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Summary 
This research is a prediction stage of breast cancer group model, 
the probability that a patient is detected at any stage of breast 
cancer or non-breast cancer based on the tumor cells with 
abnormal growth of breast cancer. The independent variable is 
the tumor cells to grow abnormally: Clump Thickness (X1), 
Uniformity of Cell Size (X2), Uniformity of Cell Shape (X3), 
Marginal Adhesion (X4), Single Epithelial Cell Size (X5), Bare 
Nuclei (X6), Bland Chromatin (X7), Normal Nucleoli (X8), and 
Mitoses (X9). The dependent variable is the probability that the 
patient is detected at any stage of breast cancer or non-breast 
cancer based on the tumor cells with abnormal growth of breast 
cancer by using Ordinal Logistic Regression Model and 
Discriminant Model. Conclude that Ordinal Logistic Regression 
Model can use few variables in a prediction stage of breast 
cancer and Ordinal Logistic Regression Model has classification 
55.50% higher than Discriminant Model has classification 
54.10%. Ordinal Logistic Regression Model has classification for 
non-breast cancer patient is 73.60%, breast cancer stage 1 patient 
is 5%, breast cancer stage 2 patient is 43.6%, breast cancer stage 
3 patient is 61.4%.  The study results reveal that the Discriminant 
Analysis can use predicted variables 9 variables. Discriminant 
Model has classification for non-breast cancer patient is 56%, 
breast cancer stage 1 patient is 49.10%, breast cancer stage 2 
patient is 35.6%, breast cancer stage 3 patient is 72.6% and 
breast cancer stage 4 patient is 60%. 
Key words: 
Multinomial Logistic Regression , logistic regression, breast 
cancer,  prediction, Discriminant Analysis 

1. Introduction 

Cancer is one of the ten causes of the death of the world 
population. According to the World Health Organization, 
there were 58 million dead people worldwide in 2008, and 
7.6 million of them died of cancer, which is 13% of the 
total dead people.  At present, cancer has caused a great 
loss of lives of people, specifically liver cancer and breast 
cancer.   Cancer is abnormal tumor cells growth which 
interfere normal cells, and divide themselves much more 
quickly than normal cells many times, going beyond the 
control of a human body.  Tumor cells can spread to other 
parts of a human body, especially to lymph and blood 
without infecting former tumor cells. The property of 
tumor cells is they can grow very quickly.  The central 
part  

 
 
of a tumor always lacks of nutrients, resulting in the dead 
cells of cancer.  Consequently, an infection occurs easily 
because the dead cells and the lymph are good sources of 
food for diseases, and this can lead to blood infection, 
which finally causes cancer patients to die.  Cancer causes 
the lack of oxygen in a human body because it consumes a 
lot of oxygen to help divide its cell, causing white blood 
corpuscle to work hard so as to eradicate cancer cell, 
which resulting in the low capability of the human body 
immune system.  Thus, the human body organ in which 
cancer cells exist will lose its working property, and the 
spreading of cancer cells can also devastate working 
property of the nearby organs.  The cancer cell will create 
angiogenesis substance, which causes more blood veins to 
feed cancerous tumors at a sufficient extent for the growth 
of cancer cell division.  Breast cancer is a disease found 
mostly in females and it is a genetic transmission disease, 
causing by abnormal hormone, obesity, food with a high 
fat, and a spreading of cancer from other part of the organs 
to the breast.   
The 4 ways of treatments of a patient with a breast cancer 
according to National Cancer Institute, Department of 
Medical Service, Ministry of Public Health (2008) are 
operation, radiation therapy, systemic therapy for the first 
stage cancer, and systemic therapy for the spreading stage 
cancer.  For a medical treatment of a breast cancer, there 
are many ways of treatment used together to prevent a 
breast cancer from occurring again, and the consequences 
of this combination of treatments usually are unexpected 
side effects, such as nausea, hair falls, diarrhea, and 
anemia, causing a cancer patient an anxiety and a lot of 
mental and physical sufferings.  A breast cancer needs a 
vast expense for a treatment, and taking leaves from a job 
to take care a breast cancer patient causes a cancer 
patient’s relatives to lose a lot of income too.  
Notwithstanding the complete recovering of a cancer 
patient in stage 1 from a medical treatment, a cancer 
patient in a final stage has found unable to completely 
recover from the condition because cancer is a chronic 
disease.   
Accordingly, the present study paid attention on the study 
of a prediction of tumor cell with abnormal growth of a 
breast cancer to detect stages of a breast cancer using 2 
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statistics methods : Multinomial Logistic Regression 
Analysis and Discriminant Analysis.  However, the 
potential of the Discriminant Analysis rests on ways the 
data are analyzed, and if an analysis is operated based on 
the assumption of the model or not.  The Discriminant 
Analysis has a lot of assumptions about the model, that is 
to say, the interrelationship of groups and predictive 
variables must be a linear, predictive variables should be 
distributed together in a dichotomous dimension with not 
too much interrelationship so as to prevent a dichotomous 
linear. The Multinomial logistic Regression Analysis has 
less limitation than Discriminant Analysis.  

2.  Objectives 

The present study aims at studying predictive group 
discriminant using Multinominal Logistic Regression 
Analysis and Discriminant Analysis to predict probability 
of a cancer patient who already had a medical check to 
determine probability of having a breast cancer, and if 
detected a breast cancer, the stages of a breast cancer will 
be predicted based on tumor cells with abnormal growth 
used as predictive variables to see how predictive results 
are different and correct employing the two statistics 
analyses mentioned above.   

3.  Methodology 

The present study is an experimental research conducted  
with the purpose to study a prediction of tumor cells with 
abnormal growth and the probability of cancer stages of a 
breast cancer patient who has medically checked and 
showed no cancer, or who showed identified cancer stages 
1, 2, 3, or 4 using 680 sample database of a medical check 
of a breast cancer of LopBuri Hospital.  The variable (y) 
was the probability of cancer stages of a breast cancer 
patient who has medically checked and showed no cancer, 
or who showed identified cancer stages 1, 2, 3, or 4 and 
independent variables were Clump Thickness (X1), 
Uniformity of Cell Size (X2), Uniformity of Cell Shape 
(X3), Marginal Adhesion (X4), Single Epithelial Cell Size 
(X5), Bare Nuclei (X6), Bland Chromatin (X7), Normal 
Nucleoli (X8) and  Mitoses (X9).   The techniques 
Multinomial Logistic regression Model and Discriminant 
Analysis were implemented in a prediction of a breast 
cancer stages in the main study.   
 
3.1.Analysis of Multinomial Logistic Regression  
MLR is used as a classification to predict  the outcome of 
biopsy in breast cancer. The MLR is a generalization of 
the logistic regression model commonly used with the data 
comprising dependent variables known as “polytomous” 

and independent variables with numerical or categorical 
predictors.  
The statistical test in MLR includes:  

     3.1.1 Chi – square is implemented to test these 
hypotheses:  

     H0: The sample has been drawn from 
population following a specified distribution. 

     H1:  The sample has not been drawn from 
population following a specified distribution. 
 
Chi-square test appropriates measures of agreement (or 
disagreement) between observed and expected frequencies. 
Chi-square is computed by dividing the squared difference 
between observed and expected frequencies in each set of 
frequencies by the expected frequency with the summation 
of the overall set. The interactions tests were performed to 
find the significant values of each variable. The 
significance of the interaction is measured and reported. 
The test is the cross tabulation test and the values were 
taken from Pearson Chi-Square.  
 

The Pearson Chi-Square is expressed as 
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 where  Oi is observed values  
                     Ei is expected values 
                     X2 is chi-square value 
If the X2 value is more than the critical value, we reject the 
null hypothesis. 
 
If the X2 value is less than the critical value, we accept the 
null hypothesis. 

 
3.1.2  Maximum likelihood estimate 
The principle of maximum likelihood states that the 

use of estimation of  the value which maximizes the 
expression in this equation:   

 
            pdfLLG p  ];ln[ln2 0

2  (2) 

where Lp is likelihood of constant value and group of 
independence P- value. 

 L0 is likelihood of only constant value. 
 
 3.1.3  Relationship between independence value 

and dependence value (Wald test) 
 

H0 :  0i  

H1 :  0i  

The Wald test statistic is function of the difference in 
maximum likelihood estimate (MLE) and the hypothesized 
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value, normalized by an estimate of the standard deviation 
of the MLE. The following  in equation (3) .  
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where 


)( iSE  is the standard of the maximum likelihood 

function, estimate is standard of error and df  is degree of 
freedom. 
3.1.4 Deviance test (D) is goodness of fit test in MLR in 
equation 4. 
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where  Oij is observed values , Eij  is expected values 
 
3.1.5 The simplest optimizing method of discrimination 
was to maximize to posterior of correct allocation. To 
obtain the posterior probability the logit coefficients, the 
following equation is applied: 
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Where 0  is the intercept and the i  i’s denotes the 

unknown logistic regression coefficients of ix  parameters 

i  denotes the probability that characteristic will occur. 

The quantity on the left side of Equation (5) is called a 
logit. The model can be generalized in the case where the 
dependent variables, unlike a binary logistic regression 
model, have more than two categories. Having ‘4’ (stage 
IV) as the reference category, we can suppose c as the 
dependent variable with four categories, and the 
probability of being in category c (c=‘0’ [Benign stage], 
c=‘1’ [Stage I], c=‘2’ [Stage II] and c=‘3’ [Stage III]) is 
denoted by P(c) with the chosen reference category, P(4). 
For such a simple model, MLR with logit link can be 
represented as 
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In this model, the same independent variable appears in 

each of the c categories, and the separate intercept, )(0 c , 

and slopes (or logit coefficients), )(ci  are usually 

estimated for selected parameters in each contrast. A way 

to interpret the effect of independent variables, ix  on the 

probability of being in category c, is to use predicted 
probabilities, P(c), for different values of ix  : 
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Then, the probability of being in the reference category, 
‘4’ (stage IV), can be calculated by subtraction:   
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The category with the highest probability is the final 
prediction. For detailed descriptions on models with 
categorical data we refer to (Hayatshahi, S.H.S., 2005).  
 
 3.2 Classification of MLR 
We wish to classify a patient into one specific class (for 
example, survival). For many purposes, it will be more 
helpful to know the predicted probability of survival. A 
simple but much neglected method is logistic regression 
which is specified by:  
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The explanatory variables linearly control the log-odds   

in favour of class 2 (survival). The parameters   are 

chosen by maximum likelihood that is by maximizing the 
log-likelihood 

 

)|(log ii
i
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By comparing the patients with features x and the future 
patients, we will be able to predict P (class 2 | x), 
probability of survival. 
Maximum likelihood is known as ‘entropy’ fitting and is 
definitely not common (and supported by amazingly few 
packages). It is more common to use the regression 
methods we discuss in section 2, which may be adequate 
for predicting the class (survival or death) but will be less 
good for predicting probabilities. 
The extension to k > 2 classes is even less well known, 
although it has a long history. The idea is to take the log-
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odds of each class relative to one class, so the model 
becomes 

 

je
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With xT
jj    this is known as MLR. The parameters 

)( j  are fitted by maximizing the log-likelihood L given 

in equal (2). There have been surprisingly few non-linear 
extensions in the statistics literature. 
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This is an appropriate model for diagnosis where a patient 
might have none, one or more out of k diseases, but not for 
general classification problems. 

3.3 Discriminant Model  

Discriminant Function Analysis (DA) undertakes the same 
task as multiple linear regression by predicting an outcome. 
However, multiple linear regression is limited to cases 
where the dependent variable on the Y axis is an interval 
variable so that the combination of predictors will, through 
the regression equation, produce estimated mean 
population numerical Y values for given values of 
weighted combinations of X values. But many interesting 
variables are categorical. 

3.3.1 Fundamental equations for Discriminant 
Analysis : DA 

First, create cross-products matrices for between-group 
differences and within groups differences, SStotal = SSbg + 
SSwg. The determinants are calculated for these matrices 
and used to calculate a test statistic – either Wilk’s 
Lambda or Pillai’s Trace. 
 
Wilk’s Lambda follows the equation : 
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 Wilk’s Lambda ( ) is the ratio of the 
determinants of the error cross-products matrix to the 

determinant of the sum of the error and effect cross-
products matrices. 
The following procedure for calculating approximate F is 
based on Wilk’s Lambda. 
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 where 1df and 2df are defined below as the 

degrees of freedom for test the F ratio, and y is  
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where p = number of predictor variables. 
            is defined in Equation 17. 
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where errordf = number of groups times(n-1):  

                          k(n-1). 
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where effectdf = number of group minus one (k-1). 

 
The discriminant function score for the i  th function is : 
 

 pipiii ZdZdZdD ...2211    (23) 

 
Where Z= the score on each predictor, and 

id =discriminant function coefficient. The discriminant 

function score for a case can be produced with raw scores 
and unstandardized discriminant function scores. The 
criminant function coefficients are, by definition, chosen 
to maximize differences between groups. The mean over 
all the discriminant function coefficients is zero, with SD 
equal to one. The mean discriminant function coefficient 
can be calculated for each group these group means are 
called Centroids, which are created in the reduced space 
created by the discriminant function reduced from the 
initial predictor variables. Differences in the location of 
these centroids show the dimension along which the group 
differ. Once the discriminant function are determined 
groups are differentiated, the utility of these function can 
be examined via their ability to correctly classify each data 
point to their a priori groups. Classification functions are 
derived from the linear discriminant functions to achieve 
this purpose. Different classification functions are used 
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and equations exist that are best suited for equal or 
unequal samples in each group. For cases with an equal 
sample size for each group classification function 

coefficient ( jC ) is equal to the sum of :  

 

    pjpjjjj xcxcxccC  ...22110  (24) 

 
for the j th group, kj ,...,1 , x = raw scores of each 

preditor, 0jc = a constant. If W= within group  variance – 

covariance matrix, and M = column matrix of means for 

group j , then the constant jjj MCc )2/1(0  . 

For unequal sample size in each group :  
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where jn = size in group j , N = total sample size. 

4. Results 

The data for this study was collected from May to 
September 2008.  Data was collected at the Lopburi 
hospital in Thailand of 680 women. 

4.1 Multinomial logistic regression 

For experiments, the nine characteristics of breast cancer 
(Clump Thickness, Uniformity of Cell Size, Uniformity of 
Cell Shape, Marginal Adhesion, Single Epitheliai Cell 
Size, Bare Nuclei, Bland Chromatin,  Normal Nucleoli and 
Mitoses) for input values (x1-x9) which each characteristic 
contains number from 1-10 and five stages of breast 
cancer. 
 
The statistical test in MLR:   
  
Step1 :  An analysis of a breast cancer patient’s stages of 
having a cancer from a medical check and treatment 
showed that there were not the same ratios of 680 breast 
cancer patients in each stage of having a breast cancer.  
For the entire 680 breast cancer patients who had a 
medical check, it was found that 175 breast cancer patients 
were not detected a cancer, 29 breast cancer patients were 
detected a cancer in stage 1, 112 breast cancer patients 
were detected a cancer in stage 2, 36 breast cancer patients 
were detected a cancer in stage 3, and 328 breast cancer 
patients were detected a cancer in stage 4, respectively.   
When testing the ratios of check and treatment of each 
stage of a breast cancer, it was found that there was the 
same ratio of breast cancer patients and breast cancer 
patients in all stages.  (P-value = 0.949 > 0.05 accepted the 

hypothesis that H0:  the data in each level of dependent 
variables in each stages of a breast cancer had the same 
ratios, so the Logit could be used as a link function for the 
data analysis . 

There was a test of the relationship of the two sets 
of independent variables indicated as tumor cells with 
abnormal growth and dependent variables indicated as 
stages of a breast cancer using Logit as a Link Function 
for the data analysis as shown in Table 1.   

 
Table 1. : Test of a Relationship of Tumor Cells with 

Abnormal Growth and Stages of  
A Breast Cancer 

 

Model 

Model Fitting 
Criteria Likelihood Ratio Tests 

-2 Log 
Likelihood 

Chi-
Square df p-value 

Intercept 
Only 

1360.488 
   

Final 571.876 788.612 36 0.000 

 
  According to Table 1, it was found that if the 
model comprised on constant values, the -2 Log 
Likelihood would equal 1360.488, and if the model 
comprised constant values and independent variables 
indicated as tumor cells with abnormal growth, -2 Log 
Likelihood  would equal 571.876.  That was to say, the 
model with independent variables indicated as tumor cells 
with abnormal growth was more suitable than the model 
with mere constant values.  To exemplify, at least one 
independent variable indicated as a tumor cell with 
abnormal growth had a correlation with a dependent 
variable indicated as stages of a breast cancer, or a 
numbers of events of independent variables indicated as 
tumor cells with abnormal growth had a correlation with 
situations of not finding a breast cancer, or of finding a 
breast cancer in any stages. The equation here was (Chi-
Square = 788.612 with P-value = 0.000 < 0.05 rejected H0 
independent variables indicated as tumor cell with 
abnormal growth correlated with dependent variables 
indicated as stages of a breast cancer). 
 
Step2:  There was a test of regression coefficient of the 
model using Likelihood Ratio Test. The results presented 
in Table 2.   

 
Table 2 : Result of Likelihood Ratio Test 

Effect 
Model 
Fitting 

Criteria 

Likelihood Ratio 
Tests 

 
-2log 

Likelihood
X2 df 

p-
value
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Intercept 819.992 248.115 4 .000 
Clump 

Thickness(x1) 
608.852 36.976 4 .000 

Uniformity of 
cell size(x2) 

573.752 1.876 4 .759 

Uniformity of 
cell shape (x3) 

578.574 6.698 4 .153 

Marginal 
Adhesion(x4) 

579.450 7.573 4 .109 

Single 
Epithelial 

cell size (x5) 
573.045 1.168 4 .883 

Bare nuclei 
(x6) 

615.165 43.289 4 .000 

Bland 
Chromatin x7) 

574.179 2.303 4 .680 

Normal 
nucleoli (x8) 

575.491 3.614 4 .461 

Mitoses  (x9) 580.243 8.367 4 .079 
 
*: P-value < 0.05 has a statistical significance at 0.05 
 
According to Table 2, it was found that the Multinomial 
Logistic Regression Model of tumor cells with abnormal 
growth had effects on stages of a breast cancer at a P-
value of < 0.05, which showed Clump Thickness (X1) and 
Bare Nuclei (X6). Therefore, there was an emergence of a 
model of accumulated probability prediction for 
classifying groups of patients based on the health 
conditions of tumor cells with abnormal growth yielding 
effects on stages of a breast cancer.   The equation derived 
was      
 

ln 
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
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


 i

i

P

P

1
  = 819.992+608.852X1+615.165X6  

                                                                        (26) 
 
The likelihood ratio test of tumor cells with abnormal 
growth with stages of a breast cancer in each stage found 
that the analysis of the likelihood ratio test of tumor cells 
with abnormal growth effected each stage of a breast 
cancer at a P-value <0.05, enabling to create the 4 
equations of the Multinomial Logistic Regression Model 
as follows:   
 
equation with no a breast cancer found  
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
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1 P
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 = 8.031-0.616x1-0.46x3 -0.26x4-0.405x6  (27) 
 
equation of a breast cancer in stage 1  
 

ln
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= 21.434-0.589x1-0.464x6-15.812x9   (28) 
 
equation of a breast cancer in stage 2     
  

ln




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
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2

1 P
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=  7.574-0.464x1-0.337x4-0.432x6      (29) 
 
equation with a breast cancer in stage 3  
 
ln 





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


 3

3

1 P

P  =  6.607-0.55x1-0.278x6       (30) 

 
For a breast cancer in stage 4, which is a final stage, will 
depend on the health conditions for the survival. As such, 
in checking a breast cancer patient and found no cancer, 
there should have been a consideration on tumor cells with 
abnormal growth because they might correlate with Clump 
Thickness (X1), Uniformity of Cell Shape (X3), Marginal 
Adhesion (X4), and Bare Nuclei (X6). For a breast cancer 
patient with a medical check and found having a breast 
cancer in stage 1, there should have been a consideration 
on tumor cells with abnormal growth because they might 
correlate with Clump Thickness (X1),, Bare Nuclei (X6), 
and Mitoses (X9) 
For a breast cancer patient with a medical check and found 
having a breast cancer in stage 2, there should have been a 
consideration on tumor cells with abnormal growth 
because they might correlate with Clump Thickness (X1),, 
Marginal Adhesion (X4), and Bare Nuclei (X6). 
For a breast cancer patient with a medical check and found 
having a breast cancer in stage 3, there should have been a 
consideration on tumor cells with abnormal growth 
because they might correlate with Bland Chromatin(X7), 
and Bare Nuclei (X6), and a breast cancer in stage 4, 
which is a final stage, will depend on the health conditions 
for the survival.   
The Multinomial Logistic Regression Model was capable 
of group classifying 74.1 percent correctly in overall, with 
a 89.7 percent correct prediction of breast cancer patients 
with no cancer, 6.9 percent correct prediction of breast 
cancer patients in stage 1, 12.5 percent correct prediction 
of breast cancer patients in stage 2, 8.3 percent correct 
prediction of breast cancer patients in stage 3, and 100 
percent correct prediction of breast cancer patients in a 
final stage.   
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4.2 Discriminant Analysis 

The discriminant analysis to study tumor cells with  
abnormal growth of breast cancer patients with a medical 
check and found no cancer, or found having a cancer 
whether in stage 1, stage 2, stage 3, and stage, with the test 
to determine if each factor helping classify groups of 
patients differentiates among the groups using Wilks’ 
Lambda revealed that the diverse factors yielded a 
statistical significance at a level of 0.05.  These factors are 
9 tumor cells presented in Table 3.   
 

Table 3 : Statistical Values of Average Equality of 
Each Factor 

 
Effect  Wilks' 

Lambda
F-test p-value

X1 (Clump Thickness) 0.449 206.917 (0.000)*

X2  (Uniformity of cell 
size) 

    0.439      215.705  (0.000)*

X3 (Uniformity of cell 
shape) 

0.402     250.589  (0.000)*

X4(Marginal Adhesion) 0.602 111.607 (0.000)*

X5(Single Epithelial 
cell size) 

0.625 101.330 (0.000)*

X6 (Bare nuclei) 0.393 261.113 (0.000)*

X7 (Bland chromatin)  0.586 119.106 (0.000)*

X8 (Normal nucleoli) 0.581 121.477 (0.000)*

X9 (Mitoses) 0.823     36.394  (0.000)*

*: P-value < 0.05 

 
From Table 3, after classifying the factors to identify 
groups, it was found that the factors for group 
classification were Clump Thickness (X1), Uniformity of 
Cell Size (X2), Uniformity of cell shape (X3), Marginal 
Adhesion (X4), Single Epithelial Cell Size (X5), Bare 
Nuclei (X6), Bland Chromatin(X7), Normal Nucleoli (X8), 
Mitoses (X9), which created a model for an analysis of a 
group classification of breast cancer patients found not 
having a breast cancer, and found having breast cancer in 
each stage using Fisher’s linear discriminant functions 
presenting models of groups of breast cancer patients 
accordingly.   

 
A model of a group of breast cancer patients with  
no cancer  
 
D0=-3.985 + 0.602X1 -0.327X2 +0.054X3+0.48X4   
      +0.478X5+0.128X6+0.777X7-0.019X8   
      +0.118X9     (31) 
 
A model of a group of breast cancer patients with a cancer 
in stage 1 
 

D1=-4.078 + 0.63X1 - 0.305X2 +0.021X3+0.079X4  
      +0.50X5+0.10X6+0.80X7 - 0.056X8 +0.091X9 
      (32)  
which Eigenvalue = 3.816,  
           Wilks’Lamda = 0.207,  
           Chi-square = 1058.439,   
           P-value = 0.000 < 0.05 
 
A model of a group of breast cancer patients with a cancer 
in stage 2 
D2=-3.942+0.583X1 - 0.319X2 +0.081X3+0.037X4  
      +0.477X5+0.123X6+0.777X7 - 0.30X8 +  
      0.123X9     (33) 
 
which Eigenvalue = 0.002, Wilks’Lamda = 0.997, 
           Chi-square = 2.127, P-value = 0.000 < 0.05 
 
A model of a group of breast cancer patients with a cancer 
in stage 3 
 
D3=-4.081 + 0.643X1 - 0.35X2 +0.009X3+0.056X4  
      +0.48X5+0.178X6+0.733X7-0.38X8+ 0.120X9  
      (34) 
which Eigenvalue = 0.001, Wilks’Lamda = 0.999,  
           Chi-square = 0.664,P-value = 0.004 < 0.05 
 
A model of a group of breast cancer patients with a cancer 
in stage 4 
 
D4=-17.835+1.482X1 - 1.77X2 +0.453X3+0.265X4  
      +0.68X5+0.985X6+0.955X7 + 0.254X8  

         +0.20X9                                                    (35)
   
which Eigenvalue = 0.000, Wilks’Lamda = 1.000, Chi-
square = 0.012,  P-value = 1.000 > 0.05, showing that a D4 
model did not correlated with the model because a breast 
cancer in stage 4  is a final stage and depends on the health 
conditions for the survival.   

4.3 Results of the Efficiency Comparison 

The efficiency of the Discriminant analysis and the 
Multinomial Logistic Regression Analysis considered 
based on the correct rations of classification was presented 
in Table 4. 
 
Table 4 The number and percentile of breast cancer 
patients in correct groups of classification based on 
Discriminant analysis and the Multinomial Logistic 
Regression Analysis employed with 683 samples of breast 
cancer patients 

 
Table 4 : Comparison between the Discriminant analysis 

and the Multinomial Logistic Regression Analysis 
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Model Discriminant Multinomial 

Logistic 
Regression 

Predictive 
variables  
-Benign    
 Stage 
-Stage 1 
 
-Stage 2 
 
 -Stage 3  
 
 -Stage 4 

 
 
X1, X2, X3, X4, X5, X6, 
X7, X8, X9 
X1, X2, X3, X4, X5, X6, 
X7, X8, X9 
X1, X2, X3, X4, X5, X6, 
X7, X8, X9 
X1, X2, X3, X4, X5, X6, 
X7, X8, X9 
X1, X2, X3, X4, X5, X6, 
X7, X8, X9 

 
 
X1, X3, X4, X6 
 
X1, X6, X9 
 
X1, X4,  X6  
 
X1, X6 
 
Stage4 with referenced 
variables  

Capability of 
group 
classification  (%) 
-Benign Stage 
-Stage 1 
-Stage 2 
-Stage 3  
-Stage 4 

 
 
 

6.0% 
37.9% 
45.5% 
25.0% 
92.7% 

 
 
 

89.7% 
6.9% 

12.5% 
8.3% 
100% 

Total 55.3% 74.1%
 
As presented in Table 4, it was found that the discriminant 
analysis used all variables to predict all stages of having a 
breast cancer, or not having a breast cancer with a 
capability of 55.30 percent correctly predicting in overall, 
6 percent correctly predicting breast cancer patients 
having no a cancer, 37.90 percent correctly predicting 
breast cancer patients in stage 1, 45.5 percent correctly 
predicting breast cancer patients in stage 2, 25 percent 
correctly predicting breast cancer patients in stage 3, and 
92.7 percent correctly predicting breast cancer patients in 
stage 4.  In contrast, the Multinomial Logistic Regression 
used some variables to predict all stages of having a breast 
cancer, which its capability of correctly predicting was 
higher than the Discriminant Model.  The Multinomial 
Logistic Regression was capable of 74.1 percent correctly 
classifying groups in overall, 89.7 percent correctly 
predicting breast cancer patients having no cancer, 6.9 
percent correctly predicting breast cancer patients in stage 
1, 12.5 percent correctly predicting breast cancer patients 
in stage 2, 8.3 percent correctly predicting breast cancer in 
stage 3, and 100 percent correctly predicting breast cancer 
patients in stage 4. 

5.  Conclusions and Discussion  

The prediction of the probability for the classification of 
breast cancer patients with having no cancer or having 
cancer in any stages was considered an essential tool to 
create health conditions of tumor cells with abnormal 
growth.  In the present study, there were 9 types of tumor 
cells with abnormal growth indicated by 2 statistical 

methods of prediction: Multinomial Logistic Regression 
Analysis and Discriminant Analysis.  The results of an 
analysis revealed that the Multinomial Logistic Regression 
Analysis was capable of 55.50 percent correctly predicting 
in overall, which was more correct than the analysis done 
by Discriminant Analysis, giving a 54.10 percent correct 
prediction in overall. The Multinomial Logistic Regression 
Analysis was capable of correctly classifying 73.60 
percent for breast cancer patients with no cancer, 5 percent 
for breast cancer patients with stage 1, 43.6 percent for 
breast cancer patients with stage 2, 43.6 percent for breast 
cancer patients with stage 3, 61.4 percent for breast cancer 
patients with stage 4, and 76.40 percent for assigning 
predictive variables to the model indicating that breast 
cancer patients with no cancer correlated with Single 
Epithelial Cell Size (X5), Bare Nuclei (X6), (Bland 
Chromatin(X7), Normal Nucleoli (X8), and Normal 
Nucleoli (X8),  the breast cancer patients with stage 1 
correlated with Clump Thickness (X1), and Bare Nuclei 
(X6), the breast cancer patients with stage 2 correlated 
with Clump Thickness (X1), Uniformity of Cell Shape 
(X4), Bare Nuclei (X6), and Normal Nucleoli (X8), the 
breast cancer patients with stage 3 correlated with (Bland 
Chromatin(X7), Normal Nucleoli (X8), and Mitoses (X9), 
and the breast cancer patients with final stage, which was 
a referenced stage using health conditions for a survival.    
The Discriminant Analysis used all the 9 predictive 
variables.  The Discriminant Analysis used all the 9 
variables to predict stages of breast cancer patients, who 
had a breast cancer, or who did not have a breast cancer.  
Its capability of correctly classifying groups of breast 
cancer patients in overall was 55.3 percent, breast cancer 
patients in stage 1 was 6 percent, breast cancer patients in 
stage 2 was 37.90 percent, breast cancer patients in stage 3 
was 45.5 percent, breast cancer patients in stage 3 was 25 
percent, and breast cancer patients in a final stage was 
92.7 percent.  The models of factors for classifying groups 
was Fisher’s linear discriminant functions indicating the 
following groups of breast cancer patients.    
A model of a group of breast cancer patients having no 
cancer was:  
 
D0= -3.985 + 0.602X1 -0.327X2 +0.054X3+0.48X4  
       +0.478X5+0.128X6+0.777X7-0.019X8  

           +0.118X9 
 
A model of a group of breast cancer patients having a 
breast cancer in stage 1 was:  
 
D1=-4.078 + 0.63X1 - 0.305X2 +0.021X3+0.079X4  
      +0.50X5+0.10X6+0.80X7 - 0.056X8 +0.091X9 
 
A model of a group of breast cancer patients having a 
breast cancer in stage 2 was:  
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D2=-3.942+0.583X1 - 0.319X2 +0.081X3+0.037X4  
      +0.477X5+0.123X6+0.777X7 - 0.30X8 + 0.123X9 
 
A model of a group of breast cancer patients having a 
breast cancer in stage 3 was:  
 
D3=-4.081 + 0.643X1 - 0.35X2 +0.009X3+0.056X4  
     +0.48X5+0.178X6+0.733X7 - 0.38X8 + 0.120X9 
 
A model of a group of breast cancer patients having a 
breast cancer in stage 4 was:  
 
D4=-17.835+1.482X1 - 1.77X2 +0.453X3+0.265X4  
       +0.68X5+0.985X6+0.955X7+0.254X8   
       +0.20X9,  
 
indicating that D4 model did not correlated with the model 
because a breast cancer in stage 4  is a final stage and 
depends on the health conditions for the survival.  
Therefore, the models for statistical classification would 
be effective in case the data used for an analysis had 
distributions in accordance with the assumptions of 
statistical paramatrix of groups classification used for 
predictions in order to enhance health conditions of the 
breast cancer patients.  These 2 statistical predictions were 
Multinomial Logistic Regression Analysis and 
Discriminant Analysis, which later should be operated 
with a horizontal paramatrix for health conditions of 
patients, for example neutral networks, decision trees, and 
trait recognition approach.    
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