Computational Intelligence Routing for Lifetime Maximization in Heterogeneous Wireless Sensor Networks

Mrs. UMARANI G. SRIKANTH M.E. (Ph.D.)

S.A. Engineering College, Head of the department of PG studies in Engineering, Chennai, India

Ms. M.AKILANDESWARI B.Tech. (M.E.)

S.A. Engineering College, Department of the PG studies in Engineering, Chennai, India

Abstract

In wireless sensor networks, sensor nodes are typically powerconstrained with limited lifetime, and thus it is necessary to know how long the network sustains its networking operations. Heterogeneous WSNs consists of different sensor devices with different capabilities. One of major issue in WSNs is finding the coverage distance and connectivity between sensors and sink. To increase the network lifetime, this paper proposed Swarm Intelligence, routing technique called Ant Colony Optimization (ACO). Ant colony optimization algorithm provides a natural and intrinsic way of exploration of search space of coverage area. Ants communicate with their nest-mates using chemical scents known as pheromones, Based on Pheromone trail between sensor devices the shortest path is found. By finding the coverage distance and sensing range, the network lifetime maximized and reduces the energy usage. Extensive Java Agent Framework (JADE) multi agent simulator result clearly provides more approximate, effective and efficient way for maximizing the lifetime of heterogeneous WSNs.

Index Terms

wireless sensor networks (WSNs), Ant colony optimization (ACO), connectivity, coverage, network lifetime.

I. INTRODUCTION

WIRELESS sensor networks (WSNs) consists a large number of sensor nodes in a target area for performing surveillance tasks such as environmental monitoring, surveillance, animal tracking, military industry. agriculture and home applications [1]-[2]. Each sensor nodes collects data by sensing its surrounding region and transfers the data to a sink (also called a base station). In the WSNs, a lot of sensor nodes operate on limited batteries, making energy resources the major bottleneck. Therefore, an economical and frugal management for improving the lifetime of wireless sensor is important. WSNs are much more demanding on energy conservation than the other kinds of networks. How to maximize the network's lifetime is a critical research topic in WSNs.

The goal of coverage distance in WSNs is to have each location in the physical space of interest within the sensing range of at least one sensor. To maximize network

coverage and to provide a reliable data transfer, energyefficient monitoring depends on selecting minimum number of sensors in active mode to cover all the areas. By using swarm-based algorithms to address both network routing, and lifetime maximization.

The existing methods focus on the issues of device placement[5], data processing ,routing[6][7], topology management[11], and device control Device placement is a fundamental factor in determining the coverage, connectivity, cost. Another problem is sleep/active mode operation not performed properly because of coverage problems. In routing as router table increase finding coverage between the sensors are difficult. Therefore, the lifetime of a WSN can be prolonged by planning the active intervals of devices. At every point during the network lifetime, the active devices must form a connected cover to fulfill sensing coverage and network connectivity. But this also led to failure result.

In existing system, it is very difficult to use different sensors with different functionality and capabilities .All sensors sent monitored information to single sink as shown in fig 1, Due to this there may overlapping, collision may occur in networks . It's also difficult to find the maximize number of connected coverage and sensing range. Greedy algorithms [8] are used to represent connectivity only in Homogenous Wireless Sensor Network, and also finding optimal path between sensors and sink is difficult when the network size increases.

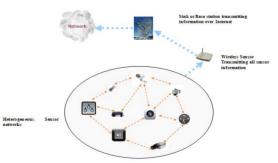


Fig 1: System Architecture of existing WSNs

Manuscript received April 5, 2012 Manuscript revised April 20, 2012

II. PROPOSED SYSTEM

In this we paper proposed ACO-MNCC based approach for maximizing the lifetime of heterogeneous WSNs by finding the maximum number of connected covers. Heterogeneous WSNs means sensor with different capability, size like (audio, video, multimedia sensors).Ant Colony Optimization (ACO) technique is an optimization technique to solve optimization problem .It has been developed for combinatorial optimization problems. ACO are multi-agent system in which the behavior of each single agent, called ant, is inspired by the behavior of real ants

In This paper we also presents a new communication protocol for WSN called energy efficient ant-based routing algorithm (EEABR), which is based on the Ant Colony Optimization (ACO) Here we also activated the sensor active/sleep mode increase the lifetime efficiently.

III. PRELIMINARY AND RELATED WORK

In this section, the problems of finding the maximum number of disjoint connected coverage between sensors are defined. Next the coverage, collection, routing problem are examined.

a. Problem definition

Let as consider Randomly deploy a set of sensors with SE1, SE2.. And sink SI1, SI2....And target area of 300x750sq.feets according to our simulation as shown in fig 2.

1) The **coverage constraint** represents the coverage according to sensor placed in target area. Here various types of coverage that has to be examined.

- Area coverage: objective is to cover an area
- Point (target) coverage: objective is to cover a set of points (targets)
- support/breach paths that traverse a sensor field:
- Best case coverage: for any point on the path, the distance to the closest sensor is minimized
- Worse case coverage: similar but the distance to the closest sensor is maximized.

2) The **collection constraint**, the sinks to collect all the monitored results obtained by the sensors and transmit it to destination (means user).

3) The **routing constraint**, the sinks form a connected network for transmitting the collected monitoring results to the destination.

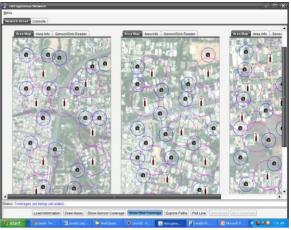


Fig 2: Illustration of coverage of sensor and sink. Each sensor s is marked as a dot and sink in red color .Each circle of blue circle represents the Sensing area of the corresponding sensor and pink circle represents the sensing range of sink

b. Proposed System Architecture

The sensors monitor the target and transmit the monitoring results to the sinks which are nearer to it, based on ACO-MNCC. Here we used more sinks to increase the sensor lifetime, as the sensor chooses the shortest path nearest to it as shown in Fig 4.The time of sending monitoring results can be reduced. In existing only single sink used, which lead to congestion between sensors, due to this the network lifetime decrease. By using more then one sink will increase the lifetime of WSNs and finding nearer optimal path when transmitting the data from sensor to sink will also increase the lifetime of WSNs, since if we use more then one sink, sensor doesn't know to transmit to which sink. So this can be achieved by ACO algorithm.

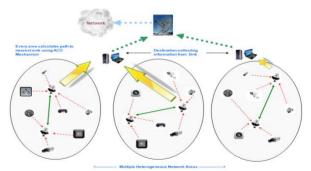


Fig 4: Heterogeneous Wireless sensor Networks – Proposed System Architecture

IV. ANT COLONY OPTIMIZATION-BASED APPROACH IN WIRELESS SENSOR NETWORKS

a. GENERAL CONCEPT OF ACO

Real ants foraging for food lay down quantities of pheromone (chemical cues) marking the path that they follow. An isolated ant moves essentially guided by a heuristic function and an ant encountering a previously laid pheromone will detect and decide to follow it with high probability thus taking more informed actions based on the experience of previous Artificial 'ants' - simulation agents - locate optimal solutions by moving through a parameter space representing all possible solutions. Real ants lay down pheromones directing each other to resources while exploring their environment. The simulated 'ants' similarly record their positions and the quality of their solutions, so that in later simulation iterations more ants locate better solutions.

V. HOW ACO APPLIED IN WSNs IN LIFETIME MAXIMIZATION

- The pheromone concentration on trail B will increase at a higher rate than on A, and soon the ants on route A will choose to follow route B
- Since most ants will no longer travel on route A, and since the pheromone is volatile, trail A will start evaporating
- Since the route B is shorter, the ants on this path will complete the travel more times and thereby lay more pheromone over it.
- The initial target area of 300*750 taken and the sensor coverage range is 50meter and sink coverage is 100meter taken.
- Ants (blind) navigate from nest to food source ie(from sensor to sink)
- Shortest path is discovered via pheromone trails
 - each ant moves at random(in target area)
 - pheromone is deposited between sensor and sink(in target area)
 - more pheromone on path increases probability of path being followed
- According to ACO technique first the sensor and sink coverage calculated and
- First trial ant move in all path were and sensor placed, in first trial transmit the data to all path as shown in fig 5.

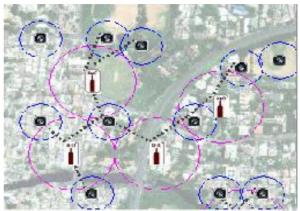


Fig 5: ACO calculation in all paths

• Second trial finds shorted distance according to algorithm and remaining sensor send the monitoring result to sink as shown in fig 6.

Fig 6: finding optimal path according to ACO concept

a. ALGORITHM USED

Initialize Trail in target area

Load the configuration (like sensor reader which contains the information about temperature, pressure information's)

Add the target area

Do While Calculate the coverage distance between sensor, sink then Find the distance then

Add all datas to area starting from sensor to sink While

Calculateal all paths according to aco algorithm then find optimized path

Update in aco table by distance, coverage, sensors details Do Until (Each Ant Completes a round) – round Loop **Pheromone Management**

Local Trail Update (all path calculation between sensor and sink)

End Do End while

Analyze round

Global Trail Update (shortest distance calculation updated)

End Do

Finally shortest distance between sink and destination are calculated.

VI. PERFORMANCE EVALUATION

Various performance metrics are used for comparing different routing strategies in WSNs. We have used the following:

- Average Energy
- Energy consumption
- Network lifetime

VII. EXPERIMENTS AND SIMULATION DISCUSSIONS

This section of the paper discusses the simulation of the proposed routing protocol and evaluates its performance. To be able to evaluate the implementation of the proposed ACO routing, simulation was carried out in Java Agent Development Framework (JADE-1.6), a scalable discreteevent simulator Developed by JDK1.6. This software provides a high fidelity simulation for wireless communication with detailed link between sensors and sinks as shown in fig 7. This demonstrates the increased WSNs lifetime.

In this project we used java swings to represent graphical user interface(GUI) .GUI is used for representing the area map and coverage, and JADE frameworks is used for communication between sensors and sinks. In JADE container all information about the sensors and sink can be stored. Finally configurations are set for linking JADE and JAVA.

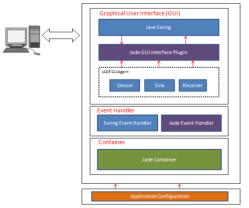


Fig 7: Techinal architecture for Simlation result- java agent development framework(JADE).

VIII.Techinal architecture explaination:

a. Graphic User Interface (GUI)

Heterogeneous Wireless sensor Network application will be developed using Java Swing application. GUI acts a governing module of entire application and binds all other module intact.

b. GUI Application areas

Application has several areas collecting various information right from text message, pictures, videos, surveys, etc., GUI needs to provide provision in terms of displaying these areas, handle events specific to area and to perform ACO mechanism as shown in fig 9.

c. GUI Event Handlers

As we know that application has many sensors, sinks & base station all of these networks may generate and receive various events like sending/receiving messages, sending/receiving pictures, etc., so separate event handling mechanism.

d. JADE Container Communication Services

As a part of JADE integration, all GUI events have to be delegated to JADE. So this module acts an interface between GUI and JADE making it possible to pass on all messages.

e. Application Configuration Controllers

To place sensors, sink, base station & etc., several data has to be collected from the user. To store/load and update this information, a module will be coded in a way it makes very convenient both for application and for the user to use data.

IX. SIMULATION RESULTS

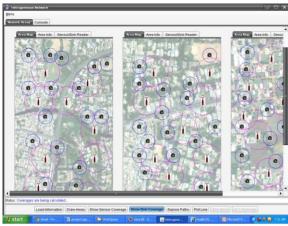


Fig 8: shows the result of sensor and sink coverage

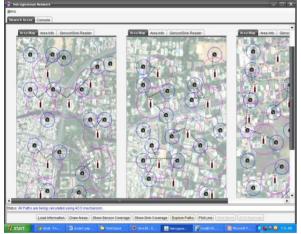


Fig9: shows the result of routing of all route according to ACO concept

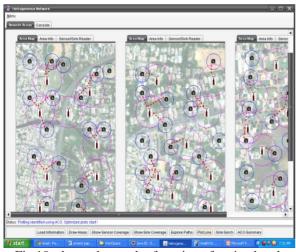


Fig 10: shows the result of routing of optimal path



Fig 11: shows the synchronization between sink and destination for message transmission.

Fig 12: shows the result of ACO calculation for lifetime maximization.

X. CONCLUSION

In this paper, we presented a new objective for maximizing the network lifetime using ACO-MNCC algorithm to increase network lifetime and balance the node power consumption and as long as possible. Based upon finding coverage, connectivity between the sensor and sink and followed by finding optimal path, the lifetime of sensor is maximized. In further enhancement we can use active/sleep mode in sensors .finally the synchronization between sink take places and transmits al datas to destination. Extensive simulation result clearly shows that the proposed approach provides more approximate, effective and efficient way for maximizing the lifetime of heterogeneous wireless sensor networks

ACKNOWLEDGMENT

I must thank, first and foremost, my Guide Mrs.UMARANI SRIKANTH M.E.,(Ph.D) Professor, Head of the Department, Department of PG studies in Engineering, without whose guidance and patience, this dissertation would not be possible and staffs of the Department of PG studies in Engineering for their consistent encouragement and ideas.

REFERENCES

- K. R[°] mer, F. Mattern, and E. Zurich, "The design space of wireless sensor networks," IEEE Wireless Commun., vol. 11, no. 6, pp. 54–61, Dec. 2004.
- [2] T. D. R["] ty, "Survey on contemporary remote surveillance systems for a public safety," IEEE Trans. Syst., Man, Cybern., Part C, vol. 40, no. 5, pp. 493–515, Sep. 2010.
- [3] I. F. Akyildiz, T. Melodia, and K. R. Chowdury, "Wireless multimediasensor network: A survey," IEEE Wireless Commun., vol. 14, no. 6, pp. 32–39, Dec. 2007.
- [4] I. Dietrich and F. Dressler, "On the lifetime of wireless sensor networks,"ACM Trans. Sensor Networks, vol. 5, no. 1, Feb. 2009.
- [5] C.-Y. Chang, J.-P. Sheu, Y.-C. Chen, and S.-W. Chang, "An obstacle-free and power-efficient deployment algorithm for wireless sensor networks," IEEE Trans. Syst., Man, Cybern., Part A, vol. 39, no. 4, pp. 795–806, Jul 2009.
- [6] F. Marcelloni and M. Vecchio, "A simple algorithm for data compression in wireless sensor networks," IEEE Commun. Lett., vol. 12, no. 6, pp. 411–413, Jun. 2008.
- [7] S. Yang, H. Cheng, and F. Wang, "Genetic algorithms with immigrants an Figure memory schemes for dynamic shortest path routing problems in mobile Ad Hoc networks," IEEE Trans. Syst., Man, Cybern., Part C, vol. 40, no. 1, pp. 52–63, Jan. 2010.
- [8] Q. Zhao and M. Gurusamy, "Lifetime maximization for connected target coverage in wireless sensor networks," IEEE/ACM Trans. Networking, vol. 16, no. 6, pp. 1378– 1391, Dec. 2008.