
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012 
 

 
 

133

Manuscript received March 5, 2012 
Manuscript revised March 20, 2012 

Towards a Context-Aware Composition of Services* 

Hicham Baidouri, Hatim Hafiddi, Mahmoud Nassar and  Abdelaziz Kriouile, 
  

IMS Team, SIME Lab.,  ENSIAS, Rabat, Morocco 

                                                           
* This work is supported by the FNSRSDT under the CSPT-ICTESAD project 

 
Summary 
Over the last few years, recent evolutions in wireless 
technologies and intelligent mobile devices have enabled the 
emergence of mobile services. With such services, context plays 
great role in their adaptation in order to produce the most 
appropriate behavior. Using the SOA paradigm, some service 
may be achieved through the cooperation of several services to 
perform more complicated functionality. These composite 
services must be designed in a manner that allows them to handle 
certain level of context awareness in order to provide the most 
suitable end-user experience. Our focus in this paper is to present 
our proposal of adapting service composition by the integration 
of context during the composition process. This dynamic 
context-aware composition of services is realized through our 
Context-Aware Composition Builder tool. 
Key words: 
Context-aware composite service; model driven engineering; 
context-aware compostion. 

1. Introduction 

Nowadays, one of the most desired features of end-users 
from services providers is the possibility to get adapted 
composite services to their preferences and needs. This 
process, known as contextual adaptation, requires from the 
composite services to exploit past and present information 
about the user such as his current situation, his location, 
his profile, etc. This commitment has involved the 
introduction of a new type of composite services named 
Context-Aware Composite Services (CACS). In order to 
be context-aware, composite services need to follow some 
requirements in order to resolve the challenges brought by 
the context-awareness paradigm. First, the composition 
technique of the existing service should be platform-
agnostic, so the used approach could be projected on any 
technologies and implementation tools. Second, the 
composed service should be built in dynamic way 
depending on the context of use, i.e., the expected service 
must be generated at the execution stage. Compared to 
traditional service composition approaches, context aware 
composition computing emphasizes more open-endedness 
in terms of analysis, design and implementation phases. 

CACS development can profit from existing paradigms 
and technologies such as process orchestration language 

(e.g., BPEL [6]) and Model Driven Engineering (MDE 
[22]). Process orchestration languages are very developed 
tool that enable the transparency and ease of use of the 
creation of composed service in dynamic way aiming at 
extending application functionalities. In our approach, 
BPEL descriptions of CACS are dynamically generated, 
through our Context-Aware Composition Builder tool, to 
provide the most suitable service composition regarding 
the current user context. MDE is a model centric approach 
for software development, in which models are used to 
drive software development life cycle. In our approach, 
CACS artifacts meta-models are provided to guide the 
design of CACS models, then, the implementation is 
generated automatically by performing a series of model 
to model transformations.  
The rest of this paper is organized as follows. We present 
in next section a scenario that concerns an E-tourism 
system and highlight the context-awareness challenges. In 
Sect. 3, we present our context metamodel. Sect. 4 
presents our CACS metamodel. We present, in Sect. 5, our 
Context-Aware Composition Builder tool. Sect. 6 briefly 
compares related work. Finally, we conclude the paper in 
Sect. 7 with plans for future work. 

2. E-tourism Motivating Scenario: Tourism 
Tour Service 

The following motivating scenario relates to a context-
aware e-tourism system. It aims to help the out-of-towners 
who need some guidance (i.e. tour planning) on how they 
will spend their free time in a foreign city (see Fig. 1). 

Let’s say that a tourist wants to discover the history, 
culture, monuments, landscapes and gastronomy of a 
foreign city. So, he accesses a context-aware e-tourism 
system, offered by a local provider, using his mobile 
device (e.g., PDA, Smartphone, Tablet, etc.). This system 
will suggest a complete tour of the city for an entire day or 
just for a specific period of the day (e.g., morning, evening, 
etc.) depending on the tourist free time. Furthermore, the 
tour sent back to the tourist will take into account other 
context information such as time and weather parameters 
(e.g., in summer, the system will favor beaches over 
monuments), user profile (e.g., probably append a party at 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012 
 

 

134

 
Fig. 1 Involved services in the “Tourism Tour scenario”. 

the end of the tour if the user has mentioned it in his 
preferences) and the used mobile device (e.g., 
configuration, CPU, resolution, etc.) in order to improve 
the user experience and sent the most suited response. 
Likewise, the system will propose the transport (i.e., GIS 
service) between each places of the proposed tour and 
display all the possible alternatives (e.g., subway, bus, taxi, 
etc.) depending on the distance, the weather and the tourist 
needs. 
This e-tourism scenario highlights the fundamental 
challenges for the development of context-aware 
composition of services in context-aware systems. First, 
context definition (i.e., which context information are 
relevant for an adequate composition of services) and 
acquisition is not an evident process. Second, the 
composition process must be realized in a dynamic way 
depending on the execution context. By way of illustration, 
the previous scenario highlights the two following 
dynamic compositions, of the tour planning service, 
depending of the user context: 

 Suppose that the tourist is visiting the city in summer, 
the system should compose the tour starting with beach 
in the morning (using a partner e-tourism service), then 
propose the suited restaurant for lunch, program a 
monument visit at the evening, and according to user 
preference, append a party animation at the night to the 
program. 

 Assume that another tourist is visiting the city in spring, 
the system should propose natural landscapes instead 
of beach, and the rest of the tour could change 
depending on the user needs, weather and city 
transport infrastructure. 

3. Context 

Context is the information that characterizes the 
interactions between humans, applications, and the 
environment [11]. Several context definitions were 
proposed in the literature (e.g., [19], [20], [10], [21], [2], 
etc.) serving various domains, however the context 
definition given by Dey and Abowd remains the most 
referred. In fact, these authors have defined context as 
“any information that can be used to characterize the 
situation of an entity. An entity is a person, place or object 
that is considered relevant to the interaction between a 
user and an application, including the user and 
applications themselves” [23]. 

In our approach we choose to use the context metamodel 
developed in [5] for different reasons. Rather than giving a 
domain specific formalization of context this metamodel is 
domain and platform independent, and can be extended, if 
needed, to support various domains. This core context 
metamodel (see Fig. 2) specify a context as a set of 
parameters (e.g., language, localization, battery, 
connection mode, etc.) and entities (e.g., user, device, etc.) 
that can be structured on sub contexts. Sub contexts can 
also be recursively decomposed into categories. Context 
may be constituted of simple parameters (e.g., language), 
derived parameters (i.e., computed from other parameters; 
for example a distance parameter can be computed from 
two GPS positions) and complex parameters (e.g., GPS) 
which have representations (e.g., DMS (Degrees, Minutes, 
and Seconds) and DD (Decimal, Degrees) representation 
for the localization parameter). 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012 
 

 

135

 

Fig. 2 Core context metamodel [5]. 

4. Context-Aware Composite Service 

In Service Oriented Computing (SOC), a service is 
defined as self-describing and platform-agnostic 
computational element that supports rapid, low-cost and 
easy composition of loosely coupled and distributed 
software applications [17]. The vision of service as a 
software component allows combining several services, 
providing a global value-added service, called composite 
service. A context-aware composition of services (i.e., 
context-aware composite service) is a composition which 
is able to present different configurations according to the 
execution context named context view [3] (see Fig. 3). In 
our approach, a context-view composite service presents 
the result of an adapted composite service to a given 
context view, and the various context-view composite 
services for a given composite service forms the context-
aware composite service. 
 

Fig. 3 Core composite service adaptation to its various contextviews. 

Fig. 4 illustrates our Context-Aware Composite Service 
metamodel. This metamodel is based on the following 
specification:  

 All of  Elementary Service, Composite Service, 
Context-View Composite Service (i.e., 
CVCompositeService) and Context-Aware 
Composite Service (i.e., CAComposite Service) 
are specific services; 

 A context-aware composite service possesses a 
context-aware composition strategy (i.e., 
CACompositionStrategy) which concerns a set of 
context views; 

 A context-view composite service possesses a 
context-view composition strategy (i.e., 
CVCompositionStrategy) which concerns a given 
context view; 

 A context-aware composition strategy aggregates 
a set of context-view composition strategies; 

 For a given context-view composition strategy and 
context view, a set of configuration conditions 
(i.e., ConfigCondition) is deduced; 

 A configuration condition may involve a set of 
services configuration; 

 For a given context-view composition strategy and 
service, a configuration rule (i.e., ConfigRule) is 
associated; 

 A context-view composition strategy aggregates a 
set of configuration conditions, configuration rules 
and services. 

 

In our specification, a context-aware composite service 
is seen as a specific composite service with a number 
of ContextViews. For each one, we associate a context-
view composition strategy (i.e., 
CVCompostionStrategy) which indicates when (i.e., 
ConfigCondition: classical condition expressed on 
ContextView parameters) and how (i.e., ConfigRule: 
defines how the configuration (i.e., the execution 
chronology and the types of dependencies) must be 
realized in the core composition) a set of services (i.e., 
Service) cooperates in order to provide the expected 
composition regarding the current execution context.



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012 
 

 

136

 
Fig. 4 Core Context-Aware Composite Service metamodel. 

The composition result forms the context view 
composite service (i.e., CVCompositeService). So, for 
a given composite service, the set of its 
CVCompositeServices (respectively 
CVCompositionStrategies) forms the 
CACompositeService (respectively 
CACompositionStrategy). 

As illustrated in Fig. 5, involved services in the tour 
planning composite service may change depending to 
the context parameters and their values. 

 
 

 

 

 

Fig. 5 Succinct CACompositeService model for the Tourism Tour Service. 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012 
 

 

137

5. Context-Aware Composite Service 

5.1 Architecture 

Today, it is very clear that classical approaches for 
context-aware composition development present several 
limitations. Indeed, designing composite service variant 
for each context-view or introducing all composition 
scenarios in the same composite is, deeply, a software 
engineering anti-pattern (e.g., high-cost of maintenance).  
So, to rationalize the development and maintenance of 
context-aware composite services, we have to resort to a 
strategy pattern that allows dynamic composition without 
any duplication or regression risks. Our strategy reposes 
on a NDC (Notify, Decide, Configure) pattern which is 
implemented by our Context-Aware Composition Builder 
tool.  
Fig. 6 illustrates the mechanism behind the Context-Aware 
Composition Builder tool. So, The Request Notifier 
notifies, in a synchronous or asynchronous mode, the 
Decision Maker with the executed composite service id 
and the execution context in purpose to recuperate the 
adequate CSCompositionStrategy. Then, the Decision 
Maker inspects it in order to retrieve and interpret the 
current ContextView. 
 

  
Fig. 6 Context-Aware Composition Builder Tool. 

The configuration mechanism, operated by the 
Composition Builder, consists in checking the 
ConfigConditions to build dynamic service composition, 
following a set of ConfigRules, to produce the 
corresponding CVCompositeService. 

 

 
Fig. 7 Sequence diagram for the Tourism Tour Service. 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012 
 

 

138

 
As shown in figure 7, once the tourist asks the system for 
the tourism tour, the Tourism Tour Controller (i.e. the 
entry point of the system using MVC pattern) retrieves the 
context of the requested service using the Context 
Manager, then forwards the request composed from the 
serviceID, service params and the resulted context to 
Request Notifier (this represents the façade of our tool). 
The next step consists of notifying the Decision Maker 
with the appropriate serviceID, params and context. Based 
on this, the Decision Maker recovers the suited 
CVSCompositionStrategy that will be used by the 
Composition Builder in order to generate the execution 
chronology of the composite service and send the expected 
tourism tour to the user. 
 
5.2 Tools and Frameworks Support 

To develop our Context-Aware Composition Builder tool, 
we used the Eclipse EDI with the following frameworks 
that respond to a specific technical and architectural 
purpose in our platform: 

 Spring 2.5 [18] was used as IoC (Inversion of 
Control) container to link all the components of 
our framework, also, transaction is managed by 
this framework. 

 Hibernate 3.3 [12] is the framework used in the 
persistence layer of the application to map the 
business model classes. 

 CXF 2.2 [8] is the soap middleware that manage 
all the communication purposes in our application 
using the web services technology. 

 Configuration files written used XML technology 
is parsed using the JAXB2 OXM standard [13]. 

 We used Apache ODE [15] as the BPEL engine in 
order to generate the expected composition service. 
This tool allows the execution of one or 
more business web services expressed using the 
Web Services Business Process Execution 
Language (WS-BPEL). It principally 
communications with services by sending and 
receiving messages, manipulating data and 
handling exceptions as defined by any given 
process.  Also, the engine supports the HTTP 
WSDL for binding, allowing invocation of REST-
style web services.  

6. Related Work 

In this section, we will deal with a representative subset of 
existing studies that work on context-aware composition 

mechanisms to emphasize the similarities and differences 
with our approach.  
Context aware service composition process is entangled 
with several complex features such as context modeling, 
context retrieving, service adaptation and orchestration. 
The composition mechanism can happen in different time 
of the development process, some existing works consider 
the composition logic at the deployment time like the 
context aware tool CADeComp [4]. The metamodel used 
in this project is based on OMG D&C specifications [9], 
and follows MDA specifications. The CADeComp project 
describes context aware assemblies of components and 
produces target deployment plan. At the deployment time, 
a set of adaptation rules is executed based on the 
corresponding context adaptation. Likewise, PLASTIC 
project [1] presents similar concept to CADeComp 
providing several tools and methodologies to develop 
service-based context aware applications. In this work, 
authors introduced a new metamodel based on two levels 
of software description: service composition as an abstract 
layer and component compositions as a concrete layer 
where deployed services exist. Context information is 
mainly utilized at the service discovery step in order to 
perform the expected composite service. In ContextUML 
[7], authors introduced a dedicated UML metamodel 
which extends the existing UML syntax by introducing 
appropriate artifacts in order to enable the creation of 
context-aware service and composite models. In this work, 
context entity dives into two categories (state-based and 
event-based). Each context type is associated with a 
constraint that performs an action during the composition 
time. Context information can be either used to be mapped 
to specific values or modify the structure or the application 
behavior. The main challenge to be faced in this work is to 
reduce non-deterministic behaviors when non-
deterministic context-aware assets are introduced. 
Other context aware composition studies use the 
middleware programming paradigm; the expected 
composite service is twisted from unitary service and/or 
composite service. The MySIM [14] is one of this 
middlewares that integrate services in a transparent way 
using the OSGi/Felix platform. It uses the reflexive 
techniques to do the syntactic interface matching and 
ontology online reasoner for the semantic matching. The 
technique is interesting but solutions need to be found to 
make the spontaneous service integration scalable to large 
environments. Another platform similar to MySIM is the 
PERSE project [16]. Four modules present the main 
essence of this project, however the Evaluator module 
responsible of computing the suited composition 
combination is the most developed component of the 
project. The efficiency of PERSE has been tested and 
proved in the cost evaluation in terms of service matching, 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012 
 

 

139

service composition and processing time for service 
composition. Most of the middleware context-aware 
composition approach presents only two granularities of 
services unitary (or classic) service and component service 
to generate the expected behavior. The re-use of the 
context aware composite service at the composition level 
is not taken in charge. In concerns with the above 
mentioned approaches all the development stages (analysis, 
design and implementation) of the system take care of 
context in dynamic way. Additionally, context modeling, 
retrieving and handling phases are independents from the 
base application functionality. Focus is given only to the 
service functional design and application flow that 
indicates the order in which services are invoked 
regarding the context state. 

7. Conclusion and Perspectives 

In this paper, we have proposed a context-aware 
composition specification as a base for the context-aware 
composite service metamodel. Then, we presented our 
Context-Aware Composition Builder tool which reposes in 
a NDC pattern and exploit our context-aware composite 
service metamodel in order to provide, in a well design 
way, dynamic composition of services depending to the 
current user context. 
We focused in this paper on proposing context-aware 
composite service metamodel for designing context-aware 
composite services and a Context-Aware Composition 
Builder tool. In our future work, we project to include our 
metamodel in the Eclipse Modeling Framework (EMF). 
Then use the Graphical Modeling Framework (GMF) to 
build a graphical editor that will allow designers to model 
context-aware composite services. Finally, we will 
implement transformations using 
Query/View/Transformation (QVT) in order to transform 
from CACS technology independent models to the 
specific models, and use MOF script for generating 
executable code. 
 
References 
[1] M. Autili, V. Cortellessa, A. D. Marco and P. Inverardi, “A 

conceptual model for adaptable context-aware services” Proc. 
of Int. Workshop on Web Services Modeling and Testing 
(WS-MaTe2006), pp. 15-33, Palermo, Sicily, ITALY, June 
9th 2006. 

[2] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. 
Laerhoven and W. V. Velde, “Advanced Interaction in 
Context”, In HUC ’99 : Proceedings of the 1st international 
symposium on Handheld and Ubiquitous Computing, pp. 89-
101, London, UK, 1999. Springer-Verlag. 

[3] H. Hafiddi, H. Baidouri, M. Nassar, B. El Asri and A. 
Kriouile, “A Model Driven Approach for Context-Aware 
Services Development”, in the 2nd International Conference 

on Multimedia Computing and Systems (ICMCS'11), 
Ouarzazate, Morocco, April 2011. 

[4] D. Ayed, C. Taconet, G. Bernard and Y.Berbers, “An 
adaptation methodology for the deployment of mobile 
component-based applications”, In IEEE Int. Conf. on 
Pervasive Services (ICPS’06), pp. 193-202, Lyon, France, 
June 2006.  

[5] H. Hafiddi, H. Baidouri, M. Nassar and A. Kriouile, “An 
Aspect Based Pattern for  Context-Awareness of  Services”, 
Int. J. of Comp. Science and Network Security, vol. 11, no. 
12,  2011.  

[6] OASIS. Business Process Execution Language (BPEL) 2.0. 
2007. Available at: 
http://docs.oasisopen.org/wsbpel/2.0/wsbpel-v2.0.html.  

[7] Q. Z. Sheng and B. Benatallah, “ContextUML: A UML-
based modeling language for model-driven development of 
context-aware web services,” Proc. 4th Int. Conf. on Mobile 
Business, Sydney, Australia, July 2005, pp. 206-212.   

[8] http://cxf.apache.org/. 
[9] Object Management Group, “Deployment and Configuration 

of Component-based Distributed Applications”, June 2003. 
Draft Adopted Specification (ptc/03-07-02).  

[10] B. Schilit and M. Theimer, “Disseminating active map 
information to mobile hosts”, IEEE Network, vol. 8, no. 5, pp. 
22-32, Sep./Oct. 1994.  

[11] P. Brezillon, “Focusing on context in human-centered 
computing,” IEEE Intelligent Syst., vol. 18, no. 3, pp. 62-66, 
May 2003.  

[12] http://hibernate.org/.  
[13] http://jaxb.java.net/.  
[14] N. Ibrahim, F. Le Mouël and S. Frénot, “MySIM: a 

Spontaneous Service Integration Middleware for Pervasive 
Environments”, In ACM International Conference on 
Pervasive Services (ICPS'2009), 2009, London, UK.  

[15] http://ode.apache.org/. 
[16] S. Ben Mokhtar, “Semantic Middleware for Service-Oriented 

Pervasive Computing”, Ph.D. thesis, University of Paris 6, 
Paris, France, 2007.  

[17] M. P. Papazoglou, “Service oriented computing: concepts, 
characteristics and directions,” in Information Syst. J., IEEE 
Comput. Soc., vol. 50, no. 2, pp. 3-12, Dec. 2003. 

[18] http://springsource.org/.  
[19] D. Salber, A. K. Dey and G. D. Abowd, “The Context 

Toolkit: aiding the development of context-enabled 
applications,” Proc. SIGCHI Conf. on Human Factors in 
Computing Syst., Pittsburgh, PA, USA, May 1999, pp. 434-
441.  

[20] A. Schmidt, M. Beigl and H. W. Gellersen, “There is more to 
context than location,” in Computers and Graphics J., 
Elsevier, vol. 23, no. 6, pp. 893-902, Dec. 1999.  

[21] P. J. Brown, “The stick-e document: a framework for 
creating context-aware applications”, Proc. of the Electronic 
Publishing, Palo Alto, pp. 259-272, 1996.  

[22] J. M. Favre, “Towards a Basic Theory to Model Driven 
Engineering”, UML 2004 – Workshop in Software Model 
Engineering (WISME 2004), 2004. 

[23] A. K. Dey and G. D. Abowd, “Towards a better 
understanding of context and context-awareness,” GVU 
Center, Georgia Inst. of Technology, Tech. Rep. GIT-GVU-
99-22, June 1999.  



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.3, March 2012 
 

 

140

Hicham Baidouri received the Engineer of state degree in 
Software Engineering from Mohammadia School of Engineers 
(EMI) in 2007. He is currently a PhD student in the IMS (Models 
and Systems Engineering) Team of SIME Laboratory at ENSIAS. 
His research interests are Context-Aware Service-Oriented 
Computing, Aspect Oriented Engineering, Mobile Information 
Systems Engineering, and Model-Driven Engineering.  
 
Hatim Hafiddi received the Engineer of state degree in Software 
Engineering from National High School of Computer Science 
and Systems Analysis (ENSIAS) in 2007. He is currently a PhD 
student in the IMS (Models and Systems Engineering) Team of 
SIME Laboratory at ENSIAS. His research interests are Context-
Aware Service-Oriented Computing, Aspect Oriented 
Engineering, Mobile Information Systems Engineering, and 
Model-Driven Engineering.  
 
Mahmoud Nassar is Professor and Head of the Software 
Engineering Department at National Higher School for Computer 
Science and Systems Analysis (ENSIAS), Rabat, Morocco. He is 
also Head of IMS (Models and Systems Engineering) Team of 
SIME Laboratory. He received his PhD in Computer Science 
from the INPT Institute of Toulouse, France. His research 
interests are Context-Aware Service-Oriented Computing, 
Component based Engineering, and Model-Driven Engineering. 
He leads numerous R&D projects related to the application of 
these domains in Embedded Systems, e-Health, and e-Tourism.  
 
Abdelaziz Kriouile is a full Professor in the Software 
engineering Department and a member of SI2M Laboratory at 
National Higher School for Computer Science and Systems 
Analysis (ENSIAS), Rabat. He is also a Head of the SI3M 
Formation and Research Unit.  His research interests include 
integration of viewpoints in Object-Oriented Analysis/Design, 
Service-Oriented Computing, and speech recognition by Markov 
models. He has directed several Ph.D thesis in the context of 
Franco-Moroccan collaborations. 


