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Summary 
Algorithm can be written in various ways, executes sequential or 
parallel, and gives the same results. One of the main factors of 
determining the efficient of an algorithm is the execution time 
factor, how much time the algorithm takes to accomplish its 
work. Because matrix multiplication widely used in a variety of 
applications and is often one of the core components of many 
scientific computations, it will be taken as a problem in this work 
and different algorithms are given to solve this problem. Then 
the execution time of all the methods will be calculated to find 
the best method for matrix multiplication. After testing Twenty 
three methods, we find that parallel Strassen algorithm is the best 
method for finding matrix multiplication. 
Key words: 
Algorithm, parallel execution, matrix multiplication, Strassen 
algorithm. 

1. Introduction 

Algorithm is a set of instructions for solving a problem 
and the efficiency of implementation of the algorithm 
depends upon speed, size, and resources consumption. 
Many instructions can give the same result for a particular 
problem .On the other hand, the execution of these 
instructions are different. Some of them take less time and 
space than the others. Some of them become more 
efficient when it executes parallel. As a result, we try to 
select the suitable instruction that gives the best execution, 
less time and space.     
Small Algorithms need one processor to execute 
efficiently and give the required result in a record time. 
But one processor is not enough for executing large and 
complex problems, so we need more than one processor to 
enhance the execution time of algorithm and this called 
parallel computing.  
In the simplest sense, parallel execution is the 
simultaneous use of multiple compute resources to solve a 
computational problem. Parallel execution has the 
following characteristics, use multiple CPUs, the problem 
to be solved is broken to sub problems that can be solved 
concurrently, each sub problem is broken down to a series 
of instructions and instructions from each sub problem 
executes simultaneously on different CPUs . 
The complexity of matrix multiplication has attracted a lot 
of attention in the last forty years. In this paper we will 
consider matrix multiplication as the problem, give 

various methods to solve this problem and find the best 
one that takes the least time. 
Matrix multiplication is the kernel of many scientific 
applications [8, 9]. It is a binary operation that takes a pair 
of matrices, and produces another matrix. If A is an n-by-
m matrix and B is an m-by-p matrix, the result AB of their 
multiplication is an n-by-p matrix defined only if the 
number of columns m of the left matrix A is the equal to 
the number of rows of the right matrix B. The result of 
matrix multiplication is a matrix whose elements are found 
by multiplying the elements within a row from the first 
matrix by the associated elements within a column from 
the second matrix and summing the products. The 
procedure for finding an element of the resultant matrix is 
to multiply the first element of a given row from the first 
matrix times the first element of a given column from the 
second matrix, then add to that the product of the second 
element of the same row from the first matrix and the 
second element of the same column from the second 
matrix, then add the product of the third elements and so 
on, until the last element of that row from the first matrix 
is multiplied by the last element of that column from the 
second matrix and added to the sum of the other products. 
Ex: 
 

 
 
As we mentioned before there are many methods to 
calculate the multiplication of matrixes. All of them give 
the same result but each one consumes different space in 
memory and takes different processor time. The methods 
that we will test are:  
 
1. Row by Column method                   
2. Row by Row method 
3. Column by Column method 
4. Strassen method 

 
We will test each of them with all the possible types of 
each one, “sequential, blocked and parallel”. 
The rest of this paper is organized as follows: in section II, 
we give a brief review of some related works about matrix 
multiplication, in section III we presents Row by Column 
method with all its type, section IV displays Row by Row 
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method with all its type, section V Column by Column 
method with all its type, Section VI compares between the 
previous three methods, Section VII shows Strassen’s 
method and finally we conclude this work and outline 
future research in Section VIII. 

2. Related Works 

A brief review of some related works about matrix 
multiplication has been done. 
In [2], the authors in this paper interested in reducing the 
cost of multiplication for matrices of small size, say up to 
30.Following the previous work of Probert & Fischer, 
Smith, and Mezzarobba, in a similar vein, they base their 
approach on the previous algorithms for small matrices, 
due to Strassen, Winograd, Pan, Laderman, and others and 
show how to exploit these standard algorithms in an 
improved way. They illustrated the use of their results by 
generating multiplication codes over various rings, such as 
integers, polynomials, differential operators and linear 
recurrence operators. 
In [3], the authors analyzed the performance and 
scalability of a number of parallel formulations of the 
matrix multiplication algorithm and predict the conditions 
under which each formulation is better than the other. 
They showed that the GK algorithm that they present in 
their paper outperforms all the well known algorithms for 
a significant range of number of processors and matrix 
sizes. 
In [4], the authors reported on an implementation of 
Strassen algorithm that uses several unconventional 
techniques to make the algorithm memory-friendly. First, 
the algorithm internally uses a nonstandard array layout 
known as Morton order that is based on a quad-tree 
decomposition of the matrix. Second, they dynamically 
select the recursion truncation point to minimize padding 
without affecting the performance of the algorithm, which 
they can do by virtue of the cache behavior of the Morton 
ordering. Each technique is critical for performance, and 
their combination as done in their code multiplies their 
effectiveness. Performance comparisons of their 
implementation with that of competing implementations 
showed that their implementation often outperforms the 
alternative techniques (up to 25%). They also noted that 
the time required converting matrices to/from Morton 
order is a noticeable amount of execution time (5% to 
15%). 
In [5], the authors reported on the development of an 
efficient and portable implementation of Strassen’s matrix 
multiplication algorithm. Their implementation is designed 
to be used in place of DGEMM, the level 3 BLAS matrix 
multiplication routine. Efficient performance will be 
obtained for all matrix sizes and shapes and the additional 
memory needed for temporary variables has been 

minimized. Their performance data reconfirms that 
Strassen’s algorithm is practical for realistic size matrices. 
In [6], the author proposed a new distribution scheme for a 
parallel Strassen’s matrix multiplication algorithm on 
heterogeneous clusters. Their scheme achieves both load 
balancing and reduction of the total operation count. As a 
result, they achieved a speedup of nearly 21.7% compared 
to the conventional parallel Strassen’s algorithm in a 
heterogeneous clustering environment.     

3. Row by Column Method 

Suppose that B is a i x K matrix, and C is a K x j matrix. 
Then, the matrix product BC results in a matrix A, which 
has i rows and j columns; and each element in A can be 
computed according to the following formula:  Aij = Σk 
BikCkj  
Where : Aij  = the element in row i and column j from 
matrix A;Bik  = the element in row i and column k from 
matrix B;Ckj= the element in row k and column j from 
matrix C;Σk = summation sign, which indicates that the 
BikCkj   terms should be summed over k. 
Row by column method can be represented in many 
various ways. Following are six ways for representing it: 
 

III.1  Sequential 

for ( i = 0; i < size; i++) 
     for ( j = 0; j < size; j++) 
          for ( k = 0; k < size; k++) 
              { 
                A[i, j] += B[i, k] * C[k, j]; 
       } 

III.2  Enhanced Sequential 
for (i = 0; i < size; i++)         

f or (j = 0; j < size; j++) 
           { 
                sum = 0; 
               for (k = 0; k < size; k++) 
                     sum += B[i, k] *C[k,j]; 
                 A[i, j] = sum; 
                } 
            } 

III.3 Sequential block 
for ( i1 = 0; i1 < size; i1 += bsize) 
  for ( j1 = 0; j1 < size; j1 += bsize) 

for ( k1 = 0; k1 < size; k1 += bsize) 
for ( i = i1; i < i1 + bsize && i < size; i++) 

for ( j = j1; j < j1 + bsize && j < size; j++) 
for ( k = k1; k < k1 + bsize && k < size; k++) 

A[i, j] += B[i, k] * C[k, j]; 
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III.4  Parallel Block 

System.Threading. Parallel.Do(delegate()  
 {  for ( i1 = 0; i1 < size; i1 += bsize) 
      for ( j1 = 0; j1 < size; j1 += bsize) 

    for ( k1 = 0; k1 < size; k1 += bsize) 
          for ( i = i1; i < i1 + bsize && i < size; i++) 
            for ( j = j1; j < j1 + bsize && j < size; j++) 
             for ( k = k1; k < k1 + bsize && k < size; k++)
               A[i, j] += B[i, k] * C[k, j]; 

         });     

III.5  Enhanced Parallel Block 

System.Threading.Parallel.Do(() => 
   { for ( i1 = 0; i1 < size / 2; i1 += bsize) 
       for ( j1 = 0; j1 < size ; j1 += bsize) 
         for ( k1 = 0; k1 < size ; k1 += bsize) 
           for ( i = i1; i < i1 + bsize && i < size; i++) 
             for ( j = j1; j < j1 + bsize && j < size; j++) 
               for ( k = k1; k < k1 + bsize && k < size; 

k++) 
                 A[i, j] += B[i, k] * C[k, j]; 
           }, () => 
     { for ( i1 = size / 2; i1 < size; i1 += bsize) 
          for ( j1 = 0; j1 < size ; j1 += bsize) 
           for ( k1 = 0; k1 < size ; k1 += bsize) 
            for ( i = i1; i < i1 + bsize && i < size; i++) 
              for ( j = j1; j < j1 + bsize && j < size; j++) 
               for ( k = k1; k < k1 + bsize && k < size; 

k++) 
             A[i, j] += B[i, k] * C[k, j]; 

     }); 

III.6 Parallel 

System.Threading.Parallel.For(0, size, (i) => 
                {   for ( j = 0; j < size; j++) 
                        for ( k = 0; k < size; k++) 
                            A[i, j] += B[i, k] * C[k, j]; 
                } 
                ); 

 
Where 
A is the result matrix of multiplying B and C size is the 
size of the matrix  bsize is the size of the block 
We tested the previous methods in different cases starting 
with matrix size 50 elements until 1000 elements and the 
result appeared as the following diagram 
 
 
 

 
Figure (1). Comparing the average execution time of all 

algorithms of Row by Column method. 
 
 

4. Row by Row 

Row by Row method can also be represented in many 
various ways. Following are six ways for representing it: 
 

IV.1  Sequential 

for ( i = 0; i < size; i++) 
     for ( j = 0; j < size; j++) 
          for ( k = 0; k < size; k++) 
              { 
                A[i, k] += B[i, j] * C[j, k]; 
       } 

IV.2  Enhanced Sequential 
for (i = 0; i < size; i++)                
       f or (j = 0; j < size; j++) 
           { 
                a1 = B[i,j]; 
               for (k = 0; k < size; k++) 
                  A[i,k] += a1 *C[j,k];                  
             } 

IV.3 Sequential block 
for ( i1 = 0; i1 < size; i1 += bsize) 
 for ( j1 = 0; j1 < size; j1 += bsize) 
  for ( k1 = 0; k1 < size; k1 += bsize) 
   for ( i = i1; i < i1 + bsize && i < size; i++) 
    for ( j = j1; j < j1 + bsize && j < size; j++) 
     for ( k = k1; k < k1 + bsize && k < size; k++) 
      A[i, k] += B[i, j] * C[j,k]; 

IV.4  Parallel Block 
System.Threading.Parallel.Do(delegate()  
    { 
      for ( i1 = 0; i1 < size; i1 += bsize) 
        for ( j1 = 0; j1 < size; j1 += bsize) 
          for ( k1 = 0; k1 < size; k1 += bsize) 
            for ( i = i1; i < i1 + bsize && i < size; i++) 
              for ( j = j1; j < j1 + bsize && j < size; j++) 
                for ( k = k1; k < k1 + bsize && k < size; k++) 
                  A[i,k] += B[i, j] * C[j,k]; 
           });    
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IV. 5   Enhanced Parallel Block 
System.Threading.Parallel.Do(() => 
     {   for ( i1 = 0; i1 < size / 2; i1 += bsize) 
            for ( j1 = 0; j1 < size ; j1 += bsize) 
               for ( k1 = 0; k1 < size ; k1 += bsize) 
                 for ( i = i1; i < i1 + bsize && i < size; i++) 
                   for ( j = j1; j < j1 + bsize && j < size; j++) 
                      for ( k = k1; k < k1 + bsize && k < size; k++)
                               A[i,k] += B[i, j] * C[j, k]; 
           }, () => 
          {  for ( i1 = size / 2; i1 < size; i1 += bsize) 
               for ( j1 = 0; j1 < size ; j1 += bsize) 
                 for ( k1 = 0; k1 < size ; k1 += bsize) 
                   for ( i = i1; i < i1 + bsize && i < size; i++) 
                     for ( j = j1; j < j1 + bsize && j < size; j++) 
                      for ( k = k1; k < k1 + bsize && k < size; k++)
                                 A[i, k] += B[i, j] * C[j,k]; 
              }); 

 
IV.6  Parallel 

System.Threading.Parallel.For(0, size, (i) => 
                { 
                    for ( j = 0; j < size; j++) 
                        for ( k = 0; k < size; k++) 
                            A[i,k] += B[i, j] * C[j,k]; 
                } 
                ); 

Where 
A is the result matrix of multiplying B and C size is the 
size of the matrix bsize is the size of the block 
 
We also tested the previous methods in different cases 
starting with matrix size 50 elements until 1000 elements 
and the result appeared as the following diagram 
 

 
Figure (2). Comparing the average execution time of all 

algorithms of Row by Row method. 

5. Column by Column 

Column by Column method can also be represented in 
many various ways. Following are six ways for 
representing it: 
 

V.1  Sequential 

for ( i = 0; i < size; i++) 
     for ( j = 0; j < size; j++) 
          for ( k = 0; k < size; k++) 
              { 
                A[k,i] += B[k,j] * C[j,i]; 

} 

V.2 Enhanced Sequential 
for (i = 0; i < size; i++)                      
     f or (j = 0; j < size; j++) 
          { 
              c1 = C[j,i]; 
              for (k = 0; k < size; k++) 
               A[k,i] += B[k,j] *c1; 
           } 

V.3 Sequential block 

for ( i1 = 0; i1 < size; i1 += bsize) 
 for ( j1 = 0; j1 < size; j1 += bsize) 
  for ( k1 = 0; k1 < size; k1 += bsize) 
   for ( i = i1; i < i1 + bsize && i < size; i++) 
    for ( j = j1; j < j1 + bsize && j < size; j++) 
     for ( k = k1; k < k1 + bsize && k < size; k++) 
      A[k,i] += B[k,j] * C[j,i]; 

V.4 Parallel Block 

System.Threading.Parallel.Do(delegate()  
    { 
       for ( i1 = 0; i1 < size; i1 += bsize) 
          for ( j1 = 0; j1 < size; j1 += bsize) 
            for ( k1 = 0; k1 < size; k1 += bsize) 
              for ( i = i1; i < i1 + bsize && i < size; i++) 
                for ( j = j1; j < j1 + bsize && j < size; j++) 
                  for ( k = k1; k < k1 + bsize && k < size; k++) 
                     A[k,i] += B[k,j] * C[j,i]; 
            });    

V .6  Parallel 
System.Threading.Parallel.For(0, size, (i) => 
                { 
                    for ( j = 0; j < size; j++) 
                        for ( k = 0; k < size; k++) 
                            A[k,i] += B[k, j] * C[j,i]; 
                } 
                ); 

 
Where 
A is the result matrix of multiplying B and C size is the 
size of the matrix bsize is the size of the block 
 
We again tested the previous methods in different cases 
starting with matrix size 50 elements until 1000 elements 
and the result appeared as the following diagram 
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Figure (3). Comparing the average execution time of all 

algorithms of Column by Column method. 
 

6. Comparing among the Previous Three 
Methods 

The previous 3 algorithms with their different types differ 
in instructions but give the same result .By making one 
diagram for all of them, it appears as follow: 
 

 
Figure (4). Comparing the average execution time of the three 

methods. 
 
It is clearly appeared that Row by Row method gives the 
best average execution time. 

7. Strassen’s Method 

In 1969, Strassen [10] introduced an algorithm to multiply 
M x M matrices which has a lower complexity than the 
classical O(M3).   .It is based on a scheme for the product 
of two 2 x 2 matrices which involves 7 multiplications and 
18 additions instead of the usual 8 multiplications and 4 
additions. Strassen algorithm is better than standard matrix 
multiplication algorithm because additions and 
subtractions of matrices can be computed in linear time 
without communications. Strassen’s algorithm is O 
(M2.81).On the other hand, Strassen’s method needs more 

memory than the traditional methods. The following 
shows how the matrix multiplication using Strassen’s 
method works: 
 

 
 

 

 
Strassen’s Algorithm can be written as follows: 
 

 
 
We made four cases in implementing the Strassen’s 
algorithm (Regular, Enhanced, Block and Parallel) and 
tested each case n times with a change in the size of the 
matrix each time. 
Then we compared the result with the best traditional 
methods Row by Row method to investigate the best 
method for the matrixes multiplication. 
The next diagram concludes what we said: 
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Figure (5). Comparing the average execution time of Strassen 

and Row by Row methods. 
 

It is completely clear that Strassen takes less time than 
Row by Row and the parallel Strassen is the best case of 
Strassen. Parallel Strassen is 43% faster than parallel Row 
by Row. 

8. Conclusion and Future works 

When you want to solve any problem, try to choose the 
best method that consumes less space and time to execute 
efficiently. For matrix multiplication , we tested some 
methods Row by Row , Row By Column , Column By 
Column and Strassen. After our experiments we found that 
Strassen’s method is the best method for implementing the 
matrix multiplication and Strassen parallel method is the 
best of all. It is 43% faster than the Row by Row method 
which is the better than Row by Column and Column By 
Column. 
For the future work, we will test many other matrix 
multiplication algorithms and for every algorithm we will 
test the space complexity. 
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