
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

53

Manuscript received April 5, 2012
Manuscript revised April 20, 2012

Proactive Repairs and Incentives for Content Availability in P2P
Overlay Networks

Octavio Herrera-Ruiz† and Taieb Znati*,†

†Graduate Telecommunications Program, School of Information Science
*Computer Science Department, School of Arts and Sciences

University of Pittsburgh, USA

Summary
Peer-to-Peer (P2P) networks enable access to shared
distributed resources across the Internet. However, the
availability of these resources is hindered by the members’
transient participation (i.e., churn) and uncooperative
behaviors (e.g., free-riding). Content redundancy using the
idle storage space of nodes can be used to improve content
availability. Maintain the scalability and self-organization
properties of a P2P system, however, requires (i)
minimizing the redundancy repair traffic (caused by
churn), (ii) self-organizing mechanisms to balance the
load and (iii) mechanisms to promote cooperation and
enforce fair exchange of resources. In this paper, we take a
holistic approach to content availability and propose a
framework centered on efficient content redundancy, low-
overhead maintenance and repair and incentives to
mitigate the impact of churn. To this end, we propose a
redundancy scheme that requires reduced repair bandwidth
to improve content availability. The scheme is augmented
with an efficient redundancy maintenance process to
automate repairs. We also introduce a novel incentive-
based mechanism to ensure a sustained and fair
participation of peers and fair content sharing. The
proposed redundancy scheme, referred to as Proactive
Repair (PR), is studied analytically. The analysis shows
that its repair bandwidth outperforms that of erasure
coding and exact-MBR network coding. The proposed
algorithms and mechanisms are implemented in an
experimental testbed to evaluate their performance. The
results indicate that our proposed solution is feasible and
that it can improve content availability in P2P networks
significantly.
Key words:
P2P, Availability, Redundancy, Churn, Incentives.

1. Introduction

Peer-to-Peer (P2P) technology has emerged as an
important alternative to the traditional client server
communication paradigm to build large-scale distributed
systems. P2P enables the creation, dissemination and

access to information at low cost and without the need of
dedicated coordinating entities. However, existing P2P
systems fail to provide high-levels of content availability,
which limit their applicability and adoption [1]. This paper
presents a holistic approach to device mechanisms to
improve content availability in large-scale P2P systems.
Content availability in P2P networks can be impacted by
hardware failures and churn. Hardware failures, in the
form of disk or node failures, render information
inaccessible. Churn, an inherent property of P2P networks,
is the collective effect of the users’ uncoordinated
behaviour, which occurs when a large percentage of nodes
join and leave frequently. Such a behaviour reduces
content availability significantly. Mitigating the combined
effect of hardware failures and churn on content
availability in P2P networks requires new and innovative
solutions that go beyond those applied in existing
distributed systems. To addresses this challenge, we
propose two complementary, low cost mechanisms,
whereby nodes self-organize to overcome failures and
improve content availability. The first mechanism is a low
complexity and highly flexible hybrid redundancy scheme,
referred to as Proactive Repair (PR). The second
mechanism is an incentive-based scheme that promotes
cooperation and enforces fair exchange of resources
among peers. These mechanisms provide the basis for the
development of distributed self-organizing algorithms to
automate PR and, through incentives, maximize their
effectiveness in realistic P2P environments.
Our proposed solution is evaluated using a combination of
analytical and experimental methods. The analytical
models are developed to determine the availability and
repair cost properties of PR. The results indicate that PR’s
repair cost outperforms other redundancy schemes. The
experimental analysis was carried out using simulation and
the implementation of a testbed. The simulation results
confirm that PR improves content availability in P2P. The
proposed mechanisms are implemented and tested using a
DHT-based P2P application environment. The
experimental results indicate that the incentive-based
mechanism can promote fair exchange of resources and

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

54

limits the impact of uncooperative behaviors such as “free-
riding”.
Given the technology trend that disk space grows much
faster (and cheaper) than access bandwidth, we assume the
arguments presented in [2] stating that bandwidth, rather
than storage space is the limiting factor for distributed
storage in P2P networks under churn. Thus, P2P nodes are
now, and in the future, more likely to have unused storage
space rather than spare access bandwidth.
The contributions of our research include:
 A new low complexity and highly flexible

redundancy scheme with small repair bandwidth
requirements.

 Analytical models to evaluate fragment availability
and redundancy repair cost for PR to derive its
performance under diverse availability conditions.

 A self-tuning distributed redundancy maintenance
process to automate PR in DHT-based P2P networks.

 A novel incentives-based mechanism that promotes
collaboration, to achieve content availability, in
exchange for download bandwidth (i.e., it is a
bartering mechanism of storage versus transmission
bandwidth).

 The experimental evaluation of a prototype
implementation of our proposed mechanisms showing
that PR+Incentives can improve content availability in
P2P networks significantly.

The remainder of this paper is organized as follows. In
Section 2, we present an overview of related work. In
Section 3 introduces our redundancy scheme and our
analytical models for fragment availability, file availability
and redundancy maintenance cost. Section 4 describes the
operation of the algorithms of our redundancy
maintenance process. Section 5 describes our incentive-
based mechanism. Section 6 describes our experimental
work, and in Section 7 we present our conclusions and
describe opportunities for future work.

2. Related Work

The use of redundancy for distributed storage has been
broadly discussed in the research literature. Most
initiatives discuss the use of replication and erasure coding
redundancy as a dichotomy. The authors of [3], [4] and [5]
confirm that erasure systems offer substantial storage
savings vs replicated systems. Nonetheless, the authors of
[5] point out that these savings might not be worth the
added system complexity. Furthermore, with respect to
redundancy repair cost, the authors of [2] and [5] conclude
that distributed storage is not feasible for highly dynamic
node environments (P2P networks) and for environments
with highly available nodes (PlanetLab) replication should

be preferred. Furthermore, [5] recognize the disadvantage
of erasure coding when it comes to redundancy repair: to
recreate any lost fragment we might need to download up
to k elements. However, in their analysis, they assume the
existence of a complete copy of the file to avoid this costly
overhead.
Analytical expressions to determine the optimal storage
overhead (S) for erasure coding and replication are
presented in [5] and the optimal number of blocks (k) to
divide a file in erasure coding is obtained by the authors of
[6]. However, these optimal values do not translate into a
better or worst overhead maintenance and repair, which is
our main concern in P2P networks. The authors of [6] also
argue that the product of the storage overhead (S) times
average node availability (a) determines which
redundancy method should be used. For S*a<1 replication
is better and for S*a>1 erasure coding should be used.
However, for most P2P settings (given a target file
availability) the required storage overhead implies that the
S*a product will be larger than one. Therefore, erasure
coding is always preferred, but once again, the authors do
not consider the repair bandwidth aspects of the problem.
The authors of [7] present a hybrid redundancy
mechanism with a combination of erasure coding and
replication. However, their focus is not minimizing
maintenance bandwidth consumption. Instead, when the
file availability obtained with replication is insufficient,
they boost it adding erasure coding.
An important aspect in the analysis of redundancy
mechanisms is to determine the proper settings to evaluate
a system. With respect to the model for node’s availability
(a), authors have taken different approaches. In [5] a is
taken from traces of three different distributed systems

Table 1. Redundancy Notation

AF File availability

 Fragment type availability

qm Availability of node m

N Total number of unique fragments (N=S*k)

k Reception efficiency

S Coding gain

r Replication degree (PR only)

d Repair degree (exact-MBR only)

fi,j Fragment type i, replica j.

 Maintenance epoch

na Node availability, using maintenance epoch

da Disk availability, using maintenance epoch

 Fragment size (e.g. |F|/k)

 Repair block size (PR and EC: =, exact-MBR:=/d)

FL Fragments lost during maintenance epoch

F Redundancy repair cost using maintenance epoch

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

55

(Overnet, corporate PCs and PanetLab) and it is expressed
as a function of the membership timeout. [8] follows a
similar approach, using four different system’s traces
(PanetLab, Microsfot PCs, Skype and Gnutella), but they
use the mean value of a, calculated as the fraction of nodes
available out of those not considered as permanently failed.
In [3] a is calculated using the probability distribution of
disk lifetimes and the redundancy maintenance interval. In
our work, we employ this last approach, but we use the
distribution of session lengths instead of the distribution of
disk lifetimes.
A promising new approach to redundancy in distributed
storage systems is Network Coding. Dimakis, et. al.,
present a recent survey of the field in [8]. The authors
explain that network codes can be constructed to minimize
the amount of storage or the amount of bandwidth needed
for repairs (i.e., recover lost blocks). In network coding,
there is an optimality tradeoff curve between repair
bandwidth and the amount of storage at each node. Our
approach is different in the sense that instead of tackling
the repair bandwidth issue with a single redundancy
mechanism, we employ two mechanisms; achieving both
simplicity and flexibility. Furthermore, the redundancy
mechanism we are presenting in this paper could be used
in conjunction with network coding (instead of erasure
coding), but for simplicity we are analyzing the
performance of our mechanism with the former
exclusively.
The success of P2P system is deeply rooted in the level of
cooperation among peers [9]. In that regard, the use of
incentive mechanisms to influence nodes behaviors to help
increase the overall system utility, rather than just their
own, has been an extensive field of research. Zhang, et. al.,
present a review of incentive mechanisms in P2P networks
in [10] and suggest five design requirements for their
construction: decentralization, service diversity, incentive,
penalty, adaptability and lightweight. However, none of
the existing systems satisfies all of these requirements.
The authors of [11] present an incentive mechanism to
control the minimum amount of time that nodes should
participate in the system, as well as the minimum number
of files that they should share throughout that time. The
authors of [1] on the other hand, analyze the use of
bundling to improve content availability, in BitTorrent in
particular, improving even the download time experienced
by peers when publishers exhibit high unavailability.
Our research differs from previous work in one or more of
the following aspects: i) we explore the system design
tradeoffs in the context of DHT-based P2P systems since
this routing architecture presents highly desirable
properties for the deployment of user-generated content
sharing networks, such as: scalability, anonymity and
resistance to censorship; ii) we take a novel approach to

redundancy by pairing existing mechanisms to
complement each other vs confronting their properties, as
in [3], [4] or [5]; iii) our redundancy mechanism can be
used in conjunction with incentive mechanisms to address
fairness by aligning the level of service that nodes receive
with their level of (storage) contribution to the network,
and iv) our main objective is improving content
availability using the least amount of repair traffic possible
and without forcing peers to change their churn behavior,
as it is the case in [1] and [11].

3. Proactive Repair Redundancy

Achieving a desired level of content availability when the
peers storing the file have moderate to low availability can
be accomplished using redundancy. We present a hybrid
redundancy scheme to overcome the challenges of the P2P
application environment.
Figure 1 presents the data structure of PR redundancy,
which is built in two stages. First, PR redundancy encodes
file F to create N unique fragments. The coding scheme is
such that any k-out-of-N fragments suffice to reconstruct
the original data (i. e., this stage uses maximum distance
separable erasure coding (EC)). Second, PR creates r
copies of each unique fragment and stores them at
different nodes in the network. Retrieving a file from the
network requires nodes to gather k-out-of-N unique
fragments to reconstruct the original data.
File availability for PR redundancy can be obtained as
follows:

AF = iNi
N

ki i

N

)1((1)

where

 = Pr[at least one fragment type i is available]

 = 1 – Pr[no fragment type i is available]

 =)1(1
1

,

r

j

m
ji

mq (2)

and

1,1f 1,2f … 1,kf … 1,Nf

2,1f 2,2f … 2,kf … 2,Nf

… … … …

rf ,1 rf ,2 … rkf ,
 … rNf ,

Figure 1. PR Redundancy Data Structure.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

56

qm is the availability of node m,

m
jix , is an indicator function such that

 otherwise0

m ode 1 ,
,

ninhostedisfif
x jim

ji
 (3)

When r=1, the formulation above corresponds to the
binomial distribution, which applies for file availability of
EC and exact-MBR redundancy.
Given a desired level of file availability and assuming
nodes availabilities to be homogeneous and stationary, we
can use the normal approximation to the binomial
distribution to derive the optimal (i.e., minimum) value for
:

2
2

)/(2

/(4)/(/

kSS

kSSkSkS
 (4)

Where S is the coding gain of the EC scheme used within
PR (i.e. N/k), k is the reception efficiency and is the
number of standard deviations for the required level of file
availability. For example, for a target file availability of
two nines (0.99), k=8 and N=12, =0.8142. Furthermore,
once this value is obtained, (2) it can be used to derive the
optimal (i.e., minimum) value for the replication
component in PR, r:

r

r

j

a

a

)1(1

)1(1
1 (5)

Where a is the average fragment availability, such that:

)1log(

)1log(

a
r

 (6)

Notice that we have used the term fragment availability
rather than the traditional term node availability. The
reason being that to accurately capture the availability of
content in P2P networks we have built a model capable to
reflect not only the transient connectivity of nodes (i.e.,
traditional node availability) but other sources of content
errors (such as disk failures).

4.1. Fragment Availability Model

For our fragment availability model, we derive
expressions for the availability of fragments as a function
of the frequency at which redundancy is evaluated (and
eventually repaired) in the network. That is, we model
fragment availability, denoted by af, as a function of the
system maintenance epochs, denoted by . We derive our
model in this way with the aim of devising design

guidelines for the construction of a redundancy-
maintenance process for content availability.
We define fragment availability as the product of the
probability of finding a node still available after a
maintenance epoch and the probability that no hardware
errors prevent access to the data stored in the node. That is,
fragment availability is the product of node availability,

na , disk availability,

da , and the probabilities of disk-
read errors, ,)1(

rb and failed data transmissions
)1(tb .

Our starting point to obtain
na is the analytical work

presented in [3], from which we have:

dtttf
tfE

dt
t

t

tfE

tft
an

))((
)]([

1

)]([

)(

Where is the length of the maintenance epoch, f(t) is the
probability distribution of session lengths and (t –)/t
reflects the probability of storing a fragment on a node
early enough during its session so that it still will be online
at the next maintenance epoch. E[f(t)] is the expected
value of the distribution f(t) (i.e., mean value).
For

da we use the same formulation, so that:

dtttfdt
t

txft
a d

dd

d
d)()(

1)((8)

Where fd(x) is the probability distribution of disk lifetimes
and d is its expected value.
For the disk read errors, pr, and failed data transmissions,
pt, we assume a simple binomial model where bits fail
independently. Using br to denote the non-recoverable
read error rate and bt to denote the bit transmission error
rate, we have the following expression for fragments read
and transmitted:

)1(rr bp (9)

)1(tt bp (10)

Where is the size of fragments and is the amount of
information transferred between nodes during a repair. For
EC and PR redundancy these values are identical, but in
the case of exact-MBR network coding =a/d, where d
defines the number of nodes needed to reconstruct a lost
fragment (see [8] for a detailed description of fragments’
repair process in network coding).
From a system design point of view, can be selected to
obtain the most convenient results in (7) and (8), while the
parameters of the redundancy scheme (e.g., EC or PR) can
determine the results in (9) and (10). For the remaining
factors in these equations, we assume that we have no
control over them. Consequently, our design guidelines to

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

57

construct a redundancy maintenance system to improve
content availability have to be focused on the selection of
i) and ii) a redundancy scheme and its parameters.

4.2. Redundancy Maintenance Cost

Using the expressions above, we can determine the
number of fragments lost in the network for a single file
during a maintenance epoch:

)1(1)(

]Pr[

1

1

f

m

i

i

f
im

f

m

i
ii

amaa
i

m
i

lLlLE

FF

 (11)

Where m is the total number of nodes used to store a
single file. For EC and exact-MBR m is equal to N (in
equation (1)) and for PR it is N*r.
Given a maintenance epoch , the cost of restoring the
redundancy lost in the system is given by the product
(size)*(frequency). For short maintenance epochs, , cost
is dominated by frequency and for long maintenance
epochs cost is dominated by size. The average overhead to
reconstruct the redundancy lost is given by:

PR
T

RkL

MBRexact
T

RdL

EC
T

RkL

PR

MBR

EC

2

2

2

)()(

-)()(

)()(

F

F

F

F

(12)

Where T denotes a long period of time (e.g., 10 hrs)
during which repairs are performed regularly (T/ times in
average). R() is the average number of transmission
attempts needed before a successful repair. is the time
required to transfer a repair block of size . Assuming an
average transmission bandwidth for repairs equal to B,
=/B. R() is obtained using a similar approach to the
formulation of ,

fa with the exception that in this case,
two nodes must remain active:

R()-1 = (
na)2 *

da *)1(rb *)1(tb (13)

In addition, EC=PR, which is approximately equal to the
file’s size divided by k (i.e., |F|/k) and for MBR we assume
the exact-MBR construction presented in [12] where =
/d and = 2*d*|F|/k(2*d-k+1). Finally, for PR’s
redundancy repair cost, is the probability that all r replicas
of a fragment type are lost simultaneously, which is given
by:

r

rN

r

L)1(

 F (14)

Figure 2 presents the redundancy repair cost for EC, PR,
exact-MBR and an ideal case of EC where repairs can be

done transferring only a single fragment (e.g., from a node
with a complete copy of the file). It is clear that our
proposed redundancy scheme consumes less repair
bandwidth than exact-MBR and EC. The redundancy
repair cost decreases for all schemes at longer
maintenance epochs. However, it is not practical to set up
a system with large maintenance epochs because these
imply a larger number of nodes needed to store a file (i.e.,
larger coding gain to satisfy AF ≥0.99 in (1)) and the
likelihood of loosing all replicas of a fragment type
simultaneously increases.
To obtain Figure 2, we obtain the optimal parameters for
each redundancy mechanism. Given AF ≥0.99 and k=8 for
all schemes, equation (1) is evaluated numerically to
determine the optimal value of N at each maintenance
epoch evaluated. Then, (12) is computed for each
redundancy scheme assuming: i) distribution of session
lengths in the network follows an exponential distribution
with mean -1=15 minutes, ii) disk lifetimes follows an
exponential distribution, with a mean taken from the
annual failure rate reported in [13], 1

d = 9.82x10-6, iii)
the probability of bit read errors is equal to the disk
specification of a consumer-class SATA hard-drive [14],
1.10x10-14 and iv) for the transmission bit error rate, we
use the value reported in [15], 1x10-13.
In addition to consume less repair bandwidth than exact-
MBR, PR redundancy has the advantage of being less
complex. File reconstruction still requires decoding
fragments, but the repair process itself does not involve
decoding, as in EC and exact-MBR. Furthermore, PR
always performs better than EC, as opposed to exact-MBR,
which for maintenance epoch longer than 9 minutes
consumes more repair bandwidth than EC (i.e., when the
average fragment availability is below 0.55). This result is
consistent with the results presented by Dimakis, et. al., in
[16], where the authors indicate that as the network
becomes less stable, the performance of network coding
can be “very slightly worse” than erasure coding. Lastly,

0 5 10 15 20 25 30
10

2

10
3

10
4

Maintenance Epoch () [min]

R
e

p
a

ir
 C

o
st

 [k
B

/s
]

A
f
 >0.99 & -1=15 min

F=1.0MB, d=k
EC
PR

exact-MBR
Ideal EC

Figure 2. Maintenance Cost for Different Redundancy Schemes.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

58

PR is more flexible since its parameter r can be adjusted to
accommodate different networking conditions as well as
different availability requirement for different files. The
code-only structure of EC and exact-MBR does not allow
this flexibility.
In summary, PR redundancy is a novel redundancy
mechanism that combines the storage-availability
efficiency of EC with the repair simplicity of replication.
Together, these redundancy schemes constitute a flexible
and efficient hybrid redundancy scheme that outperforms
other redundancy schemes.

4. Redundancy Maintenance Process

We adopt PR redundancy as our fundamental building
block to construct a system to improve content availability
in P2P networks. In the analysis presented above, we
assume the presence of an oracle entity with perfect
knowledge about the state of the system. This oracle is
able to decide unequivocally when to perform repairs and
which nodes should be involved. In practice, such entity
does not exist. Furthermore, any centralized approach to
manage such functionality is likely to become a scalability
and security concern. Thus, we decided to define a
distributed redundancy maintenance process capable to
adapt to the particularities of the P2P application
environment.
We device an automatic distributed redundancy
maintenance process based on the fundamental content
location functionality in DHT-based P2P architectures;
that is, lookups.
Assuming the existence of a DHT-based P2P routing
architecture, we adopt the following model. Nodes can
play three roles in the redundancy maintenance process:
holder, index and target. Holder nodes host complete or
partial (i.e., fragment) copies of items; index nodes are in
charge of evaluating the availability of these items and
they trigger repairs as needed; targets, are nodes willing to
host new fragment replicas (i.e., repair fragments) for files
they are not currently storing any information.
For each file in the system, nodes collectively maintain a
list of holder nodes. This list is referred to as the index
entry of file fi. It is maintained at fi’s index node, where a
file’s index node is determined using the DHT routing
mechanism. First, fi’s file-id is mapped into the DHT key-
naming space; then, the peer with node-id numerically
closer to this value becomes fi’s index node.
In our redundancy maintenance process, each index node
knows the current redundancy level for the files with ids
mapping to its portion of the key-naming space. Thus,
Index nodes can instruct these holder nodes when a repair
process has to be initiated.

The redundancy maintenance process is performed in two
stages: decision and transfer. The decision phase is
responsibility of the index nodes, exclusively. The transfer
of content on the other hand, is managed by at least two
nodes. Data transfers are performed among content
holders and target node(s). The target nodes for a
particular repair are selected at random. Thus, in our
redundancy maintenance process targets are not
accountable for the fragments they host.
In addition to holder, index and target, P2P nodes can play
an additional fourth role, a requestor. These are nodes that
want to download a file from the network. When a
requestor node searches for a file, it generates a lookup for
the file id in the DHT’s key-naming space. The result is
the file’s root node (i.e., index node). The index node
respond with a list containing all the peers having a
complete copy or fragments of the requested file (i.e., a list
of holder nodes). Then, the requestor can contact these
nodes directly to start a data transfer.
Figure 3 outlines the algorithm executed by index nodes
every time they receive a registration message from holder
nodes. The first block in this diagram indicates that index
nodes update the respective index entry after every
registration message. This procedure updates the last-seen
timer for the peer sending the message and removes the
entries of defunct holder nodes (i.e., with outdated last-
seen values). The next stages of the redundancy
maintenance process are executed only when the
registration request arrives within the maintenance
window (e.g., 30 seconds) at the beginning of a
maintenance epoch period (e.g., 3 minutes). The actual
length of the maintenance epoch is adjusted dynamically
to match the average fragment availability of each
individual file stored in the network. This is a key feature
in our maintenance algorithm that allows us to handle
efficiently the heterogeneous connectivity patterns of
deployed P2P networks. The dynamic adjustment of the

End

0

 1

0

 1

Figure 3. Redundancy Maintenance Process.

Maintenance window?

Update index entry

Tune Epoch:
Ava loss: – – epoch
Ava gain: + + epoch

Fragments > min?

Attempt repair(s)

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

59

maintenance epoch allows the system to tune itself at a
predefined repair cost/reliability tradeoff. We omit the
details of the four alternative algorithms we developed
with this purpose due to space constrains. Nonetheless, we
can describe the basic approach as follows: when file
availability increases, maintenance epochs can be
extended, and when file availability deteriorates,
maintenance epochs should be reduced. This procedure is
presented in the diagram above as tune epoch. After this
adjustment of the maintenance epoch, index nodes are
ready to trigger all required repairs. To accomplish this
task, index nodes send a repair requests to selected holder
nodes. Within these requests, index nodes include a list of
target nodes that could host new fragment replicas. Index
nodes verify that the total number of unique fragments
present in the network is above a predefined minimum
before generating any repair request. This is done to avoid
repairs for files that can no longer be retrieved from the
network (i.e., there are fewer than k unique fragments
available).

5. Incentives

Incentives are mechanisms embedded into the operation of
a system to regulate the exchange of resources among
participants. Incentives are used to guide the behavior of
individual nodes towards a common goal. This guidance
can be expressed as a reward, given the cooperation of a
node, or as a penalty, in the absence of it.
In our case, the behavior we want to promote is
participation in the redundancy maintenance process of PR
(i.e., accept/generate new replicas upon request). It is
assumed that the inclusion of incentives does not hinder
the content availability gains obtained with redundancy.
On the contrary, it makes these gains more robust by
defining system rules that promote the inclusion of nodes
that otherwise would, acting selfishly, avoid participation.
To achieve this goal, we define both a reward and a
penalty metric. We base both of these metrics on the
fundamental content availability component of PR. That is,
coded file fragments.
Let cm denote the contribution of node m:

),,,()(pstGFc mm
m (15)

where:

m
i j

m
ji

m nF

,)((16)

We name this function fragment count and m is an
indicator function:

 otherwise0

 nodein hosted is 1 ,
,

mfif
x jim

ji
 (17)

and),,,(pstG m is named contribution gain function,
which is a non-decreasing function of fragments’ age (i.e.,
time), size and popularity. For this function, we consider
two variants:

EnhancedpLsKtH

Unitary
pstG m

)()()(

1
,,, (18)

where H(t), K(s) and L(p) are staircase functions of a
node’s average fragment age, size and popularity,
respectively.
For simplicity, we assume the unitary contribution gain
case while describing the structure and implementation of
our incentive mechanism. Further details of the enhanced
case are presented in the experimental portion of this
paper.
We model the reward and penalty components of the
incentive mechanism using variants of a sigmoid function.
A sigmoid has a S-shaped curve that can be used to model
the life cycles of different natural and man-made systems
[18]. A sigmoid has the following form:

)(1

)(
)(

tgtm

tgtm
m cc

cc
cS

 (19)

where >1.0 is the shape parameter and ctgt is the average
(or target) content contribution in the system.
Figure 4 presents two sigmoid functions and indicates
three different stages in the content contribution of nodes:
starting, maturing and aging. The figure illustrates the
different cost/utility tradeoffs that nodes can achieve as
they increase their content contribution.
For our incentive mechanism we define two sigmoid
variants named: replication probability or cost, Cost(cm)
and transmission bandwidth or utility, Util(cm). Cost is
used to regulate whether nodes should accept new replicas.
Thus, it is a decreasing function of cm (e.g., 1-S(cm)). Util,
defines the maximum amount of bandwidth nodes can
receive when they initiate a data transfer. Consequently, it
is an increasing function or cm.

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Node Contribution: c
m

/c
tgt

Starting Maturing Aging

U
til

ity
/C

o
st

Utility

Cost

Figure 4. Sigmoid Functions.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

60

Cost(cm,) =
c

c

tgtm

tgtm

cc

cc

)(1

)(
1

 (20)

Util(cm,) =
u

u

tgtm

tgtm

cc

cc

)(1

)(

 (21)

where and are used to adjust the shape of the sigmoid
function as follows. The role of in (20) is to shift the
sigmoid to the left, so that once nodes reach a content
contribution equal to ctgt, their probability of accepting
additional replicas approaches zero (versus 0.5 in the
regular sigmoid function (5)). In (21), the role of is to
define a minimum transmission bandwidth so that nodes
do not starve when they first join the system (i.e., without
a contribution).
Our incentives mechanism is different to others initiatives
(see [10] for a review) in two aspects. First, we adopt a
completely distributed architecture. Second, our incentive
mechanism employs two dissimilar system properties,
storage and bandwidth. Storage is a long term property
while bandwidth is short term (i.e., it is realized during
“short” intervals). The incentive-based mechanism we
propose barters availability (i.e., storage) for performance
(i.e., bandwidth) as opposed to traditional approaches that
use a single system metric as the mean to influence the
behaviour of participants (either storage, bandwidth or
other unidimentional property). To minimize overhead,
our incentive mechanism is embedded into PR’s
redundancy maintenance process.
Figure 5 presents a sequence diagram for the redundancy
maintenance process of PR with incentives. In the figure,
the Index node evaluates the availability of the file upon
receiving a registration message. Repair requests are
created as needed (but the diagram only shows the
message for Holder 1). Upon receiving a repair request,
Holder 1 attempts to push a fi replica to a new node. Each
Target contacted accepts the replica with probability
Cost(cA|B) (i.e., using their own contribution). In case of
accepting, Target sets the maximum achievable bandwidth
for this transfer using Util(cH1)*MAX_BW (i.e., using
Holder 1’s contribution). The list of possible Targets is
provided by Index node. This list, is sorted by contribution,
so that the first node to be contacted has the highest
probability of accepting.
The structure of the redundancy maintenance process with
incentives allows nodes to define their own utility/cost
tradeoff. Individual nodes can define unilaterally the level
of contribution that works best for them (according to their
resources). Still, the exchange of information among peers
would be fair. Nodes with larger contributions will receive
better transmission bandwidths, without precluding nodes

with poor connectivity (i.e., slow transmission bandwidth)
from participating in the system.

6. Experimental Work

6.1. Simulation Setup

We have implemented a redundancy-maintenance system
using Bamboo [17] and PR with incentives. Bamboo is an
open source DHT-based P2P application substrate written
in Java. We employ Modelnet [19], to emulate a wide area
networking environment in a cluster of machines
interconnected with a Gigabit Ethernet LAN.
The emulated underlying Internet topology in our
experiments consists on 1,344 edge nodes distributed
across 836 distinct AS-level stub networks in a 4,000 node
wide area network. Peers are mapped to one of these
nodes randomly. To allow modelnet’s routing model to
scale, each node executes up to three instances of Bamboo,
depending on the host machine capacity. A total of twelve
host Linux machines are used to simulate 1,840 peers with
heterogeneous online and offline intervals, which are
defined based on the model presented in [20]. The average
node availability is 0.28 and the median session length is
18.7 minutes.
The system manages a total of 500 unique files. 60% are
audio, 10% video and the rest are Web-like. Complete
files and fragments are assigned to nodes at random before
the start of the simulation, with 10% of the nodes
receiving a complete file. Our proposed redundancy
scheme, PR, uses N=18, k=6 and r=21.

1 Except for PR+Inc1, which uses r=3.

Index Holder 1 Target A

Reg(fi,ch1) Target B

Reg(fi, ch1)

Repair(fi) Push(fi, ch1)

Reject

Push(fi,ch1)

Accept

Cost(cA)

Tx(fi)

Ava(fi)

Ava(fi)

Figure 5. Redundancy Maintenance for PR+Incentives.

Cost(cB)
Util(cH1)

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

61

Individual experiments last 4.5 hours and are replicated to
obtain confidence intervals. Nodes continuously perform
the redundancy maintenance process outlined earlier (see
Figures 3 and 5). In addition, nodes attempt file retrievals
(i.e., lookups and a subsequent data transfer) at
exponential distributed intervals with a mean of 5 minutes.
File retrievals are considered successful when nodes
complete the download of k unique fragments from holder
nodes.
File’s popularities follow a Zipf distribution and fragments
inherit their popularity from their originating files.
Popularity values, px, are maintained in cumulative form
within the simulation That is, files have a popularity value
(between zero and one) that corresponds to the cumulative
mass function, CMF, of the file’s rank in the system’s Zipf
distribution.
We present results for three variants of PR with
incentives: PR+Inc1, PR+Inc2 and PR+Inc3.
PR+Inc1 uses a unitary contribution gain (i.e.,
 pstG m ,,, =1).

PR+Inc2 uses a size gain K(s)=1.5 when the average size
of the fragments stored by nodes is larger than 682 kB
(average audio fragment size) and 1.0 otherwise. The
popularity gain L(p)=1.25 when the average popularity of
the items stored is above 0.8 and 1.0 otherwise (i.e., when
nodes are storing rare items mainly). Last, for the age gain
we use the staircase function presented in Figure 6, with a
normalization value of T=2 minutes. For sessions larger
than 20 minutes, the gain remains constant at H(t)=2.0.
PR+Inc3 uses the same H(t) function as Pr+Inc2 and
integrates K(s) and L(p) in a single metric:

i j

pp
iji s

nk
S 0

,
* 1 (22)

where p is the item’s (CMF) popularity and p0=0.8. This
metric is then normalized with the average fragment size
to define a staircase function with a max gain value of 2.0.
The purpose of this metric is to give a larger weight to the
content availability contributions for rare items.

6.2. Results

The first property we corroborate is that the performance
of the system improves when using PR redundancy with
incentives. Figure 7 shows that the content retrieval
success rate of the system without PR (first bar) is inferior
that any of the variants of our mechanism. The last bar in
the figure uses PR+Inc2, but with 30% of the nodes acting
as “free-riders” (i.e., these nodes do not participate in the
redundancy maintenance process). Even under these
circumstances, the performance of the system is better
than without PR, by almost 50%.
Figure 8 presents a scatter diagram for the average
transmission bandwidths nodes receive to download files.
The trend is clear, larger content contributions secure
better performance for nodes. In other words, the
incentives mechanism defines a system that distributes
resources fairly. Figure 9 presents a complementary view
of the evolution of the system. It shows how the average
cost function decays as nodes increase their content
contribution during the network’s lifetime. At the
beginning of the simulation, most nodes have a low
contribution and the redundancy maintenance process
triggers a large number of repairs. As nodes incorporate
more and more fragments to their storage space, the
average cost function in the system decays. After a

0 1 2 3 4 5 6 7 8 9 10 11
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Normalized session length [t/T]

T
im

e
 C

o
n

tr
ib

u
tio

n
 G

a
in

Figure 6. Time Contribution Gain.

0 100 200 300 400 500
0

20

40

60

80

100

120

Node Contribution

T
ra

n
sm

is
si

o
n

 B
a

n
d

w
id

th
 [k

B
p

s]

Z

PR+Inc1

PR+Inc2

Figure 8. Util Function for PR+Inc1.

w/o-PR PR+Inc1 PR+Inc2 PR+Inc3 PR+Inc2*
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u

cc
e

ss
 R

a
te

Figure 7. Content Retrieval Success Rate.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

62

transient period of approximately one hour, the average
replication probability function reaches a slow decay rate.
For the results presented in the next plot, Figure 9, we let
30% of the node population act as free-riders. That is,
these nodes do not participate in the redundancy
maintenance process. Still, they perform basic peer
functionalities truthfully (e.g. forward lookup requests and
even uploading the few items they hold, upon request).
The figure shows that the median transmission bandwidth
of the cooperative nodes is more than twice the median of
the free-riders. The last bar in Figure 9 presents the
average content retrieval rate for this system setting (i.e.,
0.59). If we disaggregate the content retrieval success rate
of cooperative and free-riders it is clear than the nodes
participating in the redundancy maintenance process get a
good return on their investment (i.e., fragments stored).
Cooperating nodes have a content retrieval rate of 0.73
while free-riders only achieve 0.26.

7. Conclusions and Future Work

In this paper we introduced two mechanisms to improve
content availability in P2P networks: a hybrid redundancy
scheme, referred to as Proactive Repair (PR), and an
incentive-based scheme. We show analytically that PR
redundancy outperforms other methods, including exact-
MBR network coding with respect to its repair bandwidth
requirements. This is a fundamental scalability concern in
P2P networks; thus, our redundancy scheme has better
scalability prospects than EC and exact-MBR redundancy.
Experimentally, we show that a distributed redundancy
maintenance process for PR augmented with incentives is
feasible and effective in improving content availability.
Our prototype implementation of these mechanisms is
capable to improve the content retrieval of the system
from 43% to 85%.
The scalability and performance of P2P networks is rooted
in the cooperation of its members. By enforcing fair
exchange of resources among nodes, the incentives

mechanism we introduce in this paper foster nodes
cooperation. Thus, we speculate that it makes the system
more robust and scalable. The incentives mechanism
grants low transmission bandwidths to nodes with small
content contributions and for nodes with large content
contributions the incentives mechanism allow them to
achieve maximum transmission bandwidths. Even in the
presence of a large fraction (30%) of non-compliant nodes
(i.e., free-riders) the content availability and fairness
properties of the system are preserved.

For future work, we envision the implementation of
security features to prevent nodes from cheating. In
particular, we believe that some form of self-certifying
data and audits are good candidates to implement such
features within the distributed architecture of our system.
In addition, modeling different adversarial models for non-
compliant nodes could prove important to test the
robustness of the system. Lastly, we believe that
gamification [21] could be employed in our system to
influence user behaviors. Properly designed, the content
contributions of nodes can be used as the basis for a game-
inspired user interface to promote users cooperation.

References
[1] G Daniel S. Menasce, Antonio A. Rocha, Bin Li, et.al.,

Content Availability and Bundling in Swarming Systems,
CoNeXT’09, Rome

[2] Charles Blake, Rodrigo Rodriguez, High Availability,
Scalable Storage, dynamic Peer Networks: Pick Two,
HotOS IX, 2003

[3] Hakim Weatherspoon and John D. Kubiatowicz, Erasure
Coding vs Replication: A Quantitative Comparison,
IPTPS’02

[4] Ranjita Bhagwan, Stefan Savage and Geofrey M. Voelker,
Replication Strategies for Highly Available Peer-to-Peer
Storage Systems, Tech Report, UC San Diego, 2002

[5] Rodrigo Rodriguez and Barbara Liskov, High Availability
in DHTs: Erasure Coding vs Replication, IPTPS’05

[6] W.K. Lin, D.M. Chiu, Y. B. Lee, Erasure Code Replication
Revisited, P2P’04

[7] Fan Wu, Tongqing Qiu Yuequan Chen, and Guihai Chen,
Redundancy Schemes for High Availability in DHTs, IPSA
2005, LNCS 3758

0 15 30 45 60 75 90 105 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Transmission Bandwidth [kBps]

C
D

F

Cooperative Nodes

Free-riders

Figure 10. Transmission Bandwidth CDF.

0 25 50 75 100 125 150 175 200 225 250
0

0.1

0.2

0.3

0.4

0.5

C
o

st
 F

u
n

ct
io

n

Simulation Time [min]

PR+Inc1

PR+Inc2

Figure 9. Replication Probability for Pr+Inc2.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012

63

[8] AG Dimakis, K Ramchandran, Y Wu and C Suh, A Survey
on Network Codes for Distributed Storage, Proceedings of
the IEEE, March 2011

[9] Zghaibeh, M. and K.G. Anagnostakis, On the Impact of P2P
Incentive Mechanisms On User Behavior, in NetEcon+IBC.
2007: San Diego.

[10] Kan Zhang, Nick Antonopoulos, and Z. Mahmood, A
Review of Incentive Mechanisms in Peer-to-Peer Systems,
in First International Conference on Advances in P2P
Systems. 2009, IEEE Computer Society.

[11] Panayotis Antoniadis, Costas Courcoubetis and Ben Strulo,
Incentives for Content Availability in Memory-less Peer-to-
Peer File Sharing Systems, ACM SIG on Ecommerce, 2005

[12] K. V. Rashmi, et al., Optimal Exact-Regeneration Codes for
Distributed Storage at the MSR and MBR Points via
Product-Matrix Construction. IEEE Trans. Information
Theory, 2010

[13] Pinheiro, E., W.-D. Weber, and L.A.e. Barroso, Failure
Trends in a Large Disk Drive Population. USENIX
Conference on File and Storage Technologies, 2007.

[14] Hard drive manufacturer specifications. 2011 Available
from:
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2
879-701220.pdf

[15] Lehpamer, H., Transmission Networks Fundamentals, in
Microwave Transmission Networks, Second Edition. 2010,
McGrawHill. p. 15

[16] Dimakis, A.G., P. B. Godfrey, and Y. Wu. Network Coding
for Distributed Storage Systems. in Information Theory.
2010.

[17] Sean Rhea, Dennis Geels, Timothy Roscoe, and John
Kubiatowicz, Handling Churn in a DHT, USENIX ‘04, June
2004

[18] Xin Bai A , Dan C. Marinescu A , and et. al., A
Macroeconomic Model for Resource Allocation in Large-
Scale Distributed Systems. Parallel and Distributed
Computing, 2008.

[19] Modelnet. Available from: http://modelnet.ucsd.edu.
[20] Z. Yao, et al. Modeling Heterogeneous User Churn and

Local Resilience of Unstructured P2P Networks. in IEEE
ICNP. 2006.

[21] Deterding, S. Meaningful Play: Getting Gamification Right
Google Tech Talk [Webcast] Jan 24, 201

Octavio Herrera-Ruiz received the B.E. in
Electrical Engineering from the National
Autonomous University of Mexico in 1997,
where he was head of the network
operations department from 1997-1999.
Received a M.S. and a Ph.D. in
Telecommunications from the University of
Pittsburgh in 2001 and 2012 respectively.

Taieb Znati did his undergraduate studies
in Tunisia and Paris, received a master
degree from Purdue University in 1983, and
finished his doctorate at Michigan State
University in 1988. He is Professor at the
department of Computer Science at the
University of Pittsburgh, with a join
appointment in the department of
Telecommunications. He has served as
Senior Program Director of Advanced

Networking Research at NSF (2001-2005) and later as director of
the Division of Computer and Networked Systems (2007-2009).

