
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

51

This work was supported in part by UAE Research grant 04-03-9-11/09.

Manuscript received March 5, 2012
Manuscript revised March 20, 2012

An Efficient Object-Oriented Architecture for the Design and
Implementation of an Adaptable Network Simulator

Imad Jawhar

College of Information Technology
UAE University, Alain, UAE

Email: ijawhar@uaeu.ac.ae

Summary
Simulation is an important part of the design and evaluation of
networking protocols. Currently, there exist several network
simulation tools which are available to researchers such as
OPNET, ns-2, and others. Although they are very useful for a
wide range of simulation experiments which involve performance
evaluation of existing protocols that are supported by these tools,
selecting them to verify and test the performance of new
platforms and protocols that are not implemented in these
programs tend to have considerable restrictions and limitations.
Therefore, implementing these protocols in existing simulator
packages could be relatively very difficult and time consuming.
Consequently, many designers find out that it is more practical,
time efficient, and often necessary to design their own simulator
which includes the protocol they are evaluating. This paper
presents the architecture and design of a typical object oriented
event-driven network simulator. In order to validate and optimize
the design, it was applied to implement a simulator which was
used to evaluate the performance of two routing protocols for
mobile ad hoc networks (MANETs). Researchers can use this
framework to design a network simulator which can be used to
accurately implement, evaluate, and optimize their networking
models, architectures, and protocols.

Key words:
Wireless ad hoc and sensor network, network simulation,
simulator design, object-oriented design.

1. Introduction

Advancements in the area of network protocols and
architectures are constantly taking place as the
corresponding technologies are developed. In addition,
numerous new networking applications and platforms are
created in response to evolving social, and commercial
requirements. An essential part of research methodology is
the simulation of newly created or optimized network
models and protocols. Currently, there exist several
network simulation packages such as OPNET [1], ns- 2 [2],
and others. These packages can be reasonably easily used
to study the performance of many networking protocols
and platforms they support. However, practice has shown
that implementing new protocols which are significantly
different from the ones which are supported using these

simulation packages is very difficult. Consequently, many
researchers are faced with the need to design their own
simulator software in order to implement and study the
performance of new network protocols and platforms
which are significantly different from the ones supported
by these off-the-shelf packages. This is a good alternative
as long as the researcher is able to design this simulator in
a reasonably short period of time and use the proper design
and validation techniques. This paper, presents architecture
and design techniques of a typical event-driven network
simulator which uses the object oriented design
methodology. The simulator can be used to analyze the
performance of typical wireless networks including mobile
ad hoc and sensor networks.

1.1 The ns-2 network simulator

As mentioned earlier, one of the most popular network
simulation packages is the ns-2 (network simulator, version
2) [2]. It is an open source software that is available on the
Internet. It can be used for simulation of different
algorithms and protocols such as IP, TCP (Tahoe, Reno,
Newreno, SACK, Vegas), UDP, Ethernet, ARP, 802.11,
DSDV, AODV, TORA, DiffServ, IntServ, and wireless ad
hoc networks [3]. It also supports different queueing
techniques such as Drop tail, RED, FRED, REM, DRR,
and SFQ. The wireless and mobility extensions to ns-2 are
a result of the Monarch project. A good number of
researchers have contributed code that is used with ns-2.
Although this simulator is text-based and does not have
GUI capabilities for creating topologies and interfaces, it
has features that allow the graphic visualization of the
network and node activities such as transmission and
reception of packets. The ns-2 simulator contains two sets
of languages OTcl (Object oriented extension of the Tool
Command Language) and C++ [2][4]. The OTcl language
is used for setting up the simulation, configuring objects,
and scripting simulation topology and events. Specifically,
OTcl is used to do the following: (1) Allows the user to
perform some simulations by varying different parameters
and configurations. (2) Investigate different scenarios. (3)
Determine the simulation model by setting parameters such
as the number of iterations. On the other hand, the C++

mailto:ijawhar@uaeu.ac.ae

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

52

language can be used for programming each object in the
simulation structure and topology. Specifically, it can be
used for the following reasons: (1) Create new objects that
might be needed in some specialized simulations of new
protocols that are not supported. (2) Increase the speed and
efficiency of the simulation process. (3) Perform byte
manipulation, packet processing, algorithm implementation,
or change the actions performed by different modules.

The ns-2 simulator provides some advantages due to its
existence as an open source code [5]. It allows building
upon existing work, and allows others to use the
researcher’s work. However, it also has the disadvantage
of being huge and complicated. In addition, it has
relatively poorly maintained documentation and the
possibility of sometimes having missing components and
unexpected bugs which can be significantly time
consuming to discover, isolate, and fix.

1.2 The OPNET network simulator

OPNET (Optimized Network Engineering Tool) [1] is
another available network simulation package. It is one of
the leading existing network simulators in the market. The
OPNET simulation software costs in the order of several
thousand dollars for a single license. Although free
licenses are available for educational purposes, it provides
a graphical user interface that allows the user to create
networking models using a drag and drop approach. It is
designed using a discrete event driven simulation approach
and applies an object-oriented design methodology [6]. In
addition, OPNET uses a hierarchical modelling strategy
that allows the user to choose the desired specifications
and protocols including physical layer components such as
transceivers, antennas, queue management, nodes with
process modules, and a networking model that is used to
connect them. In addition, packet formats that are to be
used with the communication protocols can be
programmed into the model. The hierarchical model
building has the following modules [7]: (1) Network Editor
which allows the user to build the network topology, (2)
Node Editor which is used to define data flow models, (3)
Process Editor which is used to specify control flow
models. Through these editors, the user can specify models
at three different levels: the network domain, the node
domain, and the process domain [8]. Modeling in the
network domain can be used to hide the complex structure
of the lower level component which would be invisible to
the user. For running simulations, it has a simulation tool
to define and run the simulation, and a debugging tool. For
results analysis, it has a probe editor to specify the points
where data needs to be collected, an analysis tool, data
filtering tool, and an animation viewer to display the
behavior of the network in case that is needed. OPNET

operates at the packet level, and has a large library of
models for existing network hardware and software
protocols. It allows the running of external code
components through its External System Domain (ESD)
tool.

1.3 Other network simulators

In addition to the simulations mentioned above, there are
other more specialized network simulators such as REAL
[9][7], which is used to study congestion control schemes
in packet switched data networks, INSANE [10], which is
used to simulate IP-over-ATM algorithms with traffic
loads that are derived from real traffic measurements,
NetSim [7], which is used for simulation of Ethernet
networks, and Maisie [11] which uses a C-based language
for using parallel discrete event simulations. In Maisie, a
logical process is used to model one or more physical
processes. The events in the physical system are
implemented using message exchanges among the
corresponding logical processes in the model. Additionally,
Parsec and MOOSE are object-oriented extensions to
Maisie.

The rest of the paper is organized as follows. Section II
presents an overview of the event-driven simulator design.
Section III discusses each of the classes that are used.
Section IV presents the simulation process and its phases,
and the last section provides the conclusion.

A

B C

D

FE

Source Destination

REQ

REP

Fig. 1 A simplified example of the route discovery process.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

53

2. Event-Driven Simulator Design Overview

The simulator design that is presented in this paper is
event-driven and is implemented using an object-oriented
design approach. It starts by creating the required
simulation objects including the area, nodes, event priority
queue (EPQ), and graph objects. It loads the EPQ with the
initial data messages with each message having source,
destination nodes, arrival time, and message length as the
main parameters. It then starts the simulation process by
deleting events from the EPQ according to their time of
occurrence, executing them by updating the required
objects and keeping the required statistics, and inserting
any newly generated events into the EPQ. This process
continues until the EPQ is empty. Then, the program
outputs the simulation results to the user.

2.1 A case study: the simulation of a typical wireless
ad hoc and sensor network

In order to illustrate the design of the event-driven
simulator, a case study is presented. The case study
involves the simulation of a DSR-based routing algorithm
and the study of its performance in a wireless ad hoc
network [12][13][14]. An ad hoc network is a wireless
network where the nodes do not have a pre-existing
infrastructure. It has a variable topology where the nodes
join, or leave the network anytime [15][16][17][18][19].
Also, nodes can be mobile which means that the
connectivity of the node with its neighbors as well as the
topology of the network is variable. New communication
links between nodes are created and existing ones are
deleted as nodes move from one location to another. Each
node in the network plays the role of an end point as well
as a router in the data transmission process.
Communication between source and destination nodes is
established using multi-hop routes passing through
intermediate nodes.

2.2 A simplified overview of a DSR-based routing
process

The routing protocol that is used in this case study is based
on the Dynamic Source Routing (DSR) protocol [13]. It is
ondemand which makes it more scalable. Nodes do not
need to keep information about the entire topology, and
routes are only discovered as the need arises. When a
source node s wants to send data to another destination
node d which is not within its transmission range, it will try
to discover a multi-hop path to it. In order to do that, node
s broadcasts a request (REQ) message to all of its
neighbors. Each of the neighbors adds its ID to the

accumulating path in the message and in turn forwards it to
all of its neighbors. This process continues until the REQ
message reaches the destination, which then unicasts a
reply (REP) message back to the source. Upon receiving
the reply message, the source updates its routing table and
starts the data transmission process.

A simplified example of the route discovery process is
shown in Figure 1. In the figure, node A is a source node
that needs to send data to a destination node E. Node A
checks its routing table and realizes that it does not have a
path to E. Consequently, node A starts a route discovery
process by broadcasting a REQ message to its neighbors B
and F. Nodes B and F, not having processed a REQ
message with the same (s, d, ID) tuple, check the
information in the REQ message and realize they are not
the destination and that they do not have a path to E. Each
of them forwards the REQ message to its neighbors except
for the node from which they received the request (i.e. A).
This process continues until the REQ message reaches the
destination E. One or more REQ messages might reach the
destination. If more than one REQ message reaches the
destination, a certain criteria might be applied by the
destination in order to select one of the discovered paths.
In our case, the destination responds only to the first REQ
message it receives, thereby choosing the earliest
discovered paths. Assuming that the REQ message
propagating along nodes A, F, G, H, and E arrives first, the
destination unicasts a REP message with the discovered
path A-F-G-H-E to A. Subsequently, the destination simply
drops any subsequent REQ messages that might arrive later
through different paths. Upon receiving the REP message,
node A updates its routing table and starts the data
transmission process along the discovered path.

Table 1: Parameters for the race-free protocol simulation

Parameter Value
Network Area 600 x 600 m2

Number of Nodes 30
Transmission Range 150 m

Data Packet Size 512 bytes
Number of Sessions 50

Maximum Session Time 4000 s

2.3 A sample of simulation parameters

Table 1 shows a sample of simulation parameters for the
case study network. The number of nodes, n, is 30. The
nodes are contained in an area of 600x600 m2. The range
of each node is set to 150 m. The message length is
randomly selected according to a uniform distribution with
a range from 0 to 1000 Mbytes corresponding to a session
length range of 0 to 4000 sec. In some simulation
experiments, the traffic rate could be varied to study its

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

54

impact on different network performance measures such as
throughput and path acquisition delay. The session (or data
message) arrival is a Poisson process with a mean which
could be varied as needed.

Simulator

Area Stats SimClock

EPQNodeGraph

Event

REQ/REP

1

1

1 1

1

11

*

*

UsesUses

Uses Uses

1

1

1

Uses Uses

Uses

1

11

1

Uses

Fig. 2. A structure chart of the simulator.

3. The Classes

Figure 2 shows a structure chart of the simulator design
which includes all of the classes and their relationships.
The main class is the simulator class which includes the
main() method. Also, it includes one of each of the
following objects: an area, a stats, and a simClock object.
In turn, the area class includes a graph, an array of nodes,
and an event priority queue (EPQ) class. The EPQ class
includes an array of events objects. The chart also includes
the REQ/REP class which is used by the area class. All of
the classes in the simulator, along with their functions, and
relationships are discussed in this section.

3.1 Simulator Class

This class has the main() method. The main() method
instantiates the other objects in the simulator such as the
nodes, EPQ, graph, and so on. It also has the method
which loads the EPQ with the initial events. In most
simulation cases, these events consist of the initial data
transmission messages which occur at certain times
according to the desired random distribution function. As
indicated earlier, they are typically randomly generated
according to a Poisson arrival distribution with an average
arrival rate.

Main methods in the class:
• main(): this is the main method of the simulation.

• printSimHeader(): prints the title, and the header of
the simulation (e.g. Simulator name, version number,
date, etc.)

3.2 Area Class

One area object is created from this class. It holds most of
the other objects in the simulation including the array of
nodes, an event priority queue, and graph.

Main methods in the class:
• shuffle(): places the nodes in random locations within

the area.
• generateGraph(): generates a new graph from the

node locations and ranges.
• loadEPQwithInitMess(): load the EPQ with the initial

data messages.
• updateAllNodePos(): updates the node positions based

on the elapsed time, current node location, geographic
destination, and speed.

• saveXYLocationsToFile(), getXYLocationsFromFile():
save/get node locations to/from a file. These methods
are optional and can be used for testing purposes.

3.3 Node Class:

The array of node objects is instantiated from this class.
Each node contains the basic attributes such as: node ID, x
and y geographic location coordinates of the node, and all
tables that each node might need. Depending on the
simulation, and network protocol requirements, these
tables might include the routing table, cached information
tables, tables that might hold status of different node
communication parameters such as slot reservation status
in a time division multiple access (TDMA) environment,
and so on.

Main methods in the class:
• getID(), setID(): get and set the node id.
• getX(), setX(), getY(), setY(), getSpeed(), setSpeed():

get and set the node coordinates associated with its
geographic location in the area as well as the node’s
speed.

• updateRoutingTable(): updates the node’s routing
table with a discovered path for a certain destination.

• checkPath(): checks the routing table for a discovered
path to a particular destination.

• forwardReqMessToNeighbors(),forwardRepMessToN
eighbors(): forwards the REQ/REP message to the
node’s neighbors by inserting the appropriate events in
the EPQ.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

55

3.4 Event Priority Queue (EPQ) Class

This is a priority queue of events. The key field in each
event that is used for ordering the events in the queue is the
time. The time is an integer number which indicates the
time of occurrence of the event. The main interface
methods in the EPQ class are the insertEvent() and
deleteEvent(). In order to increase the efficiency of the
process of inserting and deleting events, a heap structure is
used to implement the queue [20]. This makes the time
complexity for insertion and deletion as well as most other
queue processing functions O(log(n)).

Main methods in the class:
• isEmpty(): returns true if the EPQ is empty.
• insert(): inserts an event in the EPQ.
• deleteMin(): retrieves the event with the smallest time

3.5 Event Class

The event objects that are instantiated from this class are
the events of the event-driven simulation. Each event has
the following main attributes:

1) Event time: An integer number which is the time stamp
of each event.
2) Event type: An integer number which represents the
event type. Examples of event types are: send request
message, receive request message, send data message,
receive data message, etc.
3) Source node ID: This is an integer number representing
the ID of the source node that is sending a route request or
data message for example.
4) Destination node ID: This is an integer number
representing the ID of the destination node with which a
particular source node wants to communicate.
5) Session ID: This is an integer number representing the
message or session ID. For example, each node can have a
running counter which generates the message IDs of the
messages it generates.
6) Other attributes: Additional attributes are typically
added, which are specific to the particular networking
simulation that is required.

Main methods in the class:
• getType(), setType(): get and set event type.
• getTime(), setTime: get and set event time.
• getNID(), setNID(): get and set the ID of the node

concerned with the execution of this event.
• getReq(), setReq(), getRep(), setRep(): get and set the

REQ/REP object attached to this event. An event like
“receive request/reply message” would use this event
field.

• setDataMessLength(), getDataMessLength(): get and
set the data message length (in bytes). An event like
“send data message” would use this event field.

3.6 Stats Class

This class is used to keep track of the statistics and results
of the simulation. It contains attributes such as number of
successfully transmitted messages, number of
unsuccessfully transmitted messages, number of dropped
packets, number of collisions, and so on. Each attribute has
accessor and mutator methods to read and update the
corresponding variable. The stats class also contains a
printResults() method which prints the required results at
the end of the simulation experiment.

Main methods in the class:
• setSuccRecDataMess(), getSuccRecDataMess(): set

and get the number of successfully received data
messages.

• setRejDataMess(), getRejDataMess(): set and get the
number of rejected data messages.

• setSuccRecDataPackets(), getSuccRecDataPackets():
set and get the number of successfully received
packets. This can be different than the number of
received messages because each message can have a
different number of packets depending on its
randomly generated length.

• setSendReqMess(), getSendReqMess(),
setSendRepMess(), getSendRepMess(): set and get the
number of request/reply messages. This can be used to
measure the communication overhead.

• getTotPathAcqTime(), setTotPathAcqTime(): set and
get the total path acquisition time. At the end of the
simulation, the resulting value can be divided by the
total number of acquired paths to get the average path
acquisition time.

• setAcqPaths(), getAcqPaths(): set and get the total
number of acquired paths.

• printSimRes(): prints simulation results.

3.7 Graph Class

Typically, one graph object is instantiated from this class.
It is a graph data structure. The structure could be using an
adjacency matrix, or an adjacency list [21][22][23]. This
graph has the nodes in the network as vertices, and the
one-hop communication links between the nodes as edges.
The graph is constructed by first making each node in the
network a vertex in the graph. Then, the communication
range, which is a simulation constant, along with the
geographic coordinates of the nodes are used to determine
the edges between the vertices in the graph. Edges are
added between the nodes that are within range of each

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

56

other. Specifically, an edge is added if the Euclidian
distance between two nodes is less than or equal than the
corresponding communication range. Later, in the
simulation, the graph is used to determine the neighbors of
each node by calling the getNeighborList(x) method which
returns a list of the neighbors of a node x. This information
is used to propagate route requests, route replies, data
transmission messages, as well as any other types of
communication between the nodes.

Main methods in the class:
• clear(): deletes all edges in the graph.
• addEdge(): adds an edge between two nodes.
• printGraph(): prints the graph to the screen. This

method can be used for testing purposes.
• selectRandNode(): selects and returns a random node.

This method can be used to select random source and
destination nodes for the exchanged data messages.

• isNeighbor(): returns true if two given nodes are
neighbors of each other.

• getListOfNeighbors(): returns a linked list of neighbor
nodes to a particular node.

3.8 REQ/REP Class

Depending on the kind of network and simulation that is
being designed, this type of classes might be needed. For
example, in the case study presented earlier, which
involves the simulation of the routing and data
communication protocols in a wireless ad hoc and sensor
network, a request (REQ) message is broadcast by a source
node to all of its one-hop neighbors to initiate the route
discovery process. The request message propagates
through the network until it reaches the desired destination
node which then responds by unicasting a reply (REP)
message back to the source. When the source receives the
reply message, it updates its routing table with the
discovered path and starts the data transmission process. In
this kind of networks, each one of the REQ and REP
classes would contain attributes such as the source ID,
destination ID, message ID, and a linked list of the IDs of
the accumulated nodes along the discovered path.

Main methods in the class:
• getS(), setS(), getD(), setD(), getSID(), setSID(): get

and set source, destination and message IDs.
• getX(), setX(): get and set the node to which this

REQ/REP is being forwarded.
• getPath(), setPath(): get and set the linked list of node

IDs along the discovered path.
• printReq(): print the REQ/REP information.

3.9 SimClock Class

This is a very simple class which is used to keep track of
the current time in the event-driven simulation. It has only
one integer attribute named time. It also mainly has two
methods: getTime() which is used to return the value of the
time integer, and setTime() which is used to set the value of
the same variable. Initially the simulation starts at time 0.
As the next earliest event is retrieved from the event
priority queue, the time of the simulation clock is set to the
time stamp (time of occurrence) of that event. Note that
because this is an eventdriven simulation, this is the only
way the simulation time is advanced. This is one of the
main powerful features of an event-driven simulation
compared to a time-driven simulation. Only instances of
time concerned with the occurrence of an event are
simulated as opposed to simulating each tick of the clock.
Consequently, the simulation time can advance in large
steps skipping all of the time when no events happen. This
method of handling time significantly increases the
efficiency of the simulation process.

Main methods in the class:
• reset(): reset the simulation time to 0.
• getTime(), setTime(): get and set the current simulation

time.

4. The Simulation Process and Its Phases

This section describes the main steps and functions used in
the simulation process. Basically, the simulator starts by
generating an area with certain dimensions and randomly
places a predetermined number of nodes in the area.
Generating the area object automatically instantiates all of
the objects inside it including the event priority queue and
the array of nodes. Then, the shuffleNodes() method of the
area class is used in order to randomly shuffle the
geographic locations of the nodes (x- and y-coordinates)
within the designated geographic area. As indicated earlier,
the nodes have a predetermined transmission range. From
the placement of the nodes, a graph is generated which
includes the nodes as vertices. Edges in the graph are
constructed between the nodes/vertices that are within
range of each other. Then the simulator generates a number
of data messages with a certain length for each message.
The length of the messages is generated randomly
according to a certain desired distribution function. Each
message has a randomly generated source and destination
pair. The arrival times of the messages is according to a
Poisson process with a certain mean inter-arrival time. As
the messages are generated, the corresponding events with
the send data message type are inserted in the event
priority queue. When the send data message event is
retrieved from the queue according to its arrival time, the
corresponding source node initiates the route discovery
process by sending a REQ message to all of its neighbors

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

57

as indicated earlier. This is done by inserting
corresponding events into the queue with a receive request
message type and a time stamp equal to the current time
plus the total request message transmission time. The REQ
message is propagated in this manner through the
intermediate nodes until it reaches the destination node.
Then, similarly a REP message is propagated back to the
source along the discovered path. Each node has a routing
table as well as all of the tables needed for the routing
algorithm. When the source receives the REP message, it
updates its routing table with the discovered path and starts
the data transmission process. All of the indicated
activities are done by insertion and extraction of the
corresponding events into and from the event priority
queue. Stated in other words, the simulation starts with the
initial events in the event priority queue. Events are
extracted according to their time stamp. As each event is
processed it might generate additional events which are
inserted into the queue to be processed at a later time. This
process of extracting, processing, and inserting events
continues while updating the corresponding parameters
and statistics in the stats object, until all of the events are
processed, and the priority queue is empty. At this point,
the simulation is ended, and the program outputs the
results to the user.

Consequently, the main loop in this simulation is the one
that extracts events from the EPQ and processes them one
by one. This while-loop, which is considered the event
processing engine of the simulation, is in the main()
method in the simulator class. Algorithm 1 presents the
main simulation steps which consist of the initialization
phase, followed by the event processing loop, and the
printing of the results.

4.1 Simulation Initialization

As illustrated in Algorithm 1, the simulation starts by
creating the area object which includes the event priority
queue (EPQ), and array of node objects. Also, the
simulation clock is created and initialized. Then, the EPQ
is loaded with the initial events which consist mainly of a
number of send data message events. Each message has a
source, a destination, a message ID, an arrival time, and
message length. The source node ID, destination node ID,
and message length are randomly created from a uniform
distribution. The arrival time is also a random number
generated according to an exponential distribution with a
given average arrival rate. This creates Poisson arrivals
which is typically the most realistic assumption for the
message arrival process, and is used in most simulations.
Then, the area.shuffleNodes() method is called to assign
random geographic coordinates for each node within the
area dimensions.

The area.clearAndGenerateGraph() method is called to
generate the graph from the node locations and node
transmission range. Nodes are represented by the vertices

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

58

of the graph and edges are created between nodes that are
within range of each other.

4.2 Event Processing

After the initialization phase is completed, the main while
loop, which constitutes the event processing engine is
executed by extracting, and processing the event from the
event priority queue. Events are retrieved according to
their time stamp starting with the earliest event.

4.3 Printing of the Results

As the simulation is performed, different simulation and
performance measures are maintained in the corresponding
variables in the stats class. These variables are updated
constantly during the running of the program and are
printed at the end of the simulation.

4.4 Mobility Simulation

In some networking applications such as mobile ad hoc
networks, node mobility might be required. Node mobility
can be simulated using different mobility models. In the
research, the Waypoint model is the most popular model
[24]. In this model, each node is assigned a particular
random speed between 0 and MAX_SPEED in meters/sec.
Each node is also assigned randomly generated starting
and ending geographic coordinates within the area. Then,
each node starts moving from its starting geographic
position towards its ending position at its assigned speed.
When the node arrives at its ending position, it pauses for a
PAUSE_TIME seconds. The PAUSE_TIME is a simulation
parameter chosen by the researchers to characterize the
mobility of the nodes. A low value for this parameter along
with a high value for the MAX_SPEED parameters indicate
a highly mobile environment. After the expiration of the
pause time, the node is assigned a new random speed as
well as a new geographic destination. Then, the node starts
to move again at the new speed towards the new
destination. When it arrives at the destination, it pauses
and starts moving again, and so on. This process is
repeated for each node until the end of the simulation
experiment.

In the simulator design, a MOBILITY_UPDATE event is
executed every MOBILITY_TICK_TIME seconds. During
the initialization phase of the simulation, a
MOBILITY_UPDATE event is inserted into the EPQ.
When this event is executed, it inserts another
MOBILITY_UPDATE event at the current time +
MOBILIT_TICK_TIME. Also, new node location
coordinates are calculated for each node using the current
geographic coordinates, node speed, and direction. The
nodes are then placed at their new locations, and a new

graph is generated again using the node locations and
transmission ranges. This mobility update results in new
links being formed or deleted between neighboring nodes.
The size of the MOBILITY_TICK_TIME should be
selected in a manner that is appropriate for the required
movement precision considering the value of
MAX_SPEED. Obviously, a smaller
MOBILITY_TICK_TIME value produces higher precision
in the node mobility simulation. However, this increase of
the precision in the mobility simulation comes at a cost of
increasing the total simulation running time.

5. Sample Simulation Results

The presented simulator framework was used to design an
event-driven simulator in order to test and analyze the
performance of a QoS routing protocol for MANETs [12].
The implementation was done using the C++ object-
oriented programming language. In the experiments
performed, two different QoS routing protocols for
TDMA-based MANETs were compared. The first routing
protocol uses a slot allocation scheme which is intended to
avoid racing conditions. Such conditions can occur in
MANETs when the route discovery of different
source/destination pairs is being done simultaneously.

The second protocol is an existing one which does not
have this feature and is used as a reference for comparison.
More details about the two protocols are beyond the scope
of this paper and can be found in [12]. In the first set of
experiments, whose results are shown in Figures 3 and 4,
the traffic rate was varied. The results in Figure 3 show
that the percentage of successfully received data packets
after QoS path acquisition is close to 100 percent with the
allocation-based protocol and it drops to around 30 percent
with the non-allocation-based protocol as the traffic rate
increases. Figure 4 shows that the allocation-based
protocol pays a price for the improvement in the quality of
the acquired path by a slight increase in the path
acquisition time. This is expected since the allocation-
based protocol is more conservative and “works harder”
during path acquisition to discover a higher quality path
than the other protocol. In the second set of experiments,
presented in Figures 5 and 6, the same two protocols were
compared with the same parameters. However, in this case
the maximum node speed was varied which affected the
mobility rate of the nodes. Figures 5 and 6 show that the
percentage of successfully received data packets after QoS
path acquisition decreases as the speed increases for both
protocols. However, the allocation-based protocol
continues to exhibit better performance despite the slight
overall increase in its path acquisition time. These results
demonstrate the ability of the designed simulator to

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

59

implement different networking protocols as well as vary
and measure different performance parameters in both the
spatial and temporal domains.

Fig. 3 Percentage of successfully received packets after path acquisition.
Varying traffic rate.

Fig. 4 Average ratio of path acquisition time to session length. Varying
traffic rate.

Fig. 5 Percentage of successfully received packets after path acquisition.
Varying mobility rate.

Fig. 6. Average ratio of path acquisition time to session length. Varying
mobility rate.

6. Conclusion

This paper presented an object oriented framework to
design an event-driven network simulator that can be used
to evaluate different wireless networking architectures and
protocols. The design of the simulator allows for
considerable increase in flexibility for the researcher.
Consequently, the research is able to include particular
aspects and implementations of the simulated protocols.
This can require a considerable amount of work for code
modification or may not even be readily possible in many
existing off-the-shelf network simulators. The different
classes that constitute the simulator application along with
their functions, and relationships were presented. The
design methods for simulating node mobility using the
popular Waypoint model were offered as well.
Additionally, the proposed framework was verified and
tested by using it to implemented and analyze the
performance of two competitive DSR-based QoS routing
protocols for MANETs. The design can be a good starting
point for many researchers that have new networking
protocols and architectures that need to be evaluated which
may not be supported by existing network simulation
packages.

References

[1] The official OPNET company website. http://www.opnet.com.
[2] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.
[3] Woongsup Lee. Network simulators: Opnet, ns-2.

http://cnr.kaist.ac.kr/lecture/te523 2008/download/ Lab08 TA
2008.ppt, Korea Advanced Institute of Science and
Technology, 2008.

[4] Network simulator (ns-2), internet technologies 60-375.
http://web2.uwindsor.ca/courses/cs/aggarwal/cs60375/NS/NS
2.ppt.

[5] M. Welzl. The ns-2 network simulator.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012

60

http://www.welzl.at/research/tools/ns/welzl-ns-tutorial.ppt,
2008.

[6] Yi Pan. Introduction to opnet simulator.
 http://netresearch.ics.uci.edu/ypan/, 2008.

[7] X. Chang. Network simulations with OPNET. Proc. of the
1999 Winter Simulation Conference, P.A. Farrington, H.B.
Nembhard, D.T. Sturrock, and G.W. Evans, eds., pages 307–
314, 1999.

[8] J. Prokkola. OPNET - network simulator.
http://www.telecomlab.oulu.fi/kurssit/521365Atietoliikennete
kniikan_simuloinnit ja tyokalut/Opnet esittely 07.pdf.

[9] S. Keshav. Real 5.0 overview. Cornell University, Available
as: http://www.cs.cornell.edu/skeshav/real.

[10] Yi Pan. INSANE, An Internet Simulated ATM Networking
Environment.

[11] R. L. Bagrodia. Designing efficient simulations using maisie.
Proceedings of the 1991 Winter Simulation Conference,
Phoenix, AZ, USA, pages 243–247, December 1991.

[12] I. Jawhar and J. Wu. Race-free resource allocation for QoS
support in wireless networks. Ad Hoc and Sensor Wireless
Networks: An International Journal, 1(3):179–206, May
2005.

[13] D. B. Johnson and D. A. Maltz. Dynamic source routing in
ad-hoc wireless networks. Mobile Computing, pages 153–181,
1996.

[14] C. E. Perkins. Ad Hoc Networking. Addison-Wesley, Upper
Saddle River, NJ, USA, 2001.

[15] I. Jawhar and J. Wu. Quality of service routing in mobile ad
hoc networks. Resource Management in Wireless Networking,
M. Cardei, I. Cardei, and D. -Z. Du (eds.), Springer, Network
Theory and Applications, 16:365–400, 2005.

[16] I. Jawhar and J. Wu. Qos support in tdma-based mobile ad
hoc networks. The Journal of Computer Science and
Technology (JCST), 20(6):797– 910, November 2005.

[17] I. Jawhar and J. Wu. Resource allocation in wireless
networks using directional antennas. The Fourth IEEE
International Conference on Pervasive Computing and
Communications (PerCom-06), Pisa, Italy. Publisher IEEE
Computer Society, pages 318–327, March 2006.

[18] I. Gerasimov and R. Simon. Performance analysis for ad hoc
QoS routing protocols. Mobility and Wireless Access
Workshop, MobiWac 2002. International, pages 87–94, 2002.

[19] W.-H. Liao, Y.-C. Tseng, and K.-P. Shih. A TDMA-based
bandwidth reservation protocol for QoS routing in a wireless
mobile ad hoc network. Communications, ICC 2002. IEEE
International Conference on, 5:3186–3190, 2002.

[20] Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson
and Clifford Stein. Introduction to Algorithms. McGraw-Hill,
The MIT Press, Cambridge, Massachusetts, USA, 2001.

[21] Frank M. Carrano. Data Abstraction and Problem Solving
with C++: Walls and Mirrors. Addison Wesley, USA, 2004.

[22] Larry Nyhoff. ADTs, Data Structure, and Problem Solving
with C++. Prentice Hall, Upper Saddle River, NJ, USA,
2005.

[23] Walter Savitch. Problem Solving with C++, the Object of
Programming. Addison-Wesley, NY, USA, 2005.

[24] A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S.
Suri. Towards realistic mobility models for mobile ad hoc
networks. In proceedings of ACM MobiCom, pages 217–229,
September 2003.

Imad Jawhar is an associate professor
at the College of Information
Technology at United Arab Emirates
University. He has a BS and an MS in
electrical engineering from the
University of North Carolina at
Charlotte, USA, an MS in computer
science, and a Ph.D. in computer
engineering from Florida Atlantic
University, USA, where he also served

as a faculty member for several years. He has published
numerous papers in international journals, conference
proceedings and book chapters. He worked at Motorola as
engineering task leader involved in the design and development
of IBM PC based software used to program the world's leading
portable radios, and cutting-edge communication products and
systems, providing maximum flexibility and customization. He
was also the president and owner of Atlantic Computer Training
and Consulting, which is a company based on South Florida
(USA) that trained thousands of people, and conducted numerous
classes in the latest computer system applications. Its customers
included small and large corporations such as GE, Federal
Express and International Paper. His current research focuses on
the areas of wireless networks and mobile computing, sensor
networks, routing protocols, distributed and multimedia systems.
He served on numerous international conference committees and
reviewed publications for many international journals,
conferences, and other research organizations such as the
American National Science Foundation (NSF). He is a member
of IEEE, ACM, and ACS organizations.

