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Summary 
In this paper, we present a novel thresholding-based 
segmentation algorithm that combines entropy, image spatial 
information, and dynamic programming to non-uniformly 
quantize an image in a more efficient and effective way for 
subsequent processing. Combined with information related to 
the structural content present in the image (activity/busyness of 
pixels with respect to their immediate neighbors), an entropy-
based cost function is derived and used with the one-dimensional 
histogram probability distribution function of the image. The 
image quantization/ segmentation algorithm uses dynamic 
programming based on a recently introduced algorithm for 
optimal partitioning on an interval, and allow the selection of a 
broad range gray level to be present in the output image; 
binarization of an image is accomplished by having only two 
gray levels in the output image. Applications of the algorithm to 
quantization of gray-level as well as color images in the RGB 
and HSV color spaces are presented.  Image simulations give 
very good results compared to many existing methods, while 
maintaining low computational complexity in terms of storage 
and processing requirements. 
Keywords 
Entropy, Spatial information, Dynamic programming, Cost 
functions, Optimal partitioning on an interval, Image 
segmentation. 

1. Introduction 

Quantization is an essential part in any digital imaging 
acquisition system. As a formed analog/continuous image 
is sampled on a grid of given resolution—spatial 
resolution that determines the width and height—the 
intensity values at the grid locations must be digitized to 
produce amplitudes of a given resolution. In most image 
acquisition modalities, the resolution used, given as bits 
per pixel (bpp), is 8 bits-per-pixel corresponding to 256 
gray levels. More generally, k-bits per pixel give rise to 2k 

unique levels, with higher values of k being typical in 
medical diagnostics and industrial inspection systems. 
Color images are characterized by three separate channel 
(components) corresponding to a given color-space model 
such as the additive RGB (red, green, and blue) model 
which is prevalent in most acquisition hardware devices 
and the display industry devices (projectors, screens, 
televisions, etc.) or the subtractive YMC (yellow, cyan, 
and magenta) model, which is prevalent in the printing 

industry. The HSV (hues, saturation, and value) color 
space model is used in applications based on perceptual 
properties of the human visual system. 
It is rare for an image processing system to work directly 
on the acquired image without first representing it in a 
more compact, economical, and efficient form (from a 
processing point of view), while keeping the structural 
and informational content intact. The step is done mainly 
for efficiency purposes. One way of achieving this is to 
reduce the number of gray levels present in the image (for 
gray-level images) or one or more of its components (for 
color images). Reducing the number of gray levels in an 
image is a fundamental issue in many image processing 
and computer vision applications including segmentation, 
thresholding, lossy compression, and image retrieval, just 
to name few. Segmentation is closely related to the gray 
level reduction problem. Although there exists many 
methods for segmentation, thresholding remains one of 
the most attractive and simple ones. Quantization can be 
seen as a multi-level thresholding problem, which is the 
view we adopt in this paper; when one-threshold is 
generated (two quantization levels) for the output image, 
the problem reduces to that of binarization, and when 
multiple thresholds are generated, the output image 
quantized gray levels can be judiciously selected between 
the thresholds to produce a pleasing and ready-to-process 
image. 
This paper presents a new multi-level thresholding 
method for image segmentation that allows the user to 
reduce the number of gray levels, in a hierarchical fashion, 
from the original number present in the image all the way 
down to two gray levels, corresponding to a binary 
version of the image. Our contribution to the problem is 
twofold: first, we present an entropy-based dynamic cost 
function that automatically adapts to the size of the region 
under examination so far; second, we integrate the cost 
function seamlessly with an interval optimal partitioning 
algorithm that uses dynamic programming. In section 2 
and 3, we review thresholding an entropy-based 
thresholding respectively. In section 4 we briefly describe 
optimal partitioning; section 5 presents the entropy-based 
segmentation algorithm in details. Section 6 presents 
simulations with comparative results of some existing 
methods. Conclusions and future work are given in 
section 7. 
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2. Thresholding 

The goal of image segmentation is to extract meaningful 
objects, or regions, from an input image. Thresholding is a 
simple and effective way to segment an image, especially 
those that have a bi-modal histogram probability density 
function. The popularity of thresholding stems from its 
intuitive interpretation, simplicity, and ease of 
computation. The technique has found many applications 
in object recognition, automatic inspection, robotics, 
machine vision, document and text analysis, medical 
image analysis, remote sensing, surveillance, and 
computer graphics, among many others [1-27]. 
 
Given a digital image I(i,j), of dimension Nx by Ny, with 
I(i,j) representing  the intensity at location (i,j), 1≤  i ≤ Nx, 
1≤ j ≤Ny, 0≤ I(i,j) ≤ L-1, a two-level quantized output 
image (using single threshold) is given by: 
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Here, L represents the maximum number of gray levels 
(L=2k, with k termed the pixel-depth or the number of 
bits/pixel for the image). For a multi-level thresholded 
image, the quantized output image is given by 
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Early methods of thresholding have used the image 
histogram (or its normalized version) to calculate the 
thresholds, while later methods have incorporate pixel 
dependencies and spatial and structural information into 
the thresholds computation. A plethora of methods have 
been reported in the literature over the past fifty years; see 
for example [31] for many insightful reviews on most 
thresholding techniques based on image histograms, 
iterative refinement, objective optimization, region 
properties, and variants of entropy measures. Among 
these methods, entropy-based thresholding are based on 
information theory concepts, and they have played an 
important role among the other techniques. Many reported 
methods try to incorporate spatial and structural 
information [1-27] using the image histogram, image co-
occurrence matrix, or an optimized objective function 
[1][6][7]. Examples include optimizing second-order 
entropy extracted from the image co-occurrence matrix; 
optimizing relative or cross entropy [11-15]; or optimizing 
excess entropy of the image [32]. 
 

All the subsequent tasks to thresholding, including feature 
extraction, object recognition, and classification, rely 
heavily on the quality of the image segmentation process. 
Enhancing segmentation by incorporating spatial 
information into the selection of thresholds to quantize the 
image is both desirable and challenging. Section 3 
addresses exactly this issue. 

3. Entropy-based Thresholding  

Entropy is a measure of information content that has its 
origins in the seminal work of C. Shannon on coding and 
information theory [10]. Given a discrete source of data, S, 
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For an image, entropy is a quantity used to describe the 
amount of uncertainty or lack of structure. When pixels 
are considered alone, entropy can be calculated using the 
normalized histogram of the image—its probability 
distribution function— using: 
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As a robust information-theoretic approach, entropy is 
used in many segmentation and quantization techniques. 
These techniques include finding optimal thresholds by 
maximizing Shannon’s entropy, or minimizing relative 
entropy, also known as Kullback-Leibler information 
distance. An excellent survey on the many variants of 
entropy and relative entropy is given by Chang and others 
in [31]. Many researchers seek to improve entropy by 
using the image spatial information to produce a more 
visually-based measure.  Most spatially-oriented entropy 
measures work with two-dimensional histograms or the 
gray-level co-occurrence matrix to capture transitions 
between gray levels. Other techniques include local 
entropy and joint entropy, which can be seen as 
extensions of the maximum entropy method of Pun and 
Kapur [18]. Recently, excess entropy, which measures the 
structural information of the image, has been applied 
successfully to segment images [32]. 
 
In this paper, we redefine the histogram-based entropy to 
incorporate spatial information about the image in the 
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form of busyness that reflects the activity of each gray 
level. To do this, we use the following measure for 
entropy 
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(5) 
where ml is a busyness or activity weighting factor. The 
inclusion of this factor makes thresholding less dependent 
on the size of objects or background present in the image. 
Several approaches can be used to define this factor; in 
this paper, we define ml in three different but closely 
related ways. The three measures use a local 
neighborhood as shown in figure 1. The first method 
measures the variance; the second method measures the 
local gradient; the third methods measure local spatial 
variation relating to its texture patterns. Due to space 
limitation, we report results on the first method of 
variance-based busyness since the other methods gave 
virtually similar results as will be reported in future 
publications. 

 
Fig. 1 NxN neighborhood definition for variance and gradient 

3.1 Variance-based Busyness Measure  

Referring to figure 1, the variance-based busyness 
measure, ml, is defined as the average of all variances of 
all NxN neighborhood of a pixel whose intensity level has 
the values of l. 
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The NxN neighborhood of a pixel at spatial location (i,j) 
is defined as shown in  figure 1 (for the case of N=3). To 
produce the ml values, we scan the image, in a pre-
processing stage, and compute the variance 

value  ),(2 jiNxN , at each (i,j).  
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The spatial entropy measure described above is adapted 
from A.D. Brink [13], who defined a similar measure on a 
pixel-by-pixel level, considering the whole image as a 
huge set of elements, with the gray level of each pixel as 
the count of the number of photons that reaches that given 
pixel. The total number of photons in the image, G, is 
therefore computed by summing all the gray levels in the 
image as follows: 
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We redefined the measure to work for the histogram since 
our algorithm works with optimal partitioning on an 
interval (as described in the next section) to produce any 
number of quantization levels, the above definition keeps 
the computational complexity to a minimum, especially 
since the optimal partitioning algorithm has O(L2) 
complexity, which would be prohibitive for the whole 
image. 

3.2 Gradient-based Busyness Measure 

For the gradient-based busyness measure, referring to 
figure 1, the measure, ml, is defined as the combined 
magnitude of the horizontal and the vertical gradient in 
the NxN as given by: 
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Where M(i,j) is the gradient image, formed from the 
magnitude of the gradient vector (gx,gy)

t at each location 
(i,j). For gx, and gy, we have used the Sobel operators, 
defined using the masks shown in figure 2. 
 

  
Fig. 2 Mask operators used for the gradient-based busyness measure 

definition 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 
 

 

67

3.3 Texture-based Busyness Measure 

For the texture-based busyness measure, referring to 
figure 3, the measure, ml, is defined as the local binary 
pattern of the 8 neighbors of the center pixel. The binary 
pattern is created by using the intensity, gray level value, 
of the center pixel as a threshold in comparison with these 
eight neighbors. When thresholded, the 8 neighbors, 
numbered 0-7, will give rise to a binary number 
b0b1b2b3b4b5b6b7 which is then used as the ml measure. 
LBP are known to be effective in capturing local structure 
characteristics and can be made invariant to specific 
transformation such as rotation. 
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Fig. 3 Local binary pattern used for the texture-based busyness measure 

definition 

4. Optimal Partitioning on an Interval 

 
Fig. 4 Histogram Partitioning into M Regions Using M-1 Thresholds 

 
The goal of thresholding is to partition the histogram of 
the image in an optimal way with respect to some 
predefined objective function or region properties.  If R 
represents the histogram, our goal, then, is to partition this 
histogram into M mutually exclusive regions (partition 
elements or blocks), which mathematically can be written 
as 
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Figure 4 shows the desired partitioning. By defining a 
partition element as a set of one or more contiguous cells 
from the histogram, and defining an appropriate cost 
function, an optimal partitioning can be reached where the 
number of thresholds automatically determines the 
number of segmented or quantized regions (partition 
elements) in the image. All pixels between two successive 
thresholds within the histogram belong to the same region. 
A cost function, C(Ri), is associated with the ith region or 
partition element with the overall cost over the histogram 
R, denoted as C(R), being the sum of the costs of the 

elements of the partition. This can be expressed as 
follows: 
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Jackson, Scargle and others [28-30], have recently 
developed a dynamic programming technique that solves 
this problem in O (L2) where L is the length of the signal 
(histogram) to be partitioned. A cost function is associated 
with each possible partition. The algorithm searches the 
exponentially large space of partitions of L data points in 
time O (L2). As discussed in [28], the algorithm is 
guaranteed to find the exact global optimum, 
automatically determines the model order (the number of 
thresholds), and has a convenient real-time mode. 
Additionally, the algorithm has a Prior parameter that can 
be set base on our desired level of segmentation, with 
higher values giving coarse segmentation, less number of 
regions, and smaller values giving fine segmentation, or 
larger number of segments. The algorithm can be 
summarized as follows. 
 
1. Decide the prior parameter and the form of the cost 

function 
2. Set optimal (-1) =0; set n=0 
3. Given optimal (j) for j=0, 1, …, n 

a. Compute optimal (n+1) as given in [28], for 
j=0, 1, …, n+1 

b. Store the value of j where the maximum 
occurred in lastChange(n+1) 

c. Set n = n+1 
d. If n=L, stop 

4. Extract the set of M-1 thresholds as: 
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As we can see from the third step, the thresholds are 
traced backward in reverse order and then used to 
partition the histogram accordingly. 

A. Entropy-based Cost Function 

 

Initial histogram configuration 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 
 
68

Final histogram partitioning 
 

Fig. 5 Histogram initialization for the entropy-based cost function 
 

Essential to the success of the optimal partitioning 
algorithm is the choice of a suitable cost function. In [30], 
we have introduced some cost functions (some of which 
were adopted from [28-29]) based either on Normal 
distribution or Bayesian posterior for a segmented Poisson 
model. The cost function we adopted is based on an 
entropy measure that is weighted with additional 
information related the spatial structures of the image. 
Given our histogram, R, the cost function C is defined as 
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One important observation for our thresholding problem is 
the fact that the cost function has the desired property that 
it depends on only two quantities: the sum of all the gray 
levels gi present in an interval, Ri, and the number of cells 
in that interval, which are called sufficient statistics. The 
cost model is basically identifying regions, by their 
homogeneity as defined by the maximum entropy in that 
region. The prior relates to the probability distribution of 
the number of partition elements, or segments. This 
parameter can be taken or interpreted to represent prior 
knowledge about the complexity of the image as 
represented by its histogram and whether it has many 
objects or segments. Its value is somewhat context-
dependent and can be determined with simulations, re-
sampling in the bootstrap sense, or with other numerical 
studies. We can also look at the prior as a tweaking 
parameter to reduce or increase the number of final 
partition elements (objects) in the image. It acts something 
like a smoothness parameter with large values giving 
smaller number of partition elements; nevertheless, it does 
not implement smoothing in the sense of smearing of the 
levels of the image. The optimal partitioning works with 
any additive cost function [13], which makes it applicable 
to a wide range of applications. It is worthy to note that a 
transformation can always be applied to convert a 
multiplicative cost function into an additive one.  

5. Algorithmic Details 

The flow chart of the algorithm is given in Fig. 1, 
illustrated with the Lena image. At the heart of the 
algorithm are the entropy-based function and the OP 
algorithms that is driven by it. Based on the histogram 
model, dynamic partitioning of an interval, and the choice 
of a cost function, we introduce the generalized gray level 
reduction algorithm. The algorithm within its main 
framework and with only a different prior input (treated as 
an adjustable parameter) can produce any desired number 
of thresholds or gray levels. The algorithm has a limit-up 
approach where we start with all the present gray levels in 
the image as regions. The algorithm then reduces the 
number of gray levels by selecting a subset of them 
(thresholds) as boundaries or significant change points. 
 
Following are the general steps for the algorithm: 

1. Create the modified histogram as described in 
sections 3,4 

2. Decide on a prior value based on complexity of the 
histogram structure and the final number of regions 
desired in the image  

3. The optimal partitioning algorithm receives the 
histogram as an interval with the cost function and 
the prior. Its outputs is the set of thresholds, 

 | 0,1, 2, ..., 2iTh i M  , defining each 

region Ri. 
4. Create the quantized values 

 | 0,1, 2, ..., 1iq i M  based on the thresholds 

found in the previous step 
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Fig. 6 Flow diagram of the entropy-based cost function thresholding 

algorithm 
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We used the set of thresholds in the above algorithm to 
create a new set of reduced quantized levels in the image. 
Each quantized value qi was calculated from two 
successive thresholds Thi-1 and Thi. A weighted average of 
the gray levels between the two thresholds is then chosen 
to represent the region Ri with all the gray levels that lie in 
that region. The Mathematical details were given in [30]. 
In addition to the image and its dimensions, the algorithm 
takes one parameter and a choice of a cost function. The 
parameter describes the prior for the number of change 
points, which is sometimes called a hyper-parameter. It 
implicitly determines the number of classes, with large 
values giving smaller number of gray levels in the output 
image. The cost function can be modified to fit the 
application at hand. In addition to the Poisson cost 
function used in this paper, other cost functions based on 
Gaussian distribution [28] or entropy [11-14] can be used 
as well. Some of these cost functions have the advantage 
of incorporating local features from the image, albeit in a 
different way that our method and at higher computational 
cost. 

6. Experimental Results 

We present typical quantization and thresholding results 
using the Entropy-based Dynamic Optimal Partitioning 
algorithm developed in section 5. Results are presented 
for gray-level and for color images in both the RGB space 
as well as the HSV space. We use the Lena image to 
present the gray-level results and the color Lena, Baboon, 
and F-16 for the color results. The images are of different 
content type with respect to their histogram distribution. 
The histograms range from relatively bimodal to multi-
peaked. Additionally, the images are different in terms of 
their content ranging from low to high detail. These 
images are 256x256 in size with 8 bit pixel-depth giving 
rise to a maximum of 256 gray levels.  

a. Quantization of Gray-Level Images 
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Fig. 7 Original Lena image (gray-level) and its histogram 

 
For gray-level images we have only one input channel or 
plane, known as the luminance Y-channel, The histogram 
and the variance image are created in the pre-processing 
stage and are then used as inputs for the spatial entropy-
based cost function. Optimal partitioning is run, using the 
formulated cost function and a prior value (to be discussed 
in detail in this section), to produce the set of thresholds. 
The thresholds, in turn, are used to create the quantize 
image, Q(i,j). Each quantized value qi is calculated based 
on the two successive thresholds Thi-1 and Thi it lies 
within (with 0 being the first threshold and L-1 as the last 
one). A weighted average of the gray levels between the 
two thresholds is then chosen to represent the image 
region of all pixels whose value lies between the two 
thresholds. The parameter describes the prior for the 
number of change points, which is sometimes called a 
hyper-parameter. It implicitly determines the number of 
classes, with large values giving smaller number of gray 
levels in the output image. We can look at the results as 
representing three types of problems: Gray level reduction, 
multi-level thresholding (segmentation), and single-level 
thresholding (binarization). All three problems are 
actually the same from the point of view of our algorithm. 
Depending on the number of desired regions and the 
ultimate application for the output image, a single 
threshold, few thresholds (usually less than 10), or many 
thresholds are produced at a time. The prior provided to 
the algorithm is adjusted to give the desired number of 
thresholds. Table 1 gives the number of gray levels 
present in the original Lena image, presented in figure 7. 
Table 2 and 3 give the NCP prior values used to create the 
indicated number of gray-levels or color levels (in the 
case of color thresholding), and Fig. 8 shows the results of 
running our algorithm on the Lena image producing 2, 4, 
8, 16, 32, and 64 quantization levels. The number of gray 
levels produced was decided by the prior on the number 
of regions present in the histogram. Figures 8, 9, and 10 
show binarized Lena images with other existing methods 
such as Papamarkos Neural thresholding and K-means. 
On the other hand, Figure 11 compares our algorithm with 
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the Otsu, Kittler and Illingworth, Reddi et al, Kapur et al., 
and Papamarkos et al methods for the special case of two 
gray levels. Images in the figures show the comparability 
of our algorithm at the smaller number of shareholding 
levels, and its superiority at the higher number of 
thresholding levels. Comparing the results for higher 
number of gray levels is practically impossible as some of 
the algorithms are not applicable or not available. We can 
see that our algorithm gives very pleasing results 
compared to the indicated methods. It captures more local 
details especially in busy areas that are characterized by 
the presence of edges, transitions, or textures. Essentially, 
we see that our algorithm does a good job in areas of high 
activity or details. This is expected since our entropy is 
weighted by a measure related to the level of activity 
around a specific gray level. 

6.1 Quantization of noisy gray-level images 

The algorithm also shows robustness under mild noise 
levels as figure 11 demonstrates, where we have included 
the binarized image for zero mean Gaussian noise with 
different variance levels. The noisy images and their 
thresholded binary counterparts are shown in the figure. 
We have tried noise levels of standard deviation of 10, 20, 
and 50, corresponding to small, mild, and severe noise 
levels. With the values of 10, and 20, we are able to 
reproduce an object almost identical to the no-noise case; 
however, as the noise level dominates the image, as in the 
case of standard deviation of 50, it becomes harder to 
separate the object from the background, even though it is 
still visually distinct. The thresholded images were post 
processed with a 3x3 smoothing Gaussian windows. The 
post processing ads a pleasing blurring effect to the image 
and gets rid of isolated impulsive noise points. 

b. Quantization of Color Images 
To work with color images, we extend the results of the 
gray-level images by working on the components of the 
color image separately. We present the results for two 
common color spaces: the RGB and the HSV. 

6.1.1 RGB color space 

The RGB space is the most frequently used color space in 
image processing.  Since color cameras, scanners and 
displays are most often provided with direct RGB signal 
input or output. The high similarity and correlation of the 
R, G, and B components, especially for natural scenes, 
motivated us to use the gray-level or intensity algorithm 
uniformly to all three planes; we also know that when 
mostly R~G ~B, the resultant image has mainly shades of 
gray. The NCP prior used was almost the same for all the 
three images (definitely, the same order of magnitude). 
Figure 13 shows the quantized results for the Lena, 

Baboon, and F-16 images with the indicated number of 
quantization levels; as we mentioned, Each R, G, and B 
image has the indicated number of quantization level. 
Table 2 presents the NCP prior used to produce each 
image. The 3-tuple value is that R, G, and B planes 
respectively. Close inspection of the images show that 
they preserve their overall structure and color content at 
all levels, with blocking effect starting to show with 16 
levels or below. Close inspection of the images show 
preservation of details in the busy areas in the Lena, 
Baboon, and F-16 images.  

6.1.2 HSV color space 

The second color space we used in our study is the HSV. 
In this model, hue represents the impression related to the 
dominant wavelength of the color stimulus. The saturation 
corresponds to relative color purity (lack of white in the 
color) and in case of a pure color it is equal to 100%. 
Colors with zero saturation are grey levels. Maximum 
intensity is sensed as pure white, minimum intensity as 
pure black. Figure 14 shows the quantized image for the 
Lena, Baboon, and F-16 images. The results are robust 
and resemble those obtained for the gray level cases and 
those of the RGB color model. 
 

TABLE 1 
ORIGINAL NUMBER OF GRAY LEVELS PRESENT IN EACH IMAGE 

 
Image No. 
Lena 230 

 
TABLE 2 

NCP PRIOR VALUES FOR THE RGB COLOR CASE 
NCP Prior 

No. 
Q-

Levels
Lena Baboon F-16 

8 [5.50;5.55;5.50] [6.60;6.72;6.60] [5.83;5.99;6.30]
16 [4.75;4.90;4.75] [5.90;5.99;5.95] [5.25;5.30;5.65]
32 [4.05;4.25;4.15] [5.19;5.30;5.25] [4.52;4.60;5.00]
64 [3.302;3.53;3.4] [4.47;4.59;4.5] [3.87;3.95;4.37]
128 [2.55;2.80;2.63] [3.63;3.83;3.84] [3.08;3.17;3.10]

 
TABLE 3 

NCP PRIOR VALUES FOR THE HSV COLOR CASE 
NCP Prior 

No. Q-
Levels 

Lena Baboon F-16 

8 5.500 6.700 5.600 
16 4.700 6.040 4.800 
32 4.050 5.310 4.120 
64 3.290 4.570 3.390 
128 3.535 3.739 2.690 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.4, April 2012 
 

 

71

Conclusion 

In this paper we presented new algorithm for image 
thresholding, segmentation and quantization based on a 
spatially-weighted entropy function of the image 
histogram and optimal partitioning on an interval using 
dynamic programming. The algorithm was presented for 
gray level as well as color images in the RGB and the 
HSV color-space domains. The algorithm works in a fine-
to-coarse way, allowing the user to specify the number of 
gray levels to be present in the output image. This number 
can range from the original number of levels present in 
the image all the way down to two levels, (which 
corresponds to creating a binary output image). The 
optimal partitioning algorithm has a moderate 
computational efficiency of O(L2) proportional to the 
square of the number of unique gray levels present in the 
image. Its memory requirement grows only linearly with 
L. The algorithm can be easily incorporated with other 
algorithms such as region growing, edge detection and 
lossy compression. Future work will tackle some of the 
remaining issues including the speed of the algorithm and 
the quantification of the prior parameter to achieve a 
predetermined number of thresholds in a more systematic 
way; we are interested in direct higher-dimensional 
application of the entropy cost function optimal 
partitioning. Incorporating texture based features is of 
great interest, especially in image segmentation and 
region-based image retrieval systems.  
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Fig. 8 Original Lena image along with reduced gray levels images 
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Fig. 9 Reduced gray levels images obtained using Papamarkos Neural thresholding 
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Fig. 10 Reduced gray levels images obtained using standard K-means 

 Original Image  
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Otsu method Kittler and Illingworth Reddi et al. 

   
Kapur et al. Papamarkos et al. Quweider 

Fig. 11 Images obtained for 2-level thresholding (binarization) using the methods indicated  
 
 

   
Noisy image with σ = 10 Noisy image with σ = 20 Noisy image with σ = 50 

  
Thresholded image with 3x3 Gaussian 

smoothing 
Thresholded image with 3x3 Gaussian 

smoothing 
Thresholded image with 3x3 Gaussian 

smoothing 

  
Thresholded image with 5x5 Gaussian 

smoothing 
Thresholded image with 5x5 Gaussian 

smoothing 
Thresholded image with 5x5 Gaussian 

smoothing 
Fig. 12 Two-level quantization (binarization) of noisy Lena image images 
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Original

  
8-levels quantization

  
16-levels quantization

  
32-levels quantization

  
64-levels quantization

  
128-levels quantization

 
Fig. 13 Lena, Baboon, and F-16 results quantization results for the R, G, and B planes at the indicated levels of quantization 
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Original

  
8-levels quantization

  
16-levels quantization

  
32-levels quantization

  
64-levels quantization

  
128-levels quantization

 
Fig. 14 Lena, Baboon, and F-16 results for the indicated number of levels for the V plane at the indicated levels of quantization 


