size of the block

We again tested the previous methods in different cases
starting with matrix size 50 elements until 1000 elements
and the result appeared as the following diagram

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.2, February 2012

78

Figure (3). Comparing the average execution time of all

algorithms of Column by Column method.

6. Comparing among the Previous Three
Methods

The previous 3 algorithms with their different types differ
in instructions but give the same result .By making one
diagram for all of them, it appears as follow:

Figure (4). Comparing the average execution time of the three

methods.

It is clearly appeared that Row by Row method gives the
best average execution time.

7. Strassen’s Method

In 1969, Strassen [10] introduced an algorithm to multiply
M x M matrices which has a lower complexity than the
classical O(M3). .It is based on a scheme for the product
of two 2 x 2 matrices which involves 7 multiplications and
18 additions instead of the usual 8 multiplications and 4
additions. Strassen algorithm is better than standard matrix
multiplication algorithm because additions and
subtractions of matrices can be computed in linear time
without communications. Strassen’s algorithm is O
(M2.81).On the other hand, Strassen’s method needs more

memory than the traditional methods. The following
shows how the matrix multiplication using Strassen’s
method works:

Strassen’s Algorithm can be written as follows:

We made four cases in implementing the Strassen’s
algorithm (Regular, Enhanced, Block and Parallel) and
tested each case n times with a change in the size of the
matrix each time.
Then we compared the result with the best traditional
methods Row by Row method to investigate the best
method for the matrixes multiplication.
The next diagram concludes what we said:

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.2, February 2012

79

Figure (5). Comparing the average execution time of Strassen

and Row by Row methods.

It is completely clear that Strassen takes less time than
Row by Row and the parallel Strassen is the best case of
Strassen. Parallel Strassen is 43% faster than parallel Row
by Row.

8. Conclusion and Future works

When you want to solve any problem, try to choose the
best method that consumes less space and time to execute
efficiently. For matrix multiplication , we tested some
methods Row by Row , Row By Column , Column By
Column and Strassen. After our experiments we found that
Strassen’s method is the best method for implementing the
matrix multiplication and Strassen parallel method is the
best of all. It is 43% faster than the Row by Row method
which is the better than Row by Column and Column By
Column.
For the future work, we will test many other matrix
multiplication algorithms and for every algorithm we will
test the space complexity.

References
[1] http://en.wikipedia.org/wiki/Matrix_multiplication.
[2] Drevet , C , Islam , M and Schost , r.(2011).” Optimization

techniques for small matrix multiplication”. ScienceDirect .
Theoretical Computer Science 412 (2011) 2219–2236.

[3] Gupta ,A and ICumar ,V.(1993).”Scalability of Parallel
Algorithms for Matrix Multiplication”. 1 993 International
Conference on Parallel Processing.

[4] Thottethodi , M , Chatterjee , S and Lebeck , A.(1998).”
Tuning Strassen's Matrix Multiplication for Memory
Efficiency”. ACM/IEEE SC98 Conference (SC’98).

[5] Lederman , S , Jacobson , E ,Johnson , J , Tsao ,A and
Turnbull , T .(1996).”Implementation of Strassen’s
algorithm for Matrix Multiplication”. ACM/IEEE
Conference on Supercomputing (SC’96).

[6] Ohtaki , Y .(2004).” Parallel Implementation of Strassen’s
Matrix Multiplication Algorithm for Heterogeneous
Clusters”. IEEE. 18th International Parallel and Distributed
Processing Symposium (IPDPS’04).

[7] Desprez , F and Suter , F .(2001).” Mixed Parallel
Implementations of the Top Level Step of Strassen and
Winograd Matrix Multiplication Algorithms”. IEEE.

[8] Kågström , B , Ling, P and Loan, C.(1995). “GEMM-
Based Level 3 BLAS: High Performance Model
Implementations and Performance Evaluation Benchmark”.
Technical Report UMINF-95.18, Umeå University, Oct
1995.

[9] Rönsch , W and Strauß , H . (1989).” The Level 3BLAS
Forms of Parallel Factorization Methods”. In D. Evans, G.
Joubert, and F. Peters, editors, Parallel Computing 89, pages
85– 92. Elsevier Science Publisher B.V., 1989.

[10] Strassen, V. (1969). “Gaussian Elimination Is Not Optimal”.
Numerische Mathematik, 14(3):354–356, 1969.

